Сессия-конференция секции ЯФ ОФН РАН "Физика фундаментальных взаимодействий" 5-8 ноября 2013г., ИФВЭ

Новые результаты по тяжелому кварконию

Роман Мизюк (ИТЭФ, МИФИ)

Contents

Last decade: high statistics of B- and c-factories allowed to study quarkonium states above open flavor thresholds \Rightarrow properties are very different from the expectations for bb or cc states.

The only relatively well understood – near-threshold molecular states:

X(3872), $Z_b(10610)^{\pm}$, $Z_b(10650)^{\pm}$ DD* BB* B*B*

```
BES-III (+ BELLE + CLEO-c) 2013:

Z_c(3900)^{\pm}, Z_c(4020)^{\pm}, Z_c(4025)^{\pm}

DD* D*D*
```

Are these analogues of Z_b states, i.e. molecules?

10th anniversary!

X(3872)

WA

$$M_{X(3872)} - (M_{D0} + M_{D*0}) = -0.09 \pm 0.28 \text{ MeV}$$

 $J^{PC} = 1^{++}$

LHCb: PRL110,222001(2013)

Most likely interpretation: $D\overline{D}^*$ molecule with admixture of $\chi_{c1}(2P)$ isospin violationproduction at
high energy

Z_b(10610)⁺, Z_b(10650)⁺

Z_b prehistory

1. BaBar 2005: observation of peak in $\sigma(e^+e^- \rightarrow J/\psi \pi^+\pi^-) \Rightarrow Y(4260)$ state, $\Gamma \sim 100 \text{MeV}$

No Y(4260) signal in $\sigma(e^+e^- \rightarrow hadrons)$

X.H.Mo et al, PL B640, 182 (2006)

 $\Rightarrow \Gamma [Y(4260) \rightarrow J/\psi \pi^{+}\pi^{-}] > 1 \text{ MeV}$

 $\Gamma \; [\psi^{\prime\prime} {\rightarrow} \; \text{J}/\psi \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}] \approx 0.04 \; \text{MeV}$

2. Belle 2008: observation of anomalous $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ transitions

To distinguish Υ (5S) and Y_b Belle performed energy scan

 \Rightarrow Shapes of R_b and $\sigma(\Upsilon \pi \pi)$ agree at 2σ level

Z_b prehistory (2)

3. CLEO-c 2010: observation of $e^+e^- \rightarrow h_c \pi^+\pi^-$ @ E=4170MeV $\sigma(h_c \pi^+\pi^-) \cong \sigma(J/\psi \pi^+\pi^-)$ Hint of rise in $\sigma(h_c \pi^+\pi^-)$ @ Y(4260) ?

4. Belle 2011: observation of $\Upsilon(5S) \rightarrow h_b(mP)\pi^+\pi^-$ transitions (m=1,2)

$$\frac{\Gamma[\Upsilon(5S) \rightarrow h_{b}(mP) \pi^{+}\pi^{-}]}{\Gamma[\Upsilon(5S) \rightarrow \Upsilon(nS) \pi^{+}\pi^{-}]} \sim 1$$
expect suppression
$$(\Lambda_{QCD}/m_{b})^{2}$$

Mechanism of Υ (5S) decays ?

Resonant structure of $\Upsilon(5S) \rightarrow \Upsilon/h_b \pi^+\pi^-$

Scheme of bottomonium transitions

Summary on Z_b⁺

PRL108,122001(2012)

$$Z_b(10610)$$
 $M_{Zb} - (M_B + M_{B^*}) = +2.6 \pm 2.1 \text{ MeV}$ $\Gamma_{Zb} = 18.4 \pm 2.4 \text{ MeV}$ $Z_b(10650)$ $M_{Zb'} - 2M_{B^*} = +1.8 \pm 1.7 \text{ MeV}$ $\Gamma_{Zb'} = 11.5 \pm 2.2 \text{ MeV}$

arxiv:1209.6450	\mathcal{B} of $Z_b(10650)$	$\mathcal B$ of $Z_b(10610)$	Channel
	$(0.18 \pm 0.05)\%$	$(0.32 \pm 0.09)\%$	$\pi^+\Upsilon(1S)$
	$(1.80 \pm 0.47)\%$	$(4.38 \pm 1.21)\%$	$\pi^+\Upsilon(2S)$
	$(1.23 \pm 0.30)\%$	$(2.15 \pm 0.56)\%$	$\pi^+\Upsilon(3S)$
	$(5.6 \pm 2.0)\%$	$(2.81 \pm 1.10)\%$	$\pi^+ h_b(1P)$
	$(11.1 \pm 4.7)\%$	$(4.34 \pm 2.07)\%$	$\pi^+ h_b(2P)$
suppressed	$(25 \pm 10)\%$	$(86.0 \pm 3.6)\%$	$\overline{B^+\bar{B}^{*0} + \bar{B}^0B^{*+}}$
larger PHSP	$(55.1 \pm 5.3)\%$	_	$B^{*+}\bar{B}^{*0}$

