Light-Cone Distribution Amplitudes of Heavy Baryons

Alexander Parkhomenko

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia

International Conference-Session of the Section of Nuclear Physics of the PSD of RAS "Physics of Fundamental Interactions", 5-8 November 2013

based on the paper by A. Ali, C. Hambrock, A.P. and W. Wang Eur. Phys. J. C73 (2013) 2302 [arXiv:1212.3280]

Outline

- 3 QCD Sum Rules
- 4 Numerical analysis

5 Conclusions

Alexander Parkhomenko Light-Cone Distribution Amplitudes of Heavy Baryons

э

Introduction

Ground-state ($\ell = 0$) charmed baryons

Ground-state ($\ell = 0$) bottom baryons

э

Introduction

- Heavy baryons are copiously produced at the LHC
- Weak decays of bottom baryons induced by FCNC may give important information on physics beyond the SM
- LCDAs are the primary non-perturbative objects required for calculating decays into light particles based on the heavy quark expansion or within the method of Light-Cone Sum Rules (LCSRs)
- For a long time existing models for heavy baryons were motivated by the quark model
- Complete classification of the three-quark LCDAs of the Λ_b-baryon in QCD and main features of these LCDAs have been considered by V. Braun, P. Ball and E. Gardi (2008)
- Extension of this analysis for all ground-state bottom baryons have been done by A. Ali, C. Hambrock, A. P. and W. Wang (2013) and presented in this lecture

Light-Cone Distribution Amplitudes (LCDAs)

Light-cone distribution amplitudes of heavy baryons matrix elements of non-local light-ray operators build off an effective heavy quark and two light quarks

- Similar in construction to B-meson LCDAs
- QCD description of nucleon LCDAs

Heavy Quark Symmetry \implies switch off the heavy-quark spin

 $SU(3)_F$ antitriplet \implies scalar states with $J^P = j^p = 0^+$

 $SU(3)_F$ sextets \implies axial-vector states with $J^P = j^p = 1^+$

・ロト ・ 理 ト ・ ヨ ト ・

 $SU(3)_{F} \text{ antitriplet } J^{P} = j^{p} = 0^{+} \text{ scalar state}$ Non-local light-ray operators $\epsilon^{abc} \langle 0 | \left(q_{1}^{a}(t_{1}n) C \gamma_{5} / p q_{2}^{b}(t_{2}n) \right) h_{v}^{c}(0) | H(v) \rangle = f_{H}^{(2)} \Psi_{2}(t_{1}, t_{2})$

 $\epsilon^{abc} \langle 0| \left(q_1^a(t_1n)C\gamma_5\eta q_2^b(t_2n) \right) h_v^c(0)|H(v) \rangle = h_H^{-1} \Psi_2^c(t_1,t_2)$ $\epsilon^{abc} \langle 0| \left(q_1^a(t_1n)C\gamma_5\eta q_2^b(t_2n) \right) h_v^c(0)|H(v) \rangle = f_H^{(1)} \Psi_3^s(t_1,t_2)$ $\epsilon^{abc} \langle 0| \left(q_1^a(t_1n)C\gamma_5\eta q_2^b(t_2n) \right) h_v^c(0)|H(v) \rangle = f_H^{(2)} \Psi_4(t_1,t_2)$

 $q_i = u, d, s - light quark fields$

C - charge conjugation matrix

 $n^{\mu}, \ \bar{n}^{\mu}$ – two light-like vectors $(n\bar{n}) = 2$

Frame is adopted: $v^{\mu} = (n^{\mu} + \bar{n}^{\mu})/2$

Couplings $f_{H}^{(i)}$ are defined by local operators $\epsilon^{abc} \langle 0| \left(q_{1}^{a}(0)C\gamma_{5}q_{2}^{b}(0) \right) h_{v}^{c}(0)|H(v) \rangle = f_{H}^{(1)}$ $\epsilon^{abc} \langle 0| \left(q_{1}^{a}(0)C\gamma_{5}\psi q_{2}^{b}(0) \right) h_{v}^{c}(0)|H(v) \rangle = f_{H}^{(2)}$

