Нейтринные осцилляции: от измерений θ₁₃ к иерархии масс и СР нарушению

> Ю.Г. Куденко ИЯИ РАН

> > Сессия секции ЯФ ОФН РАН, ИФВЭ, Протвино, 5 ноября 2013

2013 год: 100-летие со дня рождения Б.М. Понтекорво

Mesonium and anti-mesonium B. Pontecorvo Sov.Phys.JETP 6 (1957) 429 Zh.Eksp.Teor.Fiz. 33 (1957) 549-551

Inverse beta processes and nonconservation of lepton charge B. Pontecorvo (Dubna, JINR) Sov.Phys.JETP 7 (1958) 172-173, Zh.Eksp.Teor.Fiz. 34 (1957) 247

Neutrino Experiments and the Problem of Conservation of Leptonic Charge B. Pontecorvo (Dubna, JINR) Sov.Phys.JETP 26 (1968) 984-988, Zh.Eksp.Teor.Fiz. 53 (1967) 1717-1725

- neutrino mixing
- \Box measurements of θ_{13}
- $\hfill\square$ observation of ν_e appearance
- □ near future: mixing parameters, MH and CP
- □ far future prospects
- □ summary

v oscillations and mixing

Standard Model: neutrinos are *massless* particles

Hunt for θ_{13}

Appearance:

 $P(v_{\mu} \rightarrow v_{e}) \approx sin^{2}2\theta_{13}sin^{2}\theta_{23}sin^{2}(\Delta m_{31}^{2}L/4E) + CPV term + matter term + ...$

Disappearance:

 $P(v_e \rightarrow v_e) \approx 1 - \frac{\sin^2 2\theta_{13}}{\sin^2(\Delta m_{31}^2 L/4E)} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2(\Delta m_{21}^2 L/4E)$

Measurement of deficit of reactor antineutrinos at L ~ 1-2 km

Long-Baseline Neutrino Oscillation Experiment

JAPAN

SuperKamiokande

Toyama Kamioka Mine

~ 500 members 59 institutions 11 countries

JPARC

Токио

Tokai

Tokyo/Narita Airport

$6 v_e$ events

Then,

- 1 Confirmation from MINOS
- 2 Precise measurements by Double Chooz Daya Bay RENO

First T2K result

changed neutrino physics landscape

1.43x10²⁰ POT January 2010 – March 2011

In June 2011 T2K published first clear indication of electron neutrino appearance $(\theta_{13} \neq 0)$

PRL 107, 041801 (2011)PHYSICAL REVIEW LETTERSweek ending
22 JULY 2011

Indication of Electron Neutrino Appearance from an Accelerator-Produced Off-Axis Muon Neutrino Beam

K. Abe,⁴⁹ N. Abgrall,¹⁶ Y. Ajima,^{18,†} H. Aihara,⁴⁸ J. B. Albert,¹³ C. Andreopoulos,⁴⁷ B. Andrieu,³⁷ S. Aoki,²⁷ O. Araoka,^{18,†} J. Argyriades,¹⁶ A. Ariga,³ T. Ariga,³ S. Assylbekov,¹¹ D. Autiero,³² A. Badertscher,¹⁵ M. Barbi,⁴⁰ G. J. Barker,⁵⁶ G. Barr,³⁶ M. Bass,¹¹ F. Bay,³ S. Bentham,²⁹ V. Berardi,²² B.E. Berger,¹¹ I. Bertram,²⁹ M. Besnier,¹⁴ J. Beucher,⁸ D. Beznosko,³⁴ S. Bhadra,⁵⁹ F. d.M. M. Blaszczyk,⁸ A. Blondel,¹⁶ C. Bojechko,⁵³ J. Bouchez,^{8,*} S. B. Boyd,⁵⁶ A. Bravar,¹⁶ C. Bronner,¹⁴ D. G. Brook-Roberge,⁵ N. Buchanan,¹¹ H. Budd,⁴¹ D. Calvet,⁸ S.L. Cartwright,⁴⁴ A. Carver,⁵⁶ R. Castillo,¹⁹ M. G. Catanesi,²² A. Cazes,³² A. Cervera,²⁰ C. Chavez,³⁰ S. Choi,⁴³ G. Christodoulou,³⁰ J. Coleman,³⁰

The T2K experiment observes indications of $\nu_{\mu} \rightarrow \nu_{e}$ appearance in data accumulated with 1.43×10^{20} protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with $|\Delta m_{23}^2| = 2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} = 1$ and $\sin^2 2\theta_{13} = 0$, the expected number of such events is 1.5 ± 0.3 (syst). Under this hypothesis, the probability to observe six or more candidate events is 7×10^{-3} , equivalent to 2.5σ significance. At 90% C.L., the data are consistent with $0.03(0.04) < \sin^2 2\theta_{13} < 0.28(0.34)$ for $\delta_{CP} = 0$ and a normal (inverted) hierarchy.

