

PHENIX detector upgrade PHENIX → sPHENIX

NPD RAS session, in Protvino, RUSSIA Nov. 7, 2013 V.Babintsev, IHEP for the PHENIX Collaboration

PHENIX detector (RHIC)

Philosophy :

- High rate capability and granularity at cost of acceptance
- Good mass resolution & particle ID
- Trigger for rare events

 $\pi 0/\gamma/\eta$ detection (central and forward) **Electromagnetic Calorimeter, MPC** $\pi + \pi -$ (central) **Drift Chamber Ring Imaging Cherenkov Counter** J/ψ (central and forward) **Muon Id/Muon Tracker Resistive Plate Chambers (RPC) Relative Luminosity Beam Beam Counter (BBC)** Zero Degree Calorimeter (ZDC)

main results of PHENIX (RHIC)

The new form of QCD was discovered -

dense and strongly-interacting quark-gluon plasma or sQGP published NPA750 (2005) 1-171,1-283 :

- strong suppression of high PT hadrons in central ions collisions (jet quenching) and absence of suppression in dAu collisions
- strong anisotropic flow elliptic flow v2(PT) of azimuthal distribution
- anomalously large proton and anti-proton yields at high PT in ions collisions
- low viscosity and high opacity

sQGP matter behaves as a nearly perfect relativistic fluid

Status of R_{AA} in AuAu at $\sqrt{s_{NN}}$ =200 GeV 2013

Notable are that ALL particles are suppressed for $p_T>2$ GeV/c (except for direct- γ), even electrons from c and b quark decay; with one notable exception: the protons are enhanced-(baryon anomaly)

R_{AA} of $\pi/K/p$ for different centralities

- Pions and kaons have clear and monotonic centrality dependence, protons do as well with the exception of the most peripheral
- Peripheral R_{AA} for protons still shows appreciable modification

PH*ENIX

R_{dA} of $\pi/K/p$ for different centralities

- Strong centrality dependence for protons
- Minimal centrality dependence for pions and kaons, consistent within uncertainties

PH*ENIX

Motivation: the baryon "anomaly"

- Pions are suppressed in central Au+Au events at 200 GeV
- No suppression seen for 2-4 GeV/c protons
- The suppression patterns depend on particle species

Quark number Scaling

New PHENIX article on the scaling properties of elliptic flow: nucl-ex/0608033

- Apparent Quark number scaling
- Hadron mass scaling at low KE_T (KE_T < 1 GeV) is preserved.

Consistent with quark degrees of freedom in the initial flowing matter

Jet Quenching and QGP Density

Jet Quenching

NEXT STEP - QGP PROPERTIES PHIENIX

- how perfect is 'near-perfect' liquid QGP and its properties ?
- the spatial distribution of quarks/ gluons in nucleons and nuclei ?
 the dynamics of partons at very small and very large momentum fraction (x) ?
- quasiparticles and excitations in QGP
- direct photons
 - proton-jet, photon-jet, jet-hadron correlations
- the physics of gluon saturation , gluon polarisation ?
- fast partons interactions with nuclear matter ?
 quark and gluon jets quenching and sQGP response ?
- high statistics upsilons and open heavy flavor
- quark and gluon contributions to the proton spin?

Method : significant PHENIX upgrade

for full jet reconstruction in 4 pi detector geometry

sPHENIX detector requirements

- uniform acceptance over 2 units of pseudorapidity and full azimuth
- high rate capabilities, fast readout, deadtimeless data acquisition
- precision inner and outer tracking with high momentum resolution
- full coverage hadronic calorimetry
- highly segmented electromagnetic calorimetry
- photon / pi0 separation up to 40 GeV
- electron identification over a broad momentum range
- displaced vertex tagging of heavy flavor decays

The 'full' understanding of jet physics require both the measurement of dijets and direct photon-jet physics

sPHENIX

sPHENIX - concept design

Jet and charged particle capability is the key

BaBar solenoid

- A major positive update to the MIE considerations :
- BaBar Magnet from SLAC recently made available!
- Major parameters:
 - o 1.5 T solenoid
 - o Innerradius: 140 cm (x 2 compared to MIE)
 - o Outer radius: 173 cm
 - o Length: 385 cm

