## Измерение $\Gamma_{ee} imes \Gamma_{\mu\mu}/\Gamma \psi(2S)$ -мезона

#### А. М. Сухарев

#### Эксперимент КЕДР, Институт ядерной физики им. Г.И.Будкера СО РАН, Новосибирск

## Сессия-конференция секции ядерной физики ОФН РАН, 7 ноября 2013 г.

А. Сухарев (КЕДР, ИЯФ СО РАН)

 $\Gamma_{ee} \times \Gamma_{\mu\mu} / \Gamma \psi(2S)$ -мезона

7.11.2013 1 / 20

## Содержание

#### 1 Введение

- 2 Теория
- 3 Экспериментальные наборы

#### 4 Анализ

- Условия отбора
- Моделирование
- Эффективность время-пролётной системы
- 🛯 Фоны

#### 5 Результат

- Подгонка
- Систематические ошибки
- 6 Итог

< ∃ ►

## Коллайдер ВЭПП-4М



#### Параметры

| периметр           | 366 м                                 |
|--------------------|---------------------------------------|
| диапазон энергий   | $1\div 5.5$ ГэВ                       |
| светимость,        |                                       |
| <i>E</i> = 1.5 ГэВ | $2	imes 10^{30}$ см $^{-2}$ с $^{-1}$ |
| <i>E</i> = 5.0 ГэВ | $2	imes 10^{31}$ см $^{-2}$ с $^{-1}$ |
| число сгустков     | $2 \times 2$                          |

#### Калибровка энергии

- Метод резонансной деполяризации: точность однократного измерения  $\simeq 1 \times 10^{-6}$ точность интерполяции (5  $\div$  15)  $\times 10^{-6}$  (10  $\div$  30 кэВ)
- Обратное комптоновское рассеяние: статистическая точность  $\simeq 5 \times 10^{-5}$  за 30 минут систематическая точность  $\simeq 3 \times 10^{-5}$  (50  $\div$  70 кэВ)

А. Сухарев (КЕДР, ИЯФ СО РАН)

 $\Gamma_{ee} \times \Gamma_{\mu\mu} / \Gamma \psi(2S)$ -мезона

## Детектор КЕДР

- 1 Вакуумная камера
- 2 Вершинный детектор
- 3 Дрейфовая камера
- Аэрогелевые черенковские счётчики
- 5 Время-пролётная система
- 6 LKr калориметр
- 7 Сверхпроводящая катушка
- 8 Мюонная система
- 🧕 Ярмо магнита
- 10 Торцевой Csl калориметр



 $\Gamma_{ee} \times \Gamma_{\mu\mu} / \Gamma \psi(2S)$ -мезона

7.11.2013 4 / 20

С 2004 по 2011 год детектор КЕДР несколько раз набирал статистику в области  $\psi(2S)$ -резонанса.

- Сканирования: набор данных не менее чем в 5 точках по энергии
  - ниже и выше резонанса, в пике и на склонах.
- Режим «пик/подложка»: набор в двух точках ниже резонанса и в пике.

Интегральная светимость составила около 7 пб $^{-1}$ , что соответствует более 3.5 imes 10<sup>6</sup>  $\psi$ (2*S*).

За время работы состояние детектора существенно менялось.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Аналитическое выражение сечения вблизи узкого резонанса с учётом рад. поправок в мягкофотонном приближении получено в работе Я.И. Азимова и др. (Письма в ЖЭТФ, **21**, вып. 6, 378, 1975 г.)

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}^{ee \to \mu\mu} \approx \frac{3}{4M^2} \left(1 + \delta_{pn}\right) \left(1 + \cos^2\theta\right) \times \\ \left\{ \frac{3\Gamma_{ee}\Gamma_{\mu\mu}}{\Gamma M} \operatorname{Im} \mathcal{F} - \frac{2\alpha\sqrt{\Gamma_{ee}\Gamma_{\mu\mu}}}{M} \operatorname{Re} \frac{\mathcal{F}}{1 - \Pi_0} \right\} + \left(\frac{d\sigma}{d\Omega}\right)^{\mu\mu}_{\kappa \mathfrak{p}\mathfrak{q}}, \\ \mathcal{F} = \frac{\pi\beta}{\sin\pi\beta} \left(\frac{M/2}{-W + M - i\Gamma/2}\right)^{1-\beta}, \quad \beta = \frac{4\alpha}{\pi} \left(\ln\frac{W}{m_e} - \frac{1}{2}\right)$$