Scale dependence of the couplings (NLO order):

$$f_{H}^{(i)}(\mu) = f_{H}^{(i)}(\mu_{0}) \left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(\mu_{0})}\right)^{\gamma_{1}^{(i)}/\beta_{0}} \left[1 - \frac{\alpha_{s}(\mu_{0}) - \alpha_{s}(\mu)}{4\pi} \frac{\gamma_{1}^{(i)}}{\beta_{0}} \left(\frac{\gamma_{2}^{(i)}}{\gamma_{1}^{(i)}} - \frac{\beta_{1}}{\beta_{0}}\right)\right]$$

Example: Ab-baryon

NLO QCD sum rules [Groote et all., 1997]

 $f^{(1)}_{\Lambda_b}(\mu_0 = 1 \text{ GeV}) \simeq f^{(2)}_{\Lambda_b}(\mu_0 = 1 \text{ GeV}) \simeq 0.030 \pm 0.005 \text{ GeV}^3$

Supported by the non-relativistic constituent quark picture

LCDAs $\Psi_i(t_1, t_2)$ are scale dependent

Fourier transrorm to the momentum space:

$$\Psi(t_1, t_2) = \int_0^\infty d\omega_1 \int_0^\infty d\omega_2 \, e^{-it_1\omega_1 - it_2\omega_2} \psi(\omega_1, \omega_2)$$
$$= \int_0^\infty \omega \, d\omega \int_0^1 d\omega \, e^{-i\omega(t_1\omega + t_2\bar{\omega})} \, \widetilde{\psi}(\omega, \omega)$$

 $\omega_1 = u\omega, \omega_2 = (1 - u)\omega = \bar{u}\omega$ – energies of light quarks LO evolution equation for $\psi_2(\omega_1, \omega_2; \mu)$: derived by identifying UV singularities of one-gluon-exchange diagrams

イロト イポト イヨト イヨト 三日

Introduction LCDAs QCD Sum Rules Numerical analysis Co

One-gluon exchange diagrams

Alexander Parkhomenko Light-Cone Distribution Amplitudes of Heavy Baryons

► < E >

ъ

Evolution equation is expressed in terms of two-particle kernels from evolution equations for *B*- and pseudoscalar mesons

$$\begin{split} \mu \frac{d}{d\mu} \psi_2(\omega_1, \omega_2; \mu) &= -\frac{\alpha_s(\mu)}{2\pi} \frac{4}{3} \left\{ \int_0^\infty d\omega_1' \gamma^{\mathrm{LN}}(\omega_1', \omega_1; \mu) \psi_2(\omega_1', \omega_2; \mu) \right. \\ &+ \int_0^\infty d\omega_2' \gamma^{\mathrm{LN}}(\omega_2', \omega_2; \mu) \psi_2(\omega_1, \omega_2'; \mu) \\ &- \int_0^1 d\nu \, V(u, \nu) \psi_2(\nu\omega, \bar{\nu}\omega; \mu) + \frac{3}{2} \psi_2(\omega_1, \omega_2; \mu) \right\} \end{split}$$

Kernel $\gamma^{\text{LN}}(\omega', \omega; \mu)$ controlling evolution of the B-meson LCDA V(u, v) is the ER-BL kernel

Term $3\psi_2/2$ results from $f_H^{(2)}$ renormalization subtraction Evolution equation can be solved either numerically or semi-analytically [Braun et al., 2008]

