

Измерение времени жизни т лептона в эксперименте Белль

А. Соколов – ИФВЭ, Протвино (коллаборация Белль)

> Сессия секции ядерной физики ОФН РАН, 5-8 ноября 2013, ИФВЭ, Протвино

K. Belous, M. Shapkin, A. Sokolov et al (Belle collaboration)

Measurement of the τ -lepton lifetime at Belle, arXiv:1310.8503v1 [hep-ex] 31 Oct 2013, submitted to PRL

The lifetime of the τ -lepton is measured using the process $e^+e^- \rightarrow \tau^+\tau^-$ where both τ -leptons decay to $3\pi\nu_{\tau}$. The result for the mean lifetime, based on 711 fb⁻¹ of data collected with the Belle detector at the $\Upsilon(4S)$ resonance and 60 MeV below, is $c\tau = (290.17 \pm 0.53(\text{stat.}) \pm 0.33(\text{syst.})) \cdot 10^{-15}$ s. The first measurement of the lifetime difference between τ^+ and τ^- is performed. The upper limit on the relative lifetime difference between positive and negative τ -leptons is $|\Delta\tau|/\tau < 7.0 \times 10^{-3}$ at 90% CL.

Outline

- Belle experiment
- Method of the measurement
- Data and event selection
- Experimental study
- Systematic uncertainty
- Summary

Tau-lepton lifetime

- The present PDG value of the τ -lepton lifetime is dominated by the results obtained by LEP experiments.
- Present Belle analysis uses technique different from those of LEP experiments and is based on much higher statistics.

KEK Laboratory, Tsukuba Japan

The KEKB Collider

- Asymmetric energy collider (8 GeV e⁻ x 3.5 GeV e⁺)
 - √s ≈ m_{Y(4S) (Y(nS), n=1,2,3,5)}
 - Lorentz boost: $\beta\gamma = 0.425$
- Finite angle beam crossing (22mrad)

Peak luminosity (WR!) : **2. 1 x 10³⁴ cm⁻²s⁻¹** =2x design value

First physics run on June 2, **1999** Last physics run on June 30, **2010** $L_{peak} = 2.1 \times 10^{34} / cm^2 / s$

 $\int \mathcal{L} dt = 1.04 ab^{-1}$

Analysis method

- We consider $e^+e^- \rightarrow \tau^+\tau^- \rightarrow 3\pi\nu \ 3\pi\nu$ events
- In **CM frame**:
 - Flight directions of τ^+ and τ^- are back-to-back;
 - Energy of each tau-lepton is $\sqrt{s}/2$;
 - Assuming neutrino mass to be zero, the angle between τ flight direction and momentum of the corresponding 3π -hadronic system (P_x) is determined as:

$$\cos\theta^* = \frac{2E_{\tau}^* E_x^* - m_{\tau}^2 - m_x^2}{2P_{\tau}^* P_x^*} = \frac{2E_{\tau}^* E_x^* - m_{\tau}^2 - m_x^2}{2\sqrt{\left(E_{\tau}^{*2} - m_{\tau}^2\right)}P_x^*}$$

 The unit vector in the direction of the positive tau-lepton can be obtained as a solution of the following system of equations:

$$\begin{cases} \left(\vec{P}_{1}^{*} \cdot \vec{n}_{+}^{*}\right) = x^{*} P_{x1}^{*} + y^{*} P_{y1}^{*} + z^{*} P_{z1}^{*} = \left|P_{1}^{*}\right| \cos \theta_{1}^{*} \\ \left(\vec{P}_{2}^{*} \cdot \vec{n}_{+}^{*}\right) = x^{*} P_{x2}^{*} + y^{*} P_{y2}^{*} + z^{*} P_{z2}^{*} = -\left|P_{2}^{*}\right| \cos \theta_{2}^{*} \\ \left(\vec{n}_{+}^{*}\right)^{2} = \left(x^{*}\right)^{2} + \left(y^{*}\right)^{2} + \left(z^{*}\right)^{2} = 1 \end{cases}$$

Analysis method (cont.)

- We perform Lorentz boost of τ-lepton 4-momenta from CM to Laboratory frame.
- τ decay vertices (V₁ and V₂) are determined as the 3D-points of intersections of the pions triplets momenta.
- For the τ production point of each τ -lepton we take the points $(V_{01} \text{ and } V_{02})$ which are the points of the closest approach of the two crossing lines defined by τ decay vertices and flight directions.