6D amplitude analysis : $J^P = 1^+$

Krokovny Moriond QCD 2013

Spin-parity of $Z_b(10610)$ and $Z_b(10650)$ is **1**⁺.

All other J \leq 2 are excluded at >5 σ levels.

Structure of Z_b⁺ : Molecule

Proximity to BB* and B*B* thresholds suggests molecular structure. $J^P=1^+ \Rightarrow$ S-wave. Decay into constituents (once kinematically allowed) is dominant.

Assumption of molecular structure allows to explain all properties of Z_b

Structure of Z_b⁺ : Diquark-antidiquark

Ali et al, PRD85,054011(2012)

 $\Gamma(Z_b \to \Upsilon \pi) \sim \Gamma(Z_b \to B^{(*)}\overline{B}^*) \iff diquark$ is broken in both cases

Masses are not bound to BB* and B*B* thresholds

Lighter state is coupled to $B^*\overline{B}^*$ and heavier state is coupled to $B\overline{B}^*$

$$\Rightarrow \text{Expect} \quad \begin{array}{c} \mathsf{Z}_{b} \rightarrow \mathsf{B}^{*} \overline{\mathsf{B}}^{*} \\ \mathsf{Z}_{b}' \rightarrow \mathsf{B} \ \overline{\mathsf{B}}^{*} \end{array}$$

Decay pattern of the Z_b's excludes diquark-antidiquark hypothesis.

Changzheng Yuan Charm2013

BESIII collected 3.3/fb for XYZ study

Angular analysis of $e^+e^- \rightarrow Z_c(3885)\pi \rightarrow D^*D\pi \implies J^P = 1^+$

 $Z_c(3900)$ is a candidate for molecule [partner of $Z_b(10610)$]. 17

 $\begin{array}{l} \mathsf{M} = 4026.3 \pm 4.5 \; \mathsf{MeV} \\ \Gamma = 24.8 \pm 9.5 \; \mathsf{MeV} \end{array} \begin{array}{l} \text{-agree within } 1.1\sigma - \left\{ \begin{array}{l} \mathsf{M} = 4022.9 \pm 2.8 \; \mathsf{MeV} \\ \Gamma = 7.9 \pm 3.8 \; \mathsf{MeV} \end{array} \right. \\ \sigma \times \mathsf{BF} = 89 \pm 19 \; \mathsf{pb}_{\text{dominant}} \end{array} \right. \\ \sigma \times \mathsf{BF} = 7.4 \pm 3.0 \; \mathsf{pb} \end{array}$

 $M_{Zc'} - M_{D^*} - M_D \sim 6 \text{ MeV}$

Where is $Z_c(4020,4025) \rightarrow J/\psi \pi$?

It is impossible that Z_c molecule decays to $J/\psi \pi$ while Z_c' does not.

No Z_c(4020,4025) \rightarrow J/ $\psi \pi \Rightarrow$ none is Z_b(10650) partner

 \Rightarrow Z_c' is not produced at Y(4260) ?

Y(4260) as $D_1(2420)\overline{D}$ molecule

Cleven, Wang, Guo, Hanhart, Meissner, Zhao arxiv:1310.2190

M Y(4260) = 4250 ± 9 MeV Γ Y(4260) = 108 ± 12 MeV M D₁(2420) + M D = 4288 MeV

→Source of D* \overline{D} pairs with small relative momentum → No D* \overline{D} * pairs, Z_c' are not produced at Y(4260)

NB: " Υ (5S)" is not a B₁B molecule, since both Z_b and Z_b' are produced.

Observation of Y(4260) $\rightarrow \gamma$ X(3872)

 $rac{\sigma(e^+e^ightarrow \chi(3872))}{\sigma(e^+e^ightarrow \pi^+\pi^-J/\psi)}\sim 11.2\%$

Large transition ratio !

Looks breathtaking given that $\Gamma_{\rm Y(4260)}{\sim}100 {\rm MeV}$

Was predicted !

Guo, Hanhart, Meissner, Wang, Zhao γ PLB725,127 (2013)

Support for molecular model of Y(4260).