 $SU(3)_F$ sextet $J^P = j^p = 1^+$ axial-vector state Non-local light-ray operators (longitudinal polarization)

$$\begin{split} \epsilon^{abc} \langle 0| \left(q_{1}^{a}(t_{1}) C \not p q_{2}^{b}(t_{2}) \right) h_{v}^{c}(0) | H(v,\varepsilon) \rangle &= (\bar{v}\varepsilon) f_{H}^{(2)} \Psi_{2}^{\parallel}(t_{1},t_{2}) \\ \epsilon^{abc} \langle 0| \left(q_{1}^{a}(t_{1}) C q_{2}^{b}(t_{2}) \right) h_{v}^{c}(0) | H(v,\varepsilon) \rangle &= (\bar{v}\varepsilon) f_{H}^{(1)} \Psi_{3}^{\parallel s}(t_{1},t_{2}) \\ \epsilon^{abc} \langle 0| \left(q_{1}^{a}(t_{1}) C i\sigma_{\bar{n}n} q_{2}^{b}(t_{2}) \right) h_{v}^{c}(0) | H(v,\varepsilon) \rangle &= 2 (\bar{v}\varepsilon) f_{H}^{(1)} \Psi_{3}^{\parallel a}(t_{1},t_{2}) \\ \epsilon^{abc} \langle 0| \left(q_{1}^{a}(t_{1}) C \bar{\rho} q_{2}^{b}(t_{2}) \right) h_{v}^{c}(0) | H(v,\varepsilon) \rangle &= - (\bar{v}\varepsilon) f_{H}^{(2)} \Psi_{4}^{\parallel}(t_{1},t_{2}) \end{split}$$

$$\overline{\mathbf{v}}^{\mu} = (\overline{n}^{\mu} - n^{\mu})/2 \quad (\mathbf{v}\overline{\mathbf{v}}) = 0 \quad (\overline{\mathbf{v}}\overline{\mathbf{v}}) = -1$$
$$\varepsilon^{\mu} = \varepsilon^{\mu}_{\parallel} + \varepsilon^{\mu}_{\perp} \qquad \varepsilon^{\mu}_{\parallel} = \eta \overline{\mathbf{v}}^{\mu} \qquad \sigma_{\overline{n}n} = i \left(\overline{p} \phi - \eta \overline{p} \right)/2$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

 $SU(3)_{F} \text{ sixtet } J^{P} = j^{p} = 1^{+} \text{ axial-vector state}$ Non-local light-ray operators (transverse polarization) $\epsilon^{abc} \langle 0| \left(q_{1}^{a}(t_{1})C \gamma_{\perp}^{\mu} \not h q_{2}^{b}(t_{2}) \right) h_{v}^{c}(0) | H(v,\varepsilon) \rangle = f_{H}^{(2)} \Psi_{2}^{\perp}(t_{1},t_{2}) \varepsilon_{\perp}^{\mu}$ $\epsilon^{abc} \langle 0| \left(q_{1}^{a}(t_{1})C \gamma_{\perp}^{\mu} q_{2}^{b}(t_{2}) \right) h_{v}^{c}(0) | H(v,\varepsilon) \rangle = f_{H}^{(1)} \Psi_{3}^{\perp s}(t_{1},t_{2}) \varepsilon_{\perp}^{\mu}$ $\epsilon^{abc} \langle 0| \left(q_{1}^{a}(t_{1})C \gamma_{\perp}^{\mu} i \sigma_{\bar{n}n} q_{2}^{b}(t_{2}) \right) h_{v}^{c}(0) | H(v,\varepsilon) \rangle = 2f_{H}^{(1)} \Psi_{3}^{\perp a}(t_{1},t_{2}) \varepsilon_{\perp}^{\mu}$ $\epsilon^{abc} \langle 0| \left(q_{1}^{a}(t_{1})C \gamma_{\perp}^{\mu} \not h q_{2}^{b}(t_{2}) \right) h_{v}^{c}(0) | H(v,\varepsilon) \rangle = f_{H}^{(2)} \Psi_{4}^{\perp}(t_{1},t_{2}) \varepsilon_{\perp}^{\mu}$

