Образование D-мезонов в рА-взаимодействиях при 70 ГэВ на установке СВД-2

Сотрудничество ИФВЭ – НИИЯФ МГУ – ОИЯИ

Рис.1 Схема установки [1] С1, С2 – пучковый стинциляционный и Si-годоскоп; С3, С4 – мишенная станция и вершинный Si-детектор (АМ и ВД); 1, 2, 3 – трековый детектор на минидрейфовых трубках (МД); 4 – пропорциональные камеры магнитного спектрометра (МС); 5 – пороговый черенковский счётчик (ЧС); 6 – сцинтиляционный годоскоп (СГ); 7 – детектор гамма-квантов (ДЕГА)

Число каналов: АМ(40), ВД (8.5 тыс.), МС(18 тыс.), ЧС(32), ДЕГА(1344)

Выделение событий с возможным распадом

D⁰-мезонов.

52 млн. неупругих событий. <mark>сно</mark>вные критерии отбора:

- расстояние между первичной вершиной и вершиной V⁰ должно быть больше 0.5 мм;
- распадные треки V⁰-частицы должны иметь промах по отношению к первичной вершины, а общий трек должен смотреть в нее;
- эффективная масса системы (Кπ) должна лежать в области 0.5 ГэВ от табличного значения массы D⁰ (=1.865 ГэВ);
- импульс системы (Кπ) должен быть больше 10 ГэВ/с;
- поперечный импульс распадной частицы по отношению к направлению движения системы (Кπ) должен быть больше 0.3 ГэВ/с, что вытекает из анализа критерия Армантероса-Подолянского и условия подавления фона от распада нейтральных каонов и Λ⁰-гиперонов;
- из двух гипотез (К⁻π⁺) и (К⁺π⁻) отбиралась та, у которой значение эффективной массы ближе к табличному значению массы D⁰-мезона;
- 7) V⁰ удовлетворяет критериям физ. просмотра.

Рис. 2. Армантероса-Подолянского плот для K^0 , Λ^0 и D^0 .

Рис. 3. Пример события с V^0 частицей.

Рис. 4. Спектры эффективной массы системы (К π) до (слева) и после (справа) физического просмотра.

Источники фона:

- 1) незнание "alignment'а и маг. поля;
- 2) внутренний фон от распада чарма.
- 3) наличие фоновых частиц;

Результат фита прямой и Гауссом данных после физ. просмотра дает для D^0 значение массы 1861 МэВ/с² и ширину распределения $\sigma=21$ МэВ/с². Отношение сигнал / шум равно (51 17) / (38 13).

Рис. 5. Распределения (сверху вниз) по длине пробега, импульсу и переменной Фейнмана (x_F) системы (К π).

Оценка сечения рождения чарма.

Коэффициент триггирования,

Степень подавления регистрации неупругих событий во время сеанса облучения установки оценивался по сравнению распределений по множественности заряженных треков в ВД экспериментальных и моделированных неупругих событий. Анализ распределений на рис. 6 дает значение *K*_{trig} = 0.51.

Рис. 6.

Распределение по множественности заряженных частиц в первичной вершине для экспериментальных событий, полученных с пучковым триггером (линия) и триггером на множественность > 3 (точки).

При обработке экспериментальных данных эффективность процедур обработки несколько падает, что относится ко всем регистрируемым V^0 . Этот **аппаратный коэффициент** для найденных *D*-мезонов можно оценить по результатам выделения сигнала от K^0s . Известны экспериментальные значения сечения рождения K^0_s (σ =3430 *мкб*) при нашей энергии в рр-взаимодействиях и показатель степени α в *A*-зависимости сечения для рА-взаимодействий (α =0.78). Эффективность регистрации МК-событий с распадом K^0s -мезонов равна 0.36% (см. выше) и число распадов $K^0s \rightarrow \pi^+ \pi^-$ должно быть

 $N(K^{0}s) = 52*10^{6}*(3.43/31.44)*(A^{0.08})*0.692*0.0036=18938,$

т.к. усредненный атомный номер ядер мишени A = 68. На нашей статистике выделен сигнал от K_{s}^{0} в количестве 12 тыс. распадов. Тогда $K_{ap} = 18938/12000 = 1.6$.

σ_{cc}^{NN} (μb)

Оценка сечения рождения чарма.