радиационные поправки  $\delta_{pn}$  более точно посчитаны в работе Э. А. Кураева и В. С. Фадина (Ядерная физика, **41**, вып. 3, 733, 1985 г.) Теоретическое сечение  $e^+e^- 
ightarrow e^+e^-$ 

$$\begin{split} \left(\frac{d\sigma}{d\Omega}\right)^{ee \to ee} &\approx \frac{1}{M^2} \left\{\frac{9}{4} \frac{\Gamma_{ee}^2}{\Gamma M} (1 + \cos^2 \theta) \ (1 + \delta_{\rm pn}) \ {\rm Im} \ \mathcal{F} - \right. \\ &\left. \frac{3\alpha}{2} \frac{\Gamma_{ee}}{M} \left[ (1 + \cos^2 \theta) - \frac{(1 + \cos \theta)^2}{(1 - \cos \theta)} \right] {\rm Re} \ \mathcal{F} \right\} + \left(\frac{d\sigma}{d\Omega}\right)_{\rm \kappa pq}^{ee}, \end{split}$$

А. Сухарев (КЕДР, ИЯФ СО РАН)

 $\Gamma_{ee} \times \Gamma_{\mu\mu} / \Gamma \psi(2S)$ -мезона

7.11.2013 7 / 20

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

#### Энергетический разброс коллайдера

 $\sigma$ , нб 900 f ▲ ск. 2004-1 Теоретическое сечение  $e^+e^-$ 800 ск. 2004-2  $\ell^+\ell^-$  должно быть свёрнуто с энер-700 • ск 2006 гетическим разбросом ускорителя. 600 500 Энергетический разброс  $\sigma_W$  изме-400 300 ряется в сканированиях резонанса 200 по имеющему большую статистику 100 процессу  $e^+e^- \rightarrow$  адроны. 3685 3690 3695 3675 3680 W. M<sub>2</sub>B

 $\Gamma_{ee} \times \Gamma_{\mu\mu} / \Gamma \psi(2S)$ -мезона

7.11.2013 8 / 20

| набор          | дата начала | L <sub>int</sub> , нб <sup>-1</sup> | $\sigma_W$ , МэВ |
|----------------|-------------|-------------------------------------|------------------|
| пик/подложка 1 | начало 2005 | 662                                 | 1.08             |
| пик/подложка 2 | осень 2005  | 222                                 | 0.99             |
| сканирование 1 | весна 2006  | 255                                 | 0.99             |
| пик/подложка 3 | весна 2006  | 631                                 | 0.99             |
| пик/подложка 4 | осень 2006  | 701                                 | 0.99             |
| пик/подложка 5 | осень 2007  | 1081                                | 1.01             |
| сканирование 2 | конец 2007  | 967                                 | 1.01             |
| сканирование 3 | лето 2010   | 379                                 | 1.00             |
| сканирование 4 | конец 2010  | 2005                                | 0.98             |

А. Сухарев (КЕДР, ИЯФ СО РАН)

 $\Gamma_{ee} \times \Gamma_{\mu\mu} / \Gamma \psi(2S)$ -мезона

 ▶
 ≥

 >

 >

 >

 >

 >

 <th

イロト イヨト イヨト イヨト

### Условия отбора

| e^+e^                                                           | $\mu^+\mu^-$                   |  |
|-----------------------------------------------------------------|--------------------------------|--|
| в событии ровно два трека, оба выходят из места встречи пучков  |                                |  |
| треки имеют противоположные заряды                              |                                |  |
| расколлинеарность по $	heta$ и $arphi$ не превышает 28 $^\circ$ |                                |  |
| энерговыделение в калориметре для каждого трека:                |                                |  |
| <i>≥</i> 800 МэВ                                                | ≼ 700 M∍B                      |  |
| полярный угол вылета частицы:                                   |                                |  |
| $40^\circ < 	heta < 140^\circ$                                  | $50^\circ < 	heta < 130^\circ$ |  |
| не более двух кластеров, не привязанных к трекам, с суммарным   |                                |  |
| энерговыделением менее 180 Ма                                   | βB                             |  |
|                                                                 | срабатывание в мюонной систе-  |  |
|                                                                 | ме для каждого трека           |  |
|                                                                 | времена, измеренные время-     |  |
|                                                                 | пролётной системой, соответ-   |  |
|                                                                 | ствуют частицам, вылетевшим    |  |
|                                                                 | из центра детектора            |  |

А. Сухарев (КЕДР, ИЯФ СО РАН)

Эффективность отборов определялась по смоделированным событиям. Моделировались процессы  $e^+e^- \rightarrow \mu^+\mu^-$ ,  $e^+e^- \rightarrow e^+e^-$  (резонанс, подложка, интерференция) и резонансные фоновые процессы.