 $\gamma_{\perp}^{\mu} = \gamma^{\mu} - \left(\vec{p} \not p + \not p \vec{p} \right) / 2$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Switching on the heavy quark spin

r.h.s. of matrix elements of all non-local operators must be multiplied on the Dirac spinor U(v) of the heavy quark h_v

$$\Psi U(v) = U(v)$$
 $\overline{U}(v) U(v) = 1$

Scalar state: $J^P = j^p = 0^+ \Longrightarrow J^P = 1/2^+$: $H(v) \equiv U(v)$ Axial-vector state: $J^P = j^p = 1^+ \implies J^P = 1/2^+$, $J^P = 3/2^+$

$$\varepsilon_{\mu} U(\mathbf{v}) = \left[\varepsilon_{\mu} U(\mathbf{v}) - \frac{1}{3} (\gamma_{\mu} + \mathbf{v}_{\mu}) \notin U(\mathbf{v}) \right] + \frac{1}{3} (\gamma_{\mu} + \mathbf{v}_{\mu}) \notin U(\mathbf{v})$$
$$\equiv R_{\mu}^{3/2}(\mathbf{v}) + \frac{1}{3} (\gamma_{\mu} + \mathbf{v}_{\mu}) H(\mathbf{v})$$

Rarita-Schwinger vector-spinor $R_{\mu}^{3/2}(v)$:

$$\forall R^{3/2}_{\mu}(v) = R^{3/2}_{\mu}(v), \quad v^{\mu} R^{3/2}_{\mu}(v) = 0, \quad \gamma^{\mu} R^{3/2}_{\mu}(v) = 0$$

QCD Sum Rules

Models for LCDAs can be obtained using QCD sum rules

Correlation functions involve the non-local light-ray operators and a suitable local current

QCD Sum Rules

Heavy baryon local operators

Arbitrariness in the choice of local currents (variation in $A \in [0, 1]$ and B = 1 - A) is adopted as an error estimate

Result are calculated for A = B = 1/2: supported by a constituent quark model picture [Braun et al., 2008]

$$j^{\rho} = 0^+ \Longrightarrow \Gamma' = \gamma_5$$

 $j^{\rho} = 1^+ \Longrightarrow \Gamma' = \gamma_{\parallel}, \ \gamma_{\perp}$

QCD Sum Rules

Propagators of the light quark fields $\tilde{S}_q(x)$ are not free To take effects of the QCD background inside baryons into account, method of non-local condensates is used

General parametrization [Mikhailov, Radyushkin, 1986, 1992]

$$\mathcal{C}_q(x) = \langle \bar{q}q \rangle \int_0^\infty d\nu \, e^{\nu x^2/4} \, f(\nu)$$

Non-local condensate shape is chosen according to the model [Braun et el., 1994; Braun et al., 2003]

$$f(\nu) = \frac{\lambda^{a-2}}{\Gamma(a-2)} \nu^{1-a} e^{-\lambda/\nu}, \qquad a = 3 + \frac{4\lambda}{m_0^2}$$

Parameters included:

 $\langle \bar{q}q \rangle$ is local quark condensate, $\lambda = \langle \bar{q}D^2q \rangle / \langle \bar{q}q \rangle$ is correlation length, $m_0^2 = \langle \bar{q}g_{\rm st}\sigma_{\mu\nu}G^{\mu\nu}q \rangle / \langle \bar{q}q \rangle$ is ratio of local mixed quark-gluon and quark condensates

Analytic result for leading-twist transverse LCDA at $\mu_0 = 1$ GeV $\begin{aligned} f_H^{(2)} \left[A f_H^{(1)} + B f_H^{(2)} \right] \tilde{\psi}_2^{SR}(\omega, u) e^{-\bar{h}/\tau} = \\ & \frac{3\tau^4}{2\pi^4} \left[B\hat{\omega}^2 u\bar{u} + A\hat{\omega} \left(\hat{m}_2 u + \hat{m}_1 \bar{u} \right) \right] E_1(2\hat{s}_\omega) e^{-\hat{\omega}} \\ & - \frac{\langle \bar{q}_1 q_1 \rangle \tau^3}{\pi^2} \left[A\hat{\omega} \bar{u} + B\hat{m}_2 \right] f(2\tau\omega u) E_{2-a}(2\hat{s}_\kappa) e^{-\hat{\omega}} \\ & - \frac{\langle \bar{q}_2 q_2 \rangle \tau^3}{\pi^2} \left[A\hat{\omega} u + B\hat{m}_1 \right] f(2\tau\omega \bar{u}) E_{2-a}(2\hat{s}_\kappa) e^{-\hat{\omega}} \\ & + \frac{2B}{3} \langle \bar{q}_1 q_1 \rangle \langle \bar{q}_2 q_2 \rangle \tau^2 f(2\tau\omega u) f(2\tau\omega \bar{u}) E_{3-2a}(2\hat{s}_{\kappa\bar{\kappa}}) e^{-\hat{\omega}}, \end{aligned}$

