А.И.Макаров¹, А.П.Останков, В.Д.Самойленко, В.К.Семенов, <u>С.А.Холоденко,</u> А.А.Худяков¹

Исследование временных характеристик счетчиков триггерного годоскопа заряженных частиц для эксперимента NA62

¹ Институт Ядерных Исследований РАН

Эксперимент NA62

Основная задача: изучение распада $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

L0-trigger: аппаратный. Сигналы с MUV3, LAV, LKR, RICH, CHOD

- L1-trigger: программный. Корреляции straw, LAV, RICH, CEDAR
- L2-trigger: программный. Частично реконструированные события

Годоскоп заряженных частиц СНОО

Основные задачи:

- Времязадающий сигнал (совместно с RICH) на однотрековые события
- Вето на большую множественность, в том числе события с возможной конверсией гамма-квантов на зеркалах RICH

<u>Требования:</u>

- Временное разрешение ~ 600 ps (эффективность 98% при загрузке 30·10⁶ частиц/с)
- Небольшая загрузка/канал (400·10³ / с)
- Малое количество вещества

Годоскоп заряженных частиц СНОО

СНОД эксперимента NA48

Требования:

- 🎽 Временное разрешение ~ 600 ps
- **к** Небольшая загрузка/канал (400·10³ / с)
- Малое количество вещества

СНОD: новая версия

- Падовая структура
- Ячейки от 90х90 до 265х107 мм²
- 188 480 каналов

Исследуемые прототипы: фотоприемники

Фотоприемники:

- mini-PMT R7400U
- Green-extended PMT R7899-20 (reference point)

Исследуемые прототипы: сцинтиллятор

Размеры:

- 90 х 90 х 20 мм³
- 100 х 100 х 20 мм³
- 150 х 150 х 20 мм³
- 180 х 100 х 20 мм³
- 270 х 100 х 20 мм³

Светосбор:

- WLS-Волокна
 - ВС**F-92** ∅ 1мм
- Прямой
 - С грани
 - С угла

Сцинтилляторы:

- BC-408
- EJ-200
- IHEP

Измерительный стенд на космических мюонах

Временное спектр S_2 относительно S_1

Собственное разрешение: $\sigma_{s_i} = 490/\sqrt{2} \approx 350 \, nc$ Результаты измерений : светосбор через WLS-волокна (1)

100 x 100 MM²

Геометрия	Без клея	Вклеенные волокна		
	SiPM CPTA	SiPM CPTA	SiPM SensL	R7899-20
100 х 100 мм2	890 ± 5 пс (21 ф.э.)	745 ± 15 пс (33 ф.э.)	625 ± 15 пс (28 ф.э.)	590± 10 пс (40 ф.э.)
150 х 150 мм2	1075 ± 20 пс (19ф.э.)			_
180 х 100 мм2		* 1045 ± 10 пс * (18ф.э.)		
270 х 100 мм2	1560 ± 20 пс (12 ф.э.)	1120 ± 20 пс (22 ф.э.)	865 ± 10 пс (24 ф.э.)	810 ± 5 пс (37 ф.э.)

Геометрия	С грани		С угла	
	R7400U	SiPM SensL	R7400U	SiPM SensL
90 х 90 мм ²	260 ± 25 пс ~81 ф.э.	370 ± 15 пс ~79 ф.э.		
100 х 100 мм ²	290 ± 10 пс ~110 ф.э.	320 ± 15 пс ~149 ф.э.	400± 20 пс ~96 ф.э.	420 ± 15 пс ~83 ф.э.

Измерительный стенд на пучковом гало 21 канала

08-Nov-2013

Результаты измерений на пучковом гало 21 канала

Зависимость положения среднего времени в TDC

от расстояния до фотоприемника

Положение среднего от расстояния до ФЭУ: 69 ± 22 пс/см

Скорость света в пластике (n=1.59): 47.7 пс/см

Для сравнения: скорость света в пластике BC-408 толщиной 4см 14.4см/нс или 69.4 пс/см The Belle detector, NIM A479 (2002) 117-232

Результаты измерений

Временное разрешение от числа фотоэлектронов

Временное разрешение от шага между волокнами

СНОD как независимый триггер

2 фотоприемника (SiPM) вырабатывают триггерный сигнал в два этапа

- Совпадение сигнала в больших воротах
- Выбираем среднее время в маленьких воротах

Международная сессия-конференция секции ядерной физики ОФН РАН

СНОD как независимый триггер

2 фотоприемника (SiPM) вырабатывают триггерный сигнал в два этапа

- Совпадение сигнала в больших воротах
- Выбираем самый быстрый сигнал в маленьких воротах

Заключение

- Проведено измерение временного разрешения прототипов счетчиков годоскопа заряженных частиц для установки NA62. Съем информации осуществлялся как с помощью WLS волокон, так и при прямом светосборе.
- Получена зависимость временного разрешения от расстояния между волокнами и от числа фотоэлектронов. Наилучшее временное разрешение при использовании волокон составляет 590±10 пс при шаге между волокнами - 1см. При прямом светосборе усредненное по площади запускающих счетчиков временное разрешение может быть лучше 400пс.
- Для использования в триггере рассмотрен вариант сьема сигнала с двух фотоприемников. При этом требуется совпадение двух сигналов в больших воротах (5нс), а затем среднее время – в малых воротах (3нс).
- Полученное временное разрешение дает возможность использования нового годоскопа заряженных частиц (New CHOD) в триггере нулевого уровня эксперимента NA62.

Спасибо за внимание

Запасные слайды

Вычисление собственного временного разрешения

где $\sigma_{_{S1}},\sigma_{_{S2}}$ – собственное временное разрешение счетчиков S_1 и S_2

Записав аналогичным образом уравнения для пар (${
m S}_1,\,{
m S}_{
m H}$) и (${
m S}_2,\,{
m S}_{
m H}$)

и решив систему уравнений получим собственное разрешение исследуемого счетчика:

$$\sigma_{S_H} = \sqrt{\frac{(\sigma_{S_H S_1}^2 + \sigma_{S_H S_2}^2 - \sigma_{tr}^2)}{2}}$$

·,μ

 S_1

S_H

 S_2

Вычисление числа фотоэлектронов

Калибровка : светодиод + нейтральные оптические фильтры

$$N_{ph.e.} = \frac{\langle A \rangle^2}{RMS^2}$$

08-Nov-2013

Международная сессия-конференция секции ядерной физики ОФН РАН

18/14

SensL 3x3 SiPM noise (25.5 + 2.0 V)

CPTA 3x3 SiPM noise (45.0 + 2.5V)

Синий	BC-408
Красный	Полимеризованный
Черный	Литой

08-Nov-2013

Международная сессия-конференция секции ядерной физики ОФН РАН

800

1000

1200

Т vs А для триггерного счетчика

SensL SiPM 6x6 @ direct