DOI: 10.1103/PhysRevLett.107.041801

PACS numbers: 14.60.Pq, 13.15.+g, 25.30.Pt, 95.55.Vj

MINOS

- ~3GeV ν_{μ} beam from FNAL 120GeV MI
 - ~350kW operation achieved
- (magnetized)Iron-scintillator tracker at 735km (5.4kt) and near (980t)
- Main physics goals
 - (anti-) v_{μ} disappearance
 - $-v_e$ appearance

Integral luminosity

- 10.7x10^{20} POT for ν_{μ}
- 3.4x10²⁰ POT for anti- v_{μ}

MINOS: θ_{13}

- Neutrino beam
 - Expect: 128.6(+32.5) events
 - Observe: 152 Events
- Antineutrino beam
 - Expect 17.5(+3.7) events
 - Observe 20 events

disfavour θ_{13} =0 at 96% CL For normal mass hierarchy and δ =0

θ_{13} from reactor experiments

3 reactor experiments: Double Chooz, Daya Bay, RENO

	Reactor [GW _{th}]	Target [tons]	Depth [m.w.e]		
Double Chooz	8.6	16 (2 × 8)	300, 120 (far, near)		
RENO	16.5	32 (2 × 16)	450, 120		
Daya Bay	17.4	160 (8 × 20)	860, 250		
	Large Si	Low Background			

Double Chooz

H analysis: n+p \rightarrow d + γ (2.2 MeV)

- Target + Gamma Catcher
 => 3 x more volume (2 x statistics)
- capture time: τ ≈ 180 µs
- delayed energy: 2.2 MeV
 - \Rightarrow background!
- · different systematics

"Standard" Gd analysis:

- high cross section for capture of thermal neutrons
- capture time τ ≈ 30 µs
- delayed energy: 8 MeV

Phys. Rev. D86 (2012) 052008

Combined: $sin^2 2\theta_{13} = 0.109 \pm 0.035$

Reactor experiment in China

■ 17.4 GW_{th} power 8 operating detectors 160 t total target mass

3.5×10²¹ neutrinos per second

		Overburden	n_{μ}	L_{μ}	D1,2	L1,4	L3,4	
88	EH1	250	1.27	57	364	857	1307	
IPP I	EH2	265	0.95	58	1348	480	528	
	EH3	860	0.056	137	1912	1540	1548	
H3)	TABLE I. Or muon energy the reactor pa	verburden (m E_{μ} (GeV) o airs.	.w.e), n of the t	nuon r hree E	ate R _μ EHs, and	(Hz/m ² d the di), and avenues (1	erage m) to
Tunnel	Li	ng Ao 1 Iall (EH	near H2)				4-0 1	75
Water	1	0	Э				K	S
Hall	Constr tunnel	uction	I	ing rea	g Ao ctor	II s	~	
LS		11 miles	23	. 4		/		
Hall		Ling A	.0	-				
Entrance	and the second s	reactor	"S	1	1			

Daya Bay Near Hall (EH1)

Dava Bay

reactors

Reactor power

6 × 2.9 GW_{th}

Daya Bay result (I)

March 2012, after 55 days of data taking

 $sin^{2}2\theta_{13} = 0.089 \pm 0.010$ (stat) ± 0.005 (syst)

Daya Bay result (II)

Rate and spectral analysis

217 days of data taking

 $\sin^2 2\theta_{13} = 0.090^{+0.008}_{-0.009}$ $|\Delta m_{ee}^2| = 2.59^{+0.19}_{-0.20} \times 10^{-3} \,\mathrm{eV}^2$

Reactor experiment in Korea

- Target : 16.5 ton Gd-LS, R=1.4m, H=3.2m
- Gamma Catcher: 30 ton LS, R=2.0m, H=4.4m
- Buffer : 65 ton mineral oil, R=2.7m, H=5.8m
- Veto : 350 ton water, R=4.2m, H=8.8m

Data taking since 1st August 2011 First result published in May 2012

RENO result (I)

RENO result (II)

• a new result on mixing angle θ_{13} . $\sin^2 2\theta_{13} = 0.100 \pm 0.010(stat) \pm 0.012(syst)$ (402 days data taking) (systematic error will be further reduced)

History of θ_{13} measurements

Only 2 years of measurements!