The following function was introduced

$$E_{a}(x) = \frac{1}{\Gamma(a+1)} \int_{0}^{x} dt \, t^{a} \mathrm{e}^{-t} = 1 - \frac{\Gamma(a+1,x)}{\Gamma(a+1)}$$

$$\bar{\Lambda} = m_{H} - m_{b}, \quad s_{\omega} = s_{0} - \omega/2, \quad \kappa = \lambda/(2u\omega\tau), \quad \bar{\kappa} = \lambda/(2\bar{u}\omega\tau)$$

$$\hat{\omega} = \omega/(2\tau), \quad \hat{s}_{\omega} = s_{\omega}/(2\tau), \quad \hat{m}_{1,2} = m_{1,2}/(2\tau)$$

$$\hat{s}_{\kappa} = \hat{s}_{\omega} - \kappa/2, \quad \hat{s}_{\bar{\kappa}} = \hat{s}_{\omega} - \bar{\kappa}/2, \quad \hat{s}_{\kappa\bar{\kappa}} = \hat{s}_{\omega} - \kappa/2 = \bar{\kappa}/2 = \bar{\kappa}/2$$

Normalization of symmetric LCDAs (t = 2, 3s, 4)

$$\int_{0}^{2s_{0}}\omega d\omega\int_{0}^{1}du\,\tilde{\psi}_{t}^{\mathrm{SR}}(\omega,u)\equiv\mathbf{1}$$

Normalization of antisymmetric LCDAs ($t = 3\sigma$) can be fixed by

$$\int_0^{2s_0} \omega d\omega \int_0^1 du \, C_1^{1/2}(2u-1) \, \tilde{\psi}_t^{\mathrm{SR}}(\omega,u) \equiv 1$$

Here, $C_n^m(x)$ are the Gegenbauer polynomials

QCD sum rules constrain certain moments

$$\langle f(\omega, u) \rangle_k \equiv \int_0^{2s_0} \omega d\omega \int_0^1 du f(\omega, u) \, \tilde{\psi}_t^{\mathrm{SR}}(\omega, u)$$

Numerical values of the parameters

$\bar{\Lambda}_{\Lambda_b}$	0.8 GeV	$s_0^{(\Lambda_b)}$	1.2 GeV
$\bar{\Lambda}_{\Xi_b}$	1.0 GeV	$s_0^{(\Xi_b)}$	1.3 GeV
au	$\textbf{0.6}\pm\textbf{0.2}$	<i>m</i> _s (1 GeV)	$128\pm21~\text{MeV}$
$\langle ar{q}q angle$ (1 GeV)	-(242 ⁺²⁸) MeV ³	$\langle ar{s}s angle / \langle ar{q}q angle$	$\textbf{0.8}\pm\textbf{0.3}$
m_0^2	$0.8\pm0.2~GeV^2$	λ	0.16 GeV ²