Имеем:

Сессия РАН, Протвино, 07.11.2013

Свойства нейтральных D-мезонов в рА-взаимодействиях при 70 ГэВ. Сотрудничество ИФВЭ – НИИЯФ МГУ – ОИЯИ

Сессия РАН, Протвино, 07.11.2013

Сво<mark>йства нейтральных D-мезонов в рА-взаимодействиях при 70 ГэВ.</mark>

<u>Дифференциальные сечения</u>

Свойства нейтральных D-мезонов в рА-взаимодействиях при 70 ГэВ.

Параметр А-зависимости (α) & переменная Фейнмана (х_f)

2.00 1.75 1.329 * e^(-0.8859*x) 1.50 1.25 ර _{1.00} 0.75 0.50 0.25 0.00 0.0 0.2 0.4 0.6 0.8 1.0 X_f Рис. 12.

 $\alpha(x_f)=(1.33\pm0.2)*exp[-(0.89\pm0.18)*x_f]$

 α (x_f =1.0)=0.55 ±0.09

2.0	2.5	3.0	3.5	4.0	4.5	5.0 In(A)
	X	f			α		
	-0	.1		1.	18±0	.27	
	0.	1		1.	24±0	.17	
	0.	3		0.	98±0	.13	
	0.	5		0.	87±0	.19	

Образование D-мезонов в рА-взаимодействиях при 70 ГэВ

Сессия РАН, Протвино, 07.11.2013

Свойства нейтральных D-мезонов в рА-взаимодействиях при 70 ГэВ.

Экспери- мент	Пучок (ГэВ)	σ(D ⁰) (мкб/нук.)	σ ~Α ^α α	$\frac{d\sigma/dx_f}{(1-x_f)^n},$ n	$\frac{d\sigma/dp_t^2}{exp(-b p_t^2)}$ b
SVD-2	70	7.1±3.8	1.08 ± 0.12	6.8±0.8	1.1±0.2
E769	250	12.0±3.8	0.92 ± 0.08	4.1±0.6	0.95 ± 0.09
NA16	360	20.4±16.	-	-	-
NA27	400	18.3±2.5	-	4.9 ± 0.5	1.0±0.1
E743	800	22. ±14.	-	8.6±2.0	0.8±0.2
E653	800	39. ±15.	-	11.0 ± 2.0	1.1±0.2
HERA-B	920	48.7±10.6	0.97 ± 0.07	7.5±3.2	0.84 ± 0.1

Полученные предварительные результаты не противоречат данным других экспериментов в пределах ошибок. Необходимо увеличение статистики эксперимента E-184.

Регистрация заряженных очарованных D -мезонов в рА-взаимодействиях при 70 ГэВ на установке СВД-2. (Сотрудничество СВД-2, эксп. Е-184)

Экспериментальная ситуация в этой области энергий противоречива, тогда как теоретические оценки сечений весьма чувствительны к параметрам моделей КХД.

Процедуры выделения событий с $D^+ \rightarrow K^- \pi^+ \pi^+ \ и \ D^- \rightarrow K^+ \pi^- \pi^-$:

> Реконструкция треков и первичной вершины на проекциях по данным вершинного детектора (ВД).

≻ Поиск вторичных 2-лучевых вершин в пространстве параметров треков {a,b}. «Быстрый фильтр».

Пространственная реконструкция треков заряженных частиц в магнитном спектрометре (МС) и определение их импульсов.

≻ Поиск вторичных 3-лучевых вершин с помощью дальнейшего анализа треков в пространстве {a,b} с учетом зарядовой сопряженности и их пространственного соответствия относительно первичной вершины.

16320 событий с (К⁻π⁺π⁺) и **8439** событий с (К⁺π⁻π⁻) гипотезами.

Рис. 1. «Сырые» экспериментальные спектры эффективных масс систем (К⁻π⁺π⁺) (а) и (К⁺π⁻π⁻) (б)

Сессия РАН, Протвино, 07.11.2013

Моделирование и оптимизация критериев отбора событий с рождением очарованных частиц.

FRITIOF7.02 + **GEANT3.21** => 10 млн. Монте-Карло (МК) событий с запретом на формирование очарованных частиц, которые были пропущены через систему обработки данных. При этом в некоторых событиях из-за шумовых условий и несовершенства алгоритма были найдены 3-лучевые вершины распада, которые моделируют фон. В экспериментальный фон отбирались события, в которых эффективная масса системы (К $\pi\pi^+\pi^+$) находилась в интервале M=1.858 3*0.018 (ГэВ). Те же требования применялись для МК-событий.

Образование D-мезонов в рА-взаимодействиях при 70 ГэВ

Сессия РАН, Протвино, 07.11.2013

Моделирование и оптимизация критериев отбора событий с рождением очарованных частиц.

