

Possibilities of IHEP Booster for the radiation hardness study of materials

Andrei Uzunyan

On behalf of the IHEP/Ecal group

Outline

HEP booster for the irradiation purpose

- **Booster proton beam structure**
- ☆ Simulation & measurements of hadron fluence at place of irradiation
- ☆ Crystals transmittance before & after irradiation

★ Conclusion

IHEP Booster for material irradiations

Proton energy: 1.32 GeV

Booster circular hall

Control room of the irradiation zone

Booster beam dump & irradiation zone

PANDA-RS irradiation facility

Andrei Uzunyan

Proton beam structure

- it is possible to use up to 29 bunches for irradiation purposes
- average intensity ~ 3.5•10¹¹ protons per bunch.
- average protons intensity on the target during the time of irradiation about of 10¹² p/s.

Proton bunch profile on the target

PWO irradiation setup

Many thanks to IHEP Radiation Research Department and Booster team for the excellent support

Andrei Uzunyan

Hadron fluence through crystals (E_h > 10 MeV)

Simulation was provided using MARS(IHEP) code by Igor Azhgirey

Each crystal was subdivided into 9 bins (1x1x22 cm³)

4•10¹¹ protons (E= 1.32 GeV) per second hits the

primary steel target

Distribution of the hadron fluence integrated in the crystal bins (fluence is in 10⁸ h/(cm² sec)) and fraction of the charged hadrons (in %)

0.5		0.6		0.7	
11/0	3	7.970	6	5.776	9
0.8 9.9%		1.0 6.7%		1.4 4.6%	
	2		5		8
1.7 6.9%		2.3 5.1%		2.2 4.3%	
	1		4		7

Average hadron fluence through whole crystal 11869 is about of 1.3•10⁸ h/(cm² sec) (6.1% ch.harons)

0.9 4.1%		1.0 3.1%		1.1 2.5%	
	3		6		9
1.6		1.5		1.3	
3.5%		2.9%		2.5%	
	2		5		8
1.9		1.6		1.4	
3.7%		3.2%		2.8%	
	1		4		7

Average hadron fluence through whole crystal 11877 is about of 1.4•10⁸ h/(cm² sec) (3.1% ch.hadrons)

For our case the expected average hadron fluence during the time of irradiation will be around of 2.4•10¹³ h/cm² (# 11869) and 2.6•10¹³ h/cm² (# 11877)

Hadron spectra through crystals

Andrei Uzunyan

Hadron fluence measurement (activation analysis)

Integral fluence of hadrons (E> 30 MeV) during the process of irradiation (30.5 h) is determined by activation analysis Al (h,spall) ²²Na. (Thanks to V.Lukanin & G. Krupny, IHEP)

Andrei Uzunyan

Crystals transmittance

(AvaSpec-2048, resolution 0.3 nm)

Avalight-Xe Xenon pulsed light source (useable range 200 -750 nm) was used

Crystals # 11869 and # 11877 before irradiation

(AvaSpec-2048, resolution 0.3 nm)

Total hadrons fluence (E_h > 30 MeV) during the time of irradiation ~ 2.6•10¹³ n/cm²;

Andrei Uzunyan

(AvaSpec-2048, resolution 0.3 nm)

Total hadrons fluence (E_h > 30 MeV) during the time of irradiation ~ 1.5•10¹³ h/cm²

Andrei Uzunyan

Crystals induced radioactivity

The measurements (dose rate on the crystal surface) started in a seven days after the end of irradiation. Industrial dosimeter DKS AT1123 was used.

(Thanks to S. Drugachonok from IHEP RPD)

Conclusion

Two CMS EE crystals were irradiated in IHEP booster « neutron » field ($\langle E_h \rangle = 100 \text{ MeV}$). Duration of irradiation was about of 30 hours in the middle of November 2012.

 $\overrightarrow{}$

Total hadron fluence in crystals during the time of irradiation

Crystal #	Calculations, E_h> 10 MeV (MARS/IHEP)	Measurements, E_h> 30 MeV Al (h, spall) ²² Na			
11869	~ 1.8•10 ¹³ h/cm ² (~9% of ch. hadrons)	~ 2.6•10 ¹³ h/cm ²			
11877	~ 2.6•10 ¹³ h/cm ² (~4% of ch. hadrons)	~ 1.5•10 ¹³ h/cm ²			
	Transparency loss about of 17% at 400 nm was observed				

In four months after the end of the crystals irradiation:

- practically no recovery in (350 - 400) nm wavelength region were observed;

- dose rate from induced radioactivity on the level about of $3 \mu Sv/h$ were defined.

СПАСИБО ЗА ВНИМАНИЕ

Backup slides

Andrei Uzunyan

Hadron fluence through crystals

Andrei Uzunyan

Ecal upgrade meeting, CERN, June 2013

(AvaSpec-2048, resolution 0.3 nm)

(AvaSpec-2048, resolution 0.3 nm)

Total fluence during the time of irradiation: neutrons ~ 2.5•10¹³ n/cm²; ch. hadrons ~ 8•10¹¹ ch.h/cm²

 $E_{p(n)} = 55 \text{ MeV}$

Star density

Energy deposition

Dashed line – neutrons as incident Solid line – protons as incident

Ecal upgrade meeting, CERN, December 2012

 $E_{p(n)} = 100 \text{ MeV}$

Star density

Energy deposition

Dashed line – neutrons as incident Solid line – protons as incident

Ecal upgrade meeting, CERN, December 2012

 $\mathbf{E}_{\mathbf{p}(\mathbf{n})} = \mathbf{1} \mathbf{GeV}$

Star density

Energy deposition

Dashed line – neutrons as incident Solid line – protons as incident

Ecal upgrade meeting, CERN, December 2012