- 신문 () - 신문

Numerical values of first several moments

H _Q	t	$\langle \omega^{-1} \rangle$	$\langle C_1^{3/2} angle$	$\langle \omega^{-1} C_1^{3/2} angle$	$\langle \textit{C}_2^{3/2} angle$	$\langle \omega^{-1} C_2^{3/2} angle$	
Λ_b	2	$1.65^{+0.91}_{-0.47}$	0	0	$1.00^{+0.54}_{-1.03}$	$0.61^{+0.76}_{-1.45}$	
Ξ _b	2	$1.61\substack{+0.71 \\ -0.42}$	$0.10\substack{+0.10 \\ -0.06}$	$0.08\substack{+0.07 \\ -0.04}$	$0.98\substack{+0.49\\-0.82}$	$0.69^{+0.63}_{-1.07}$	
H _Q	t	$\langle \omega^{-1} \rangle$	$\langle C_1^{1/2} \rangle$	$\langle \omega^{-1} C_1^{1/2} angle$	$\langle C_2^{1/2} \rangle$	$\langle \omega^{-1} C_2^{1/2} \rangle$	
	3s	$2.16^{+0.70}_{-0.36}$	0	0	$-0.032\substack{+0.022\\-0.041}$	$-0.29\substack{+0.14\\-0.27}$	
Λ_b	3σ	0	1	$1.54^{+0.14}_{-0.22}$	0	0	-
	4	$2.84^{+0.88}_{-0.46}$	0	0	$-0.108\substack{+0.035\\-0.018}$	$-0.41\substack{+0.08\\-0.15}$	
	3s	$2.08^{+0.50}_{-0.29}$	$0.11\substack{+0.10 \\ -0.06}$	$0.063^{+0.080}_{-0.047}$	$0.87^{+0.08}_{-0.14}$	$0.84^{+0.27}_{-0.45}$	-
\equiv_b	3σ	$0.00054^{+0.00033}_{-0.00054}$	1	$1.51^{+0.12}_{-0.19}$	$0.054^{+0.033}_{-0.054}$	$0.098^{+0.061}_{-0.098}$	
	4	$2.73^{+0.61}_{-0.35}$	$0.12\substack{+0.09\\-0.05}$	$0.05\substack{+0.09 \\ -0.05}$	$0.55\substack{+0.18\\-0.11}$	$0.99\substack{+0.16 \\ -0.09}$	-

Alexander Parkhomenko Light-Cone Distribution Amplitudes of Heavy Baryons

э

Model functions for the *b*-baryon LCDAs, composed of the exponential part for the heavy-light interaction and the Gegenbauer polynomials for the light-light interaction

Proposed simple models for LCDAs at the scale $\mu_0 = 1 \text{ GeV}$

$$\begin{split} \tilde{\psi}_{2}(\omega, u) &= \omega^{2} u(1-u) \sum_{n=0}^{2} \frac{a_{n}^{(2)}}{\epsilon_{n}^{(2)4}} C_{n}^{3/2} (2u-1) e^{-\omega/\epsilon_{n}^{(2)}}, \\ \tilde{\psi}_{3s}(\omega, u) &= \frac{\omega}{2} \sum_{n=0}^{2} \frac{a_{n}^{(3)}}{\epsilon_{n}^{(3)3}} C_{n}^{1/2} (2u-1) e^{-\omega/\epsilon_{n}^{(3)}}, \\ \tilde{\psi}_{3\sigma}(\omega, u) &= \frac{\omega}{2} \sum_{n=0}^{3} \frac{b_{n}^{(3)}}{\eta_{n}^{(3)3}} C_{n}^{1/2} (2u-1) e^{-\omega/\eta_{n}^{(3)}}, \\ \tilde{\psi}_{4}(\omega, u) &= \sum_{n=0}^{2} \frac{a_{n}^{(4)}}{\epsilon_{n}^{(4)2}} C_{n}^{1/2} (2u-1) e^{-\omega/\epsilon_{n}^{(4)}}, \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Twist-2 LCDAs of Σ (blue), \equiv (red) and Ω (cyan) baryons at the energy scales $\mu_0 = 1$ GeV estimated within the range $A \in [0, 1]$

Twist-2 LCDAs of Σ (blue), \equiv (red) and Ω (cyan) baryons at the energy scales $\mu_0 = 1$ GeV estimated within the range $A \in [0, 1]$