1310.4101

What next at BESIII?

Changzheng Yuan Charm2013

- Precise resonant parameters
- Spin-parity of Z_c and Z_c '
- More decay modes [$\pi\psi$ ', $\rho\eta_c$, open charm,...]
- Production mechanisms, production rates
- Test various theoretical models
- Neutral partners of Z_c and Z_c '
- Excited Z_c , Z_c ' states? $Z_{cs} \rightarrow KJ/\psi$ states?
- Other XYZ states?
- More data at high energies

Comparison of $e^+e^- \rightarrow \pi^+\pi^-h_c$ and $\pi^+\pi^-J/\psi$

Non-resonant $e^+e^- \rightarrow \pi^+\pi^-h_c$ production violates HQSS.

If Y(4260) is a $D_1\overline{D}$ molecule \Rightarrow mixture of ortho- and para-charmonium \Rightarrow mechanism for HQSS violation.

Molecular models do not explain affinity to particular channels.

⇐ Hadrocharmonium? Voloshin

Also Z(4430)⁺ $\rightarrow \psi' \pi^+$, Z(4050,4250)⁺ $\rightarrow \chi_{c1} \pi^+$, Z_c(4020)⁺ $\rightarrow h_c \pi^+$

Z(4430) spin-parity

PRD88,074026

$$\begin{array}{c} \mathsf{B}^0 \to (\psi'\pi^{\bar{}}) \mathsf{K}^{+} \\ & \stackrel{}{\downarrow} \mu^{+}\mu^{\bar{}} \end{array}$$

4D amplitude analysis

<u>Model</u> : K₀^{*}(800), K^{*}(892), K^{*}(1410), K₀^{*}(1430), K₂^{*}(1430), K^{*}(1680), Z(4430)

Z(4430) is not confirmed by BaBar and within the reach of LHCb

Conclusions

States with $c\bar{c}$ or $b\bar{b}$ pairs above open flavor thresholds are not $Q\bar{Q}$ states.

BESIII : many interesting results Interpretation is difficult ⇒ amplitude analyses are needed

Still no general model explaining all states.

Rich experimental material should be stimulating for theory.

Back-up

Y(4140) @ CMS & D0

1101.6058 Not confirmed by Belle & LHCb. PRD85,091103 Y(4140) − CDF 2009: $B^+ \rightarrow (J/ψφ) K^+$ 1309.6920 CMS, $\sqrt{s} = 7$ TeV, L=5.2 fb⁻¹ 1309.6580 300 N(B⁺) / 20 MeV 120 NeV Data Confirmed by CMS & D0. Global fit Three-body PS (global fit) $\pm 1\sigma$ uncertainty band Event-mixing $(J/\psi, \phi, K^{+})$ Parameters of Y(4140) agree Event-mixing $(J/\psi, \phi K^+)$ among CDF, D0 and CMS. 1D fit 150 100 2nd peak : Y(4274) seen by CDF, D0 and CMS. 50 Masses agree at 3σ level, 0 Region of $K^* \rightarrow \phi K$ reflections. 1.1 1.2 1.3 1.5 1.4 ∆m [GeV]

Amplitude analyses are planned at CMS and LHCb.

Neutral Z_b

Dalitz analysis, the same as for charged states.

Fit fractions of neutral and charged Z_b's are consistent

 $\Upsilon(nS)\pi^0\pi^0$ channels are consistent with Z_b states being isotriplets

 $e^+e^- \rightarrow h_c \pi^+\pi$: Y(4220)

Comparison of spin-parity hypotheses

Clear picture of interference between Z_b and non-resonant S-wave amplitude

 Z_b helicity angle ~ M²($\pi^+\pi^-$)

$$Z_{b} \rightarrow \Upsilon(nS)\pi \begin{cases} 1^{+} & \text{S-wave} \\ 1^{-} & \text{P-wave} \\ 2^{+} & \text{D-wave} \\ 2^{-} & \text{P-wave} \end{cases}$$

 \Rightarrow A_{Zb} is ~independent on M²($\pi^+\pi^-$) for 1⁺, other hypotheses change sign over M²($\pi^+\pi^-$)

Interference region has high sensitivity.

Angular projections of 6D fit

J^P=1⁺

Mass projections of 6D fit

J^P=1⁺

Fit projections for Υ (1S) $\pi^+\pi^-$

Fit projections for $\Upsilon(2S) \pi^+\pi^-$

Fit projections for Υ (3S) $\pi^+\pi^-$