FRITIOF7.02 + GEANT3.21 => по 500 тыс. МК-событий с распадами $D^+ \rightarrow K^- \pi^+ \pi^+ \mu D^- \rightarrow K^+ \pi^- \pi^-.$

Анализ диаграммы Далитца для распада **D**⁺→**K**⁻π⁺π⁺ .

Сессия РАН, Протвино, 07.11.2013 06

Моделирование и оптимизация критериев отбора событий с рождением очарованных частиц.

Значительная часть фона формируется из-за наложения трека заряженной частицы выходящего из вершины взаимодействия на вершину распада К⁰-мезона.

Рис. 8. Спектр эффективных масс для двух гипотез К⁰ из экспериментальной выборки для D⁺ после исключения области, показанной на рис. 7.

Образование D-мезонов в рА-взаимодействиях при 70 ГэВ

 $M(\pi^+\pi^-)_{G1} > 1.2 - M(\pi^+\pi^-)_{G2}$

1.6

Сессия РАН, Протвино, 07.11.2013

Моделирование очарованных частиц.

Анализ экспериментальных событий после применения критериев отбора

В области масс D-мезона в спектре эффективных масс гипотез (π⁺π⁻) нет сигнала от примеси К⁰-мезона.

Время жизни D -мезонов

Полоса сигнала M(D) $2.5*\sigma$ Табличное значение: $c\tau(D) = 311.8$ мкм Распределение по приведенной длине L_{np} . Фит – экспонента. Учет фоновой подложки проводился по распределению для МК-событий.

Ошибки в значениях ст-статистические.

Сечения образования D -мезонов и их А-зависимость

 $N_s = [N_0(\sigma_D A^{\alpha})/(\sigma_{pp} A^{0.7})]$ [(Bε)/K_{tr}], где

N_s – число событий в сигнале; N₀ – число событий с рА-взаимодействиями в мишени;

- s_D сечение очарованных частиц; А атомный вес материала мишени (C, Si, Pb);
- а показатель степени А-зависимости для очарованных частиц (= 0.7 для фона)
- s_{pp} сечение неупругих pp-взаимодействий при энергии 70 ГэВ (= 31440 мкбн);

В – бренчинг распада D
$$\rightarrow K\pi\pi$$
 (= 0.094);

 ϵ – эффективность регистрации D-мезонов: ϵ (D⁺) = 0.014, ϵ (D⁻) = 0.008;

K_{tr} = 0.57 (коэффициент триггирования).

Относительные ошибки полученных сечений обусловлены статистикой сигналов (**≈30%**) и неопределенностями в вычислениях эффективностей и коэффициента триггирования (**≈15%**).

Отношения выходов очарованных частиц

Из работы [1]: $\sigma(c\hat{c}) = 7.1$ 2.4(стат.) 1.4(сист.) мкбн/нуклон) $\sigma(D^0) = 2.5$ 0.8(стат.) 0.5(сист.) (мкбн/нуклон) $\sigma(\check{D}^0) = 4.6$ 1.6(стат.) 0.9(сист.) (мкбн/нуклон)

Таблица 2. Отношения выходов очарованных частиц.

Выходы	РҮТНІА рр-вз.	FRITIOF pA-b3.		СВД-2 рА-вз.	Другие эксперименты рА-взаимодействия		
		C	Si	Pb		NA-27 [8]	HERA-B [9]
D ⁰	0.28	0.48	0.51	0.55	0.35±0.16	0.57±0.08	0.44±0.18
$\check{\mathbf{D}}^{0}$	0.74	0.60	0.59	0.58	0.65±0.31	0.43 ±0.09	0.54±0.23
\mathbf{D}^+	0.13	0.28	0.29	0.29	0.16±0.07	0.31±0.06	0.19±0.08
D -	0.24	0.28	0.27	0.28	0.27±0.17	0.34±0.06	0.25±0.11
${f D}^0$ / ${f \check D}^0$	0.38	0.80	0.86	0.95	0.54±0.25	1.33±0.25	0.81±0.23
D+ / D-	0.54	1.0	1.1	1.0	0.59±0.20	0.92±0.21	0.76±0.22
D [±] / (D ⁰ +Ď ⁰)	0.36	0.51	0.51	0.5	0.44±0.24	0.65±0.21	0.46±0.18
D+ / D ⁰	0.18	0.56	0.56	0.52	0.46±0.21	0.54±0.11	0.44±0.12
D^-/\check{D}^0	0.32	0.47	0.46	0.48	0.42±0.26	0.78±0.19	0.47±0.14

Рис. 15. Отношения выходов очарованных мезонов.