Conclusions

- The total set of the non-local light-ray operators for the ground-state heavy baryons is constructed in the framework of HQET
- Their matrix elements between the heavy-baryon state and vacuum determine the LCDAs of different twist through the diquark operator
- First several moments are calculated within the method of QCD sum rules
- Simple theoretical models for the LCDAs have been proposed and their parameters are fitted based on the QCD sum rules estimations
- SU(3)_F breaking effects are of order 10%

< 🗇 > < 🖻 > <

Backup Slides

Alexander Parkhomenko Light-Cone Distribution Amplitudes of Heavy Baryons

・ロト ・回ト ・ヨト ・ヨト

æ

Introduction

Experimental measurements [PDG, 2012] and theoretical predictions based on HQET [X. Liu et al., 2008] and Lattice QCD [R. Lewis et al., 2009] for masses of ground-state bottom baryons (in units of MeV)

Baryon	$I(J^P)$	jp	Experiment	HQET	Lattice QCD
Λ_b	0(1/2+)	0+	5619.4 ± 0.7	5637^{+68}_{-56}	$5641 \pm 21^{+15}_{-33}$
Σ_b^+	$1(1/2^+)$	1+	5811.3 ± 1.9	5809^{+82}_{-76}	$5795 \pm 16^{+17}_{-26}$
Σ_b^-	$1(1/2^+)$	1+	5815.5 ± 1.8	5809^{+82}_{-76}	$5795 \pm 16^{+17}_{-26}$
Σ_b^{*+}	$1(3/2^+)$	1+	5832.1 ± 1.9	5835^{+82}_{-77}	$5842 \pm 26^{+20}_{-18}$
Σ_b^{*-}	$1(3/2^+)$	1+	5835.1 ± 1.9	5835^{+82}_{-77}	$5842 \pm 26^{+20}_{-18}$
\equiv_{b}^{-}	$1/2(1/2^+)$	0^+	5791.1 ± 2.2	5780^{+73}_{-68}	$5781 \pm 17^{+17}_{-16}$
\equiv^0_b	$1/2(1/2^+)$	0^+	$\textbf{5788} \pm \textbf{5}$	5903^{+81}_{-79}	$5903 \pm 12^{+18}_{-19}$
Ξ_b'	$1/2(1/2^+)$	1+		5903^{+81}_{-79}	$5903 \pm 12^{+18}_{-19}$
$\Xi_{b}^{\prime *}$	$1/2(3/2^+)$	1+		5903^{+81}_{-79}	$5950 \pm 21^{+19}_{-21}$
Ω_b^-	$0(1/2^+)$	1+	6071 ± 40	6036 ± 81	$6006 \pm 10^{+20}_{-19}$
Ω_b^*	$0(3/2^+)$	1+		6063^{+83}_{-82}	$6044 \pm 18^{+20}_{-21}$

Alexander Parkhomenko Light-Cone Distribution Amplitudes of Heavy Baryons

Light fields

Light-quark fields living on the light cone assumed to be multiplied by the Wilson lines

$$q(tn) = [0, tn] q(tn) = \operatorname{Pexp}\left\{-ig_{st}t \int_0^1 d\alpha n^{\mu} A_{\mu}(\alpha tn)\right\} q(tn)$$

Considered as generating function of formal expansion

$$q(tn) = \sum_{N=0}^{\infty} \frac{t^{N}}{N!} (n^{\mu} D_{\mu})^{N} q(0)$$

The covariant derivative $D_{\mu} = \partial_{\mu} - ig_{st}A_{\mu}$

Similar for the gluonic field

$$G_{\mu\nu}(tn) = [0, tn] G_{\mu\nu}(tn)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

1

Heavy quark field

The heavy-quark field living on the light cone also includes the Wilson line but time-like [Korchemsky, Radushkin (1992)]

$$h_{\nu}(\mathbf{0}) = \operatorname{P}\exp\left\{ig_{\mathrm{st}}\int_{-\infty}^{0}d\alpha v^{\mu}A_{\mu}(\alpha v)\right\}\phi(-\infty)$$