- Эффективность мюонной системы измерялась по экспериментальным заходам и учитывалась при обработке моделирования.
- Для учёта шумов на события моделирования накладывались экспериментальные события, записанные во время набора статистики со случайным триггером.
- Учёт излучения в конечном состоянии пакет PHOTOS.

ヘロト 不得 とくき とくき とうき

## Эффективность время-пролётной системы

Из-за проблем в оцифровывающей электронике время-пролётной системы условие отбора против космики вносит существенную неэффективность. Эта неэффективность не учитывается в моделировании детектора и измеряется отдельно.



Эффективность определялась двумя независимыми методами:

- I C использованием мюонов каскадного распада $\psi(2S) 
  ightarrow J/\psi \pi \pi, J/\psi 
  ightarrow \mu^+ \mu^-.$
- Для одного трека с наложением условия на время второго трека и статистическим вычитанием оставшегося фона от космики.

Эффективность менялась в пределах от 78% до 88% в различных наборах данных.

## Измерение эффективности ВПС по распадам $J/\psi ightarrow \mu^+\mu^-$

Специально отбираются события каскадных распадов  $\psi(2S) \to J/\psi \pi^+ \pi^-$ и  $\psi(2S) \to J/\psi \pi^0 \pi^0$ , в которых  $J/\psi \to \mu^+ \mu^-$ .



Эффективность определяется из совместной подгонки гистограмм инвариантной массы  $\mu^+\mu^-$  с наложенным условием на времена пролёта (серая) и без него (зелёная).

## Второй метод измерения эффективности ВПС



Синим цветом выделен интервал, соответствующий условию отбора на время первого трека  $T_1$ . Он содержит  $N_1$  событий. Уровень фона определяется подгонкой гистограммы времён трека в областях, где присутствует только космика.

Условия отбора на времена обоих треков  $T_1$  и  $T_2$  проходит  $N_{1,2}$  событий. Тогда эффективность для второго трека  $\varepsilon_2 = \frac{N_{1,2}}{N_1 - N_{\phioH}}$ . Аналогично для первого трека  $\varepsilon_1 = \frac{N_{1,2}}{N_2 - N_{\phioH}}$ . Полная эффективность  $\varepsilon = \varepsilon_1 \times \varepsilon_2$ .

7.11.2013 14 / 20

### Резонансные фоны

Фоны от различных распадов  $\psi(2S)$  вычитались с использованием моделирования. Удельные вероятности распадов брались из таблиц PDG. Пример (п/п 5):

| Канал распада      | Вероятность, % | Эффективность, % |
|--------------------|----------------|------------------|
| $J/\psi\pi^+\pi^-$ | 33.60          | 0.0558           |
| $J/\psi\pi^0\pi^0$ | 17.75          | 0.0166           |
| $\gamma\chi_{c0}$  | 9.68           | 0.0012           |
| $\gamma \chi_{c1}$ | 9.20           | 0.0544           |
| $\gamma\chi_{c2}$  | 8.72           | 0.0268           |
| $J/\psi\eta$       | 3.28           | 0.0404           |
| $\tau^+\tau^-$     | 0.30           | 0.0170           |
| $J/\psi\pi^0$      | 0.13           | 0.1368           |
| р <u></u> р        | 0.03           | 0.0248           |

Суммарная поправка на резонансные фоны составила от 4.3% до 7.4% в зависимости от набора данных.

А. Сухарев (КЕДР, ИЯФ СО РАН)

 $\Gamma_{ee} \times \Gamma_{\mu\mu} / \Gamma \psi(2S)$ -мезона

7.11.2013 15 / 20

#### Получение результата

Каналы  $\mu^+\mu^-$  and  $e^+e^-$  анализируются совместно. Угловое распределение  $e^+e^-$  по  $\theta$  ипользуется для измерения светимости. В *i*-ой точке по энергии  $E_i$  и *j*-ом угловом интервале  $\theta_j$  ожидаемое число событий