7/29/2013 • 42

Central part variants of sPHENIX PHENIX

Electromagnetic calorimeter

- Accordion tungsten scintillating-fiber calorimeter – compact
- Silicon photomultiplier (SiPM) readout
 - small, high gain, no high voltage required, work in a magnetic field

10

PH^{*}ENIX

Tungsten-SciFi Epoxy Sandwich

Uniform thickness, thin pure tungsten metal sheets with wedge shaped SciFi + tungsten powder epoxy layer in between

EMCAL parameters

Accordion design similar to ATLAS Liquid Argon Calorimeter :

- layered accordion of tungsten plates and scin fibers
- volume increases with radius but SC thickness does not increase
- tungsten thickness 2*1.0 mm and tungsten powder epoxy thickness
 0.08 -0.20 mm between layers
 SC fibers thickness 1 mm
- X0 = 5.3 mm, RM = 15.4 mm
- η coverage \pm 1.1, ω coverage 2π
- Δη x Δφ = 0.024 x 0.024
- module -7 layers : 2 cm tower, 10 cm depth, 1.4 m long
- 25 k towers
- σ/E ≈ 12% / √E

Pion rejection

charged pion rejection ~200 using pre-shower and p/E matching

Hadronic calorimeter

PH^{*}ENIX

6.00

- Steel-scintillator calorimeter
 - -~1 λ_{int} EMC + ~5 λ_{int} HC
 - Wavelength shifting fiber embedded in scintillator for light collection
 - Flux return for magnetic field

Scintillator tile with a wavelength shifting fiber along a serpentine path

Fin structure of inner & outer segments oriented at an angle of ±5 degree

Hadron Calorimeter

4 inner and 4 outer plates joined together to form one section

Sampling fraction changes with depth

HCAL parameters

Steel Scintillator sandwich :

- inner : SC width 0.6 cm, iron width 4.4 cm tilt angle 13.26⁰
- outer: iron width 9.4 cm

tilt angle 10.68°

- tower 10 x 10 cm
- 3k towers
- σ/E ≈ 100% / √E

HCAL Readout

Similar to T2K:

Scintillating tiles with WLS fibers embedded in serpentine grooves (Scint: extruded polystyrene made in Russia, WLS: Kuraray Y11)

Fibers embedded in grooves on both sides of tile Expect ~ 12 p.e./MIP/tile (T2K) \Rightarrow ~ 400 p.e./GeV in HCAL

SiPM Readout

Common readout for both EMCAL and HCAL

EMCAL segmentation ~ .024 x .024 ($\eta x \phi$) \Rightarrow ~ 25K channels HCAL segmentation ~ 0.1 x 0.1 \Rightarrow ~ 3K channels

Considering various devices:

- SiPMs: Hamamatsu, AdvanSiD, SensL,...
- Possibly APDs

S10362-33-25C

3x3 mm2,14.4K pixels (25 $\mu m)$ G ~ 2 x 105, peak PDE ~ 25% @ 440 nm

New, highly pixellated SiPMs are becoming available

Hamamatsu MPPC-15 μ m being developed for CMS

- Want dynamic range ~ few x 103
 10 MeV 20 GeV per tower
- Due to saturation, must tune light levels to give ~ 5 - 10,000 p.e.
- Avoid noise at 1 p.e. level
- Requires bias stabilization with temperature compensation and control $dVbr/dT \sim 50 \text{ mV/}^{\circ} \text{ C} \Rightarrow dG/dT \sim 10\% /^{\circ} \text{ C}$
- Radiation damage should not be a problem

Laser Electron Gamma Sourse TPC PH^{*}ENIX

TPC

Chevron-type readout pattern with a pad size 2mm × 5mm

Achieved pos. res. 200 µm

ePHENIX TPC:

R=15-80cm, |z|<95cm

Gas mixture with fast drift time: 80% Ar, 10% CF4, 10% CO2

For 650 V/m -> 10cm/µs -> Drift time 10 µs

2×10mm pads -> 180k pads (both ends readout)

Pos. resolution 300 µm (twice longer drift distance tha LEGS) and 40 readout rows => $\sigma_p/p \sim 0.4\% \times p$

Minidrift GEM Detector with XY Readout

Std. 10x10cm CERN 3-GEM Det.