Sterile field $\phi(-\infty)$ was introduced

・聞き ・ヨト ・ヨト

Double Fourier transform of the correlation function

$$\Pi_{\Gamma\Gamma'}(\omega_1,\omega_2;E) = i \int_{-\infty}^{\infty} \frac{dt_1 dt_2}{(2\pi)^2} e^{i(\omega_1 t_1 + \omega_2 t_2)} \int d^4 x \, e^{-iE(vx)} \langle 0|\mathcal{O}^{\Gamma}(t_1,t_2) \, \bar{J}^{\Gamma'}(x)|0\rangle$$

In momentum space, correlation function reads diagrammatically

Heavy quark condensate term is suppressed by $1/m_Q$ Sum rule reads

$$|f_{\mathcal{H}}|^2 \psi^{\Gamma}(\omega, u) e^{-\bar{\Lambda}_{\mathcal{H}}/\tau} = \mathbb{B}[\Pi](\omega, u; \tau, s_0)$$

 \mathbb{B} means the Borel-transform, $\bar{\Lambda}_H = m_H - m_Q$ s_0 – momentum cutoff from applying the quark-hadron duality

Estimates of the parameters entering the theoretical models for the heavy baryon LCDAs

H _Q	t	$\varepsilon_0^{(t)}$	$\varepsilon_1^{(t)}$	$\varepsilon_2^{(t)}$	$a_1^{(t)}$	$a_2^{(t)}$
	2	$0.201\substack{+0.143\\-0.059}$	0	$0.551\substack{+0.550\\-0.356}$	0	$0.391\substack{+0.279\\-0.279}$
Λ_b	3	$0.232\substack{+0.047\\-0.056}$	0	$0.055\substack{+0.010\\-0.020}$	0	$-0.161\substack{+0.108\\-0.207}$
	4	$0.352\substack{+0.067\\-0.083}$	0	$0.262\substack{+0.116\\-0.132}$	0	$-0.541\substack{+0.173\\-0.090}$
	2	$0.207\substack{+0.073\\-0.063}$	$0.461\substack{+0.620\\-0.284}$	$0.469\substack{+0.560\\-0.559}$	$0.058\substack{+0.058\\-0.034}$	$0.380^{+0.189}_{-0.319}$
\equiv_b	3	$0.218\substack{+0.043\\-0.047}$	$0.877^{+0.820}_{-0.152}$	$0.049\substack{+0.005\\-0.012}$	$0.037\substack{+0.032\\-0.019}$	$-0.027\substack{+0.016\\-0.027}$
	4	$0.378^{+0.065}_{-0.080}$	$2.291^{+2.291}_{-0.842}$	$0.286\substack{+0.130\\-0.150}$	$0.039\substack{+0.030\\-0.018}$	$-0.090\substack{+0.037\\-0.021}$
H _Q	t	$\eta_1^{(t)}$	$\eta_2^{(t)}$	$\eta_3^{(t)}$	$b_{2}^{(t)}$	$b_3^{(t)}$
Λ_b	3	$0.324\substack{+0.054\\-0.026}$	0	$0.633\substack{+0.092\\-0.050}$	0	$-0.240\substack{+0.240\\-0.147}$
Ξ_b	3	$0.218\substack{+0.043\\-0.047}$	$0.877^{+0.820}_{-0.152}$	$0.049\substack{+0.005\\-0.012}$	$0.037\substack{+0.032\\-0.019}$	$-0.027\substack{+0.016\\-0.027}$

Alexander Parkhomenko Light-Cone Distribution Amplitudes of Heavy Baryons

ъ

Renormalization of higher twist operators

Renormalization of heavy-light light-ray operators up to twist-three was performed by Knoedlseder, Offen (2011)

Used the spinor formalism applied to QCD by Braun, Manashov, etc.

Corresponding evolution equations for the twist-three operators are written explicitly

Classification of the four-partical (with three quarks and gluon) baryonic operators was not presented

ヘロト 人間 ト ヘヨト ヘヨト