No information about the beam spot position is needed in this approach

Event selection

- The analyzed topology is 3-3 without $\pi^{0'}$ s.
- In addition to τ pair selection the following cuts are applied:
 - 1. There are exactly 6 charged tracks compatible with the π hypothesis with zero net charge;
 - 2. There are no K_{s}^{0} , Λ and π^{0} ;
 - 3. Thrust value (in CM frame) is greater than 0.9;
 - 4. P_t^2 of the pion system is greater than 0.25 GeV²;
 - 5. 4 GeV/c² < m(6 π) < 10.25 GeV/c²;
 - 6. Event is divided into two hemispheres by the plane perpendicular to the thrust axis. In each hemisphere there should be 3 π 's with the net charge ±1;
 - 7. Pseudomass of each triplets of pions : $M_{min}(3\pi) < 1.8 \text{ GeV/c}^2$ $M_{min}^2 = M_x^2 + 2(E_\tau^* - E_x^*)(E_x^* - P_x^*);$
 - 8. Each triplet should be fitted to the vertex with $\chi^2 < 20$;
 - 9. System of equations for τ -lepton flight direction can be solved and discriminant D > -0.05;

Event selection (cont.)

- Distance between two crossing lines
 dl < *dl_{cut}* = 0.03 cm.
- Integrated luminosity of the data is 711 fb⁻¹; Nev = 1.1·10⁶
- All the MC samples are normalized to the luminosity of the data.

Lifetime resolution

7.11.2013 ОЯФ ОФН РАН

Life time fitting function

 To describe the data ττ-contribution as well as ττ- Monte Carlo events we use convolution of exponent function with life time resolution function:

ctau(P₁, P₂,...,P₇, x) = P₁ ·
$$\int e^{-t/P_2} \cdot R((t-x), P_3, ..., P_7) dt$$

- P_2 (free) $-\tau$ -lepton lifetime; $P_1, P_3, ..., P_7$ (free) - parameters of the resolution function.
- Real Data is fitted with the following function:

$$\operatorname{ctau}(P_1, P_2, ..., P_7, x) + A_{q\bar{q}} \cdot R(x, P_3, ..., P_7) + Bkg_{c\bar{c}+b\bar{b}}(x)$$

 P_i – free parameters; $A_{q\bar{q}}$, $Bkg_{c\bar{c}+b\bar{b}}(x)$ = Two_Gaussian – fixed from MC.

Experimental ct distribution

MC based correction

MC samples with different generated τ -lepton lifetimes ($c\tau = 84.00, 87.11, 90.00 \mu$ m) processed in the same way as Data. (The background contamination $A_{q\bar{q}}$, $Bkg_{c\bar{c}+b\bar{b}}(x)$ for them is fixed to zero.) We obtain the P_2 value for each MC sample.

Three points of *P*₂ value versus generated cτ are fitted to linear

function $P_2 = A + B \cdot c\tau$

Correction of the data result

From the fit of the **data** *ct* distribution we obtain **the value** of the τ -lepton lifetime estimator *P2(data)* = 86.53 ± 0.16(stat.) μ m

The value of the $P_2(data)$ is translated to the $c\tau$ corrected value by the formula $c\tau = (P_2(data) - A)/B$.

($A = 0.001 \pm 0.07$ $B = 0.97 \pm 0.03$ from MC)

MC corrected Data result (preliminary): $c\tau = 86.99 \pm 0.16(stat.)$

Systematic uncertainties

Source of Systematics	Δ (cτ) in μm
SVD alignment	0.090
Asymmetry fixing	0.030
Beam energy and ISR & FSR description	0.024
Fit range	0.020
Background contribution	0.010
τ-lepton mass	0.009
TOTAL	0.101 (0.12%)

The result of the analysis

• Belle value of the τ -lepton lifetime is:

```
\tau = 290.17 ± 0.53 (stat.) ± 0.33 (syst.) · 10<sup>-15</sup> s
c\tau = 86.99 ± 0.16 (stat.) ± 0.10 (syst.) µm
```

Current PDG value is:

```
\tau = 290.6 \pm 1.0 \cdot 10^{-15} s
```

```
c\tau = 87.11 \pm 0.30 \,\mu m
```

The result of the analysis (cont.)

Summary

- The method of τ -lepton lifetime measurement at Belle is presented.
- Using 711 fb⁻¹ of the Belle data we measured τ-lepton lifetime.
 The result is

 τ = 290.17 ± 0.53 (stat.) ± 0.33 (syst.) fs c τ = 86.99 ± 0.16 (stat.) ± 0.10 (syst.) µm

• The first measurement of the lifetime difference between τ^+ and $\tau^$ is performed. The upper limit on the relative lifetime difference between positive and negative τ -leptons is $|\Delta \tau|/\tau < 7.0 \times 10^{-3}$ at 90% CL