- Ar/CO2 (70/30)
- Gain ~ 6500

B.Azmoun

- ~17mm Drift Gap
- Drift Time ~600ns

SRS /512 channels APV 25

- 30 x 25ns Time Samples
- RCDAQ Readout (M.Purschke)

Measure vector at each measuring station ⇒ correct for angle

ift	17m
ар	m
ansfer	1.5m
ansfer	f 15m
ductio	2 m
	m

COMPASS style Readout:

- 256 x 256 X-Y Strips
- ~10cm x 400um pitch

GEM

GEM: GAS ELECTRON MULTIPLIER

50 µm Cu-clad kapton foils with high density of holes

F. Sauli, Nucl. Instr.and Meth. A386(1997)531

Fabio Sauli - EDIT 2011

Hadron PID: DIRC

BaBar DIRC

Quartz radiator bars, Cerenkov light internally reflected No focusing => Large water filled expansion volume

PMT for readout

ePHENIX DIRC

Mirror Focusing to avoid large expansion region

Pixelated multi-anode PMT for readout

Ring resolution limits PID at higher p

DIRC - concept

Detection of Internally Reflected Cherenkov (DIRC) Light

- Charged particles of same momentum but different mass (e.g., K and π) emit Cherenkov light at different angles.
- Detect the emitted photons in 2+ dimensions (x,y,t)

NIM A515 (2003) 680-700.

Years	Beam Species and Energies	Science Goals	New Systems Commissioned
2013	• 510 GeV pol p+p	Sea quark and gluon polarization	 upgraded pol'd source STAR HFT test
2014	 200 GeV Au+Au 15 GeV Au+Au 	 Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies QCD critical point search 	 Electron lenses 56 MHz SRF full STAR HFT STAR MTD
2015-2016	 p+p at 200 GeV p+Au, d+Au, ³He+Au at 200 GeV High statistics Au+Au 	 Extract η/s(T) + constrain initial quantum fluctuations More heavy flavor studies Sphaleron tests 	 PHENIX MPC-EX Coherent electron cooling test
2017	No Run		Electron cooling upgrade
2018-2019	• 5-20 GeV Au+Au (BES-2)	Search for QCD critical point and deconfinement onset	STAR ITPC upgrade
2020	No Run		sPHENIX installation
2021-2022	 Long 200 GeV Au+Au w/ upgraded detectors p+p/d+Au at 200 GeV 	 Jet, di-jet, γ-jet probes of parton transport and energy loss mechanism Color screening for different QQ states 	sPHENIX
2023-24	No Runs		Transition to eRHIC

PHENIX Plan of Evolution to eRHIC Era

BACKUP

sPHENIX — forward design

- Rely on central magnet field
 - Studying other field/magnet possibilities
- EMCal based on restack of current PHENIX calorimetry
 - PbSc from central arm (5.52 cm2)
 - > MPC forward arm (2.2 cm2)
- For tracker considering GEM technology
- Interest of HI in forward direction may influence choices based on expected multiplicity.

The RHIC Beam Energy Scan I

• We built RHIC to find the QGP. And we did it!

• But QGP is a new and complicated phase of matter. We have made huge progress in understanding its nature. At high energy, we expect a **cross-over** transition. At lower energy there should be a **first order** transition and a **critical point**.

I.

As perfect fluid as possible

- Kinematic viscosity η/s lower than that of superfluid helium
- Conjectured limit: 1/4π (via AdS/CFT)

Initial temperature from direct y

PH^{*}ENIX

Hadron PID

DIRC

-1<η<1 Mirror focusing ? Threshold for π/K/p: 0.2/0.7/1.5 GeV

1<η<4 Mirror focusing Threshold for π/K/p: 4/15/29 GeV 6 azimuthal segments Photodetection: GEM with CsI Area 6×0.3m² -> 96k ch_ Aerogel 1<η<2 Proximity focused Threshold for π/K/p: 0.6/2/4 GeV

