Bottomonium suppression and elliptic flow from real-time quantum evolution

13 нояб. 2020 г., 21:00
30m
Physics of heavy quarks Session 11: Heavy quarks

Speaker

Prof. Michael Strickland (Kent State University)

Описание

We compute the suppression and elliptic flow of bottomonium using real-time solutions to the Schroedinger equation with a realistic in-medium complex-valued potential. To model the initial production, we assume that, in the limit of heavy quark masses, the wave-function can be described by a lattice-smeared (Gaussian) Dirac delta wave-function. The resulting final-state quantum-mechanical overlaps provide the survival probability of all bottomonium eigenstates. Our results are in good agreement with available data for $R_{AA}$ as a function of $N_{\rm part}$ and $p_T$ collected at $\sqrt{s_{\rm NN}} =$ 5.02 TeV. In the case of $v_2$ for the various states, we find that the path-length dependence of $\Upsilon(1s)$ suppression results in quite small $v_2$ for $\Upsilon(1s)$. Our prediction for the integrated elliptic flow for $\Upsilon(1s)$ in the $10{-}90$\% centrality class is $v_2[\Upsilon(1s)] = 0.0026 \pm 0.0007$. We additionally find that, due to their increased suppression, excited bottomonium states have a larger elliptic flow and we make predictions for $v_2[\Upsilon(2s)]$ and $v_2[\Upsilon(3s)]$ as a function of centrality and transverse momentum. Similar to prior studies, we find that it is possible for bottomonium states to have negative $v_2$ at low transverse momentum.

Primary authors

Prof. Michael Strickland (Kent State University) Mr Ajaharul Islam (Kent State University)

Presentation Materials

Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×