$$\begin{split} N_{e^+e^-}(E_i,\theta_j) &= \mathcal{L}(E_i) \times \left( \sigma_{\text{pes}}^{\text{reop}}(E_i,\theta_j) \cdot \varepsilon_{\text{pes}}^{\text{mod}}(E_i,\theta_j) + \\ \sigma_{\text{MHT}}^{\text{reop}}(E_i,\theta_j) \cdot \varepsilon_{\text{MHT}}^{\text{mod}}(E_i,\theta_j) + \sigma_{\text{nodn}}^{\text{mod}}(E_i,\theta_j) \cdot \varepsilon_{\text{nodn}}^{\text{mod}}(E_i,\theta_j) \right), \\ N_{\mu^+\mu^-}(E_i) &= \mathcal{L}(E_i) \times \varepsilon_{\text{BRC}} \times \left( \sigma_{\text{pes}}^{\text{reop}}(E_i) \cdot \varepsilon_{\text{pes}}^{\text{mod}}(E_i) + \\ \sigma_{\text{MHT}}^{\text{reop}}(E_i) \cdot \varepsilon_{\text{MHT}}^{\text{mod}}(E_i) + \sigma_{\text{nodn}}^{\text{BMd}}(E_i) \right), \end{split}$$

где  $\mathcal{L}(E_i)$  — интегральная светимость,  $\sigma^{\text{теор}}$  — теоретические сечения вкладов резонанса, интерференции и рассеяния,  $\varepsilon^{\text{мод}}$  — соответствующие эффективности, полученные из моделирования. Эффективность ВПС  $\varepsilon_{\text{впс}}$  для канала  $e^+e^- \rightarrow \mu^+\mu^-$  учитывается отдельно.

А. Сухарев (КЕДР, ИЯФ СО РАН)

#### Подгонка резонанса

Логарифмическая функция правдоподобия:

$$L = 2\sum_{k} N_{k}^{om} - N_{k}^{Bud} + N_{k}^{Bud} \ln \frac{N_{k}^{Bud}}{N_{k}^{om}},$$
  
 $N_{k}^{om} = \sigma_{k}^{om} \mathcal{L}(E_{i}),$ 

 $N^{\text{ож}}$  — ожидаемое число событий,  $N^{\text{вид}}$ — наблюдаемое число событий, суммирование идёт по энергетическим точкам,  $\theta$ -бинам и каналам распада ( $e^+e^$ или  $\mu^+\mu^-$ ), светимости  $\mathcal{L}(E_i)$  получаются из условия экстремума.



Свободные параметры подгонки:  $\Gamma_{ee} \times \Gamma_{\mu\mu}/\Gamma$ ,  $\Gamma_{ee} \times \Gamma_{ee}/\Gamma$  и видимое нерезонансное сечение  $e^+e^- \to \mu^+\mu^-$ .

7.11.2013 17 / 20

# Основные систематические погрешности измерения $\Gamma_{ee} \times \Gamma_{\mu\mu}/\,\Gamma$

| Источник погрешности                            | Ошибка, % |
|-------------------------------------------------|-----------|
| Измерение эффективности ВПС                     | 3÷7       |
| Условия отбора                                  | 2÷5       |
| Измерение энергетического разброса              | 2         |
| Интерполяция энергетического разброса (для п/п) | 2         |
| Измерение полярного угла $	heta$                | 1.5       |
| Эффективность мюонной системы                   | 1         |
| Моделирование излучения в конечном состоянии    | 0.5       |
| (PHOTOS)                                        |           |

Некоторые систематические погрешности отличаются для разных наборов данных.

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

#### Результат



Измерения  $\Gamma_{ee} \times \Gamma_{\mu\mu}/\Gamma$ . Синим показаны измерения КЕДРа, красным — «среднемировое значение», полученное перемножением  $\Gamma_{e^+e^-}$  и  $\mathcal{B}_{\mu\mu}$ . Суммарный результат КЕДРа показан горизонтальной линией, его ошибки — серыми полосами. Для данных КЕДРа приведены статистическая и полная ошибки.

#### КЕДР:

 $\Gamma_{ee} \times \Gamma_{\mu\mu} / \Gamma = 19.4 \pm 0.4 \pm 1.1$  эВ (предварительно) «среднемировое значение»:  $\Gamma_{ee} \times \Gamma_{\mu\mu} / \Gamma = 18.2 \pm 2.2$  эВ

А. Сухарев (КЕДР, ИЯФ СО РАН)

 $\Gamma_{ee} \times \Gamma_{\mu\mu} / \Gamma \psi(2S)$ -мезона

7.11.2013 19 / 20

- Детектором КЕДР проведено прямое измерение величины  $\Gamma_{ee} \times \Gamma_{\mu\mu}/\Gamma = 19.4 \pm 0.4 \pm 1.1$  эВ для  $\psi(2S)$ -мезона (результат предварительный). Точность результата примерно в два раза лучше «среднемировой».
- Ожидается, что в окончательном результате систематическая погрешность будет уменьшена.
- Планируется публикация окончательного результата до конца 2013 года.

・得下 ・ヨト ・ヨト ・ヨ