Вклады D^0 и D^+ -мезонов снижаются с уменьшением энергии, а вклады \check{D}^0 и D^- -мезонов растут. Результаты сравниваются с предсказаниям модели статистической адронизации.

Сессия РАН, Протвино, 07.11.2013 Обра

Заключение

В эксперименте SERP-E-184 по изучению образования очарованных частиц и их зарактеристик в рА-взаимодействиях при 70 ГэВ на установке СВД-2 выделены сигналы нейтральных и заряженных D-мезонов в спектрах эффективных масс 2-частичных (Кπ) и 3-частичных (Кππ) систем. в результате детального моделирования с помощью программ FRITIOF7.02 и GEANT3.21 оптимизированы критерии отбора событий и вычислены эффективности регистрации D-мезонов. Получены инклюзивные сечения образования D-мезонов и оценка сечения рождения чарма в рАвзаимодействиях при пороговой энергии 70 ГэВ, которое превышает теоретические оценки, что требует более детального изучения данного вопроса.

• Наличие активной мишени в установке СВД-2 с набором пластинок разных материалов (C, Si, Pb) позволяет измерить параметры А-зависимости сечений для D-мезонов.

• Измерены дифференциальные сечения для D⁰-мезонов.

• С использованием оценки полного сечения образования очарованных частиц измерены значения выходов D-мезонов и их отношения в сравнении с данными других экспериментов и теоретическими предсказаниями. Вклады D^0 и D⁺-мезонов проявляют тенденцию к снижению с уменьшением энергии взаимодействия, а вклады \check{D}^0 и D⁻ -мезонов растут. В эксперименте БИС-2 также были зарегистрированы распады античастиц (\check{D}^0 и D⁻ -мезонов), но не были обнаружены распады частиц (D^0 и D⁺-мезонов). Сечения рождения частиц оказались ниже порога чувствительности этого эксперимента. Экспериментальные данные указывают на изменение соотношений выходов очарованных частиц с уменьшением энергии рА-взаимодействий и близки к предсказаниям модели статистической адронизации.

Список литературы:

- 1. Е. Н. Ардашев и др. , ЯФ 2010, т.73, №9, с.1585-1596; <u>http://web.ihep.su/library/pubs/prep2009/ps/2009-09.pdf; http://arxiv.org/abs/1004.3676</u>
- 2. Е. Н. Ардашев и др., ЯФ 2011, т.74, №2, с.342-349; <u>http://web.ihep.su/library/pubs/prep2010/ps/2010-2.pdf.</u>
- 3. Е. Н. Ардашев и др., Препринт ИФВЭ 2013-9, Протвино, 2013; <u>http://web.ihep.su/library/pubs/prep2013/ps/2013-9.pdf.</u>

PRELIMINARY RESULT ON Λc+ PRODUCTION IN pA-INTERACTIONS AT 70 GeV

IHEP – INP MSU – JINR Collaboration

Very few experimental data exist now on $\Lambda c+$ production at low energies. The QCD models do not give the correct cross section of $\Lambda c+$ production near threshold.

PRELIMINARY RESULT ON Λ_{C}^{+} PRODUCTION IN pA-INTERACTIONS AT 70 GeV IHEP – INP MSU – JINR Collaboration

Very few experimental data exist now on Λ_c^+ production at low energies.

N⁰	Experiment	σ _{cc} (total), μb	σΛ (incl)., μb	$\sigma_{\Lambda} (incl)/\sigma_{cc}(total)$
1	SVD, pA $\sqrt{s} = 11,7$	7,1 2,4 70 GeV	4,1 1,6	~0,58
2	pA, √s =27,4	36,2 9,1 450 GeV Exp.NA50	106 39	~0,35

N⁰	Experiment	X _F	n
1	BIS 2, n-58 GeV	0,4 - 1,0	1,4 0,5 0,2
2	SVD-2, p-70 GeV	0,5 - 0,8	2,5 1,7
3	SELEX, p- 600 GeV	0,15 - 0,85	2,33 0,30

$$\begin{split} \sigma(c\hat{c})_{total} = &0.5\{\sigma(D^+) + \sigma(D^-) + \sigma(D^0) + \sigma(\check{D}^0) + \sigma(\Lambda_c^+)\} = &7.15 \quad 2.5(stat.) \ (\mu b) \\ & \text{Unknown} \ \sigma(D_s/\check{D}_s) \sim 1.0 - 1.5 \ \mu b, \ others < &1 \ \mu b \end{split}$$

Сессия РАН, Протвино, 07.11.2013