S. Jetter, Nufact2013

19

T2K: observation of v_e appearance

Summer 2013: integral luminosity 6.39x10²⁰ pot

Significance $p-\theta$ 60 $\Delta \chi^2 = 56.27$ 50 for $\sin^2 2\theta_{13} = 0$ $\Delta \chi^2 = -2\Delta lnL$ 40 Run1-4 data (6.393e20 POT) 30 best-fit $\sin^2 2\theta_{13} = 0.150$ assuming $\delta_{CP} = 0$, normal hierarchy, $|\Delta m_{32}^2| = 2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} = 1.0$ 20 100<u></u> 0.3 0.1 0.20.4 $\sin^2 2\theta_{13}$ **Best fit = 0.150** # of toy MC experiments $\Delta \chi^2$ distribution for **1x10¹⁵** toy MCs 10⁴ $\Delta \chi^2_{\text{critical}} = 56.27$ 10³ **99/(1×10¹⁵)** 10² 10 1 $\overline{70}$ $\Delta \chi^2$ 45 55 40 50 60 65

significance is calculated as $~\sqrt{\Delta}\chi^2$

28 v_e events detected expected background 4.64 \pm 0.52 events

$$\sqrt{-2\Delta \ln L} = \sqrt{56.27}$$
$$= 7.5\sigma$$

p-value is calculated as follows:

- 1. Generate 1e15 toy experiments with $sin^22\theta_{13}=0.0$.
- 2. Fit each toy experiment extract $-2\Delta lnL (=\Delta \chi^2)$.
- 3. p-value is the fraction of toy experiments above $\Delta\chi^2_{data}$

p-value = 9.9 × 10⁻¹⁴

Discovery of v_e appearance

MINOS

 \overline{V} oscillation parameters

 $\Delta \overline{m}^2 = 2.50^{+0.23}_{-0.25} \times 10^{-3} eV^2$

 $\sin^2(2\overline{\theta}) > 0.83 \ (90\% C.L.)$

 $\sin^2(2\overline{\theta}) = 0.97^{+0.03}_{-0.08}$

-68% C.L.

-90% C.L.

MINOS v, disappearance

10.71×10²⁰ POT v_µ mode

3.36 ×10²⁰ POT ⊽, mode

3.0

 $\sin^2(2\theta) > 0.89 \ (90\% C.L.)$

MINOS Preferences: Low octant, $\theta_{23} < 45^{\circ}$ Non-max mixing Inverted Mass hierarchy

OPERA

Neutrino beam from CERN to Gran Sasso

Data 2008-2009

Expected bkg 0.226 v_{τ} events

 $\frac{3}{v_{\tau}}$ events: significance $\frac{3.2\sigma}{2}$

p-value of background **7.3×10⁻³**

Next targets ?

$\nu_{\mu} \rightarrow \nu_{e}$ in matter

Physics reach oscillation mode for accelerator LBL experiments is $\nu_{\mu} \rightarrow \nu_{e}$

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4c_{13}^{2} s_{23}^{2} \sin^{2} \frac{\Delta m_{13}^{2} L}{4E_{\nu}} \times \left[1 + \frac{2a}{\Delta m_{13}^{2}} (1 - 2s_{13}^{2})\right] \longrightarrow \theta_{13}$$

$$+ 8c_{13}^{2} s_{12} s_{13} s_{23} (c_{12} c_{23} \cos \delta - s_{12} s_{13} s_{23}) \cos \frac{\Delta m_{23}^{2} L}{4E_{\nu}} \sin \frac{\Delta m_{13}^{2} L}{4E_{\nu}} \sin \frac{\Delta m_{12}^{2} L}{4E_{\nu}} \longrightarrow CP-\text{even}$$

$$- 8c_{13}^{2} c_{12} c_{23} s_{12} s_{13} s_{23} \sin \delta \sin \frac{\Delta m_{23}^{2} L}{4E_{\nu}} \sin \frac{\Delta m_{13}^{2} L}{4E_{\nu}} \sin \frac{\Delta m_{12}^{2} L}{4E_{\nu}} \longrightarrow CP-\text{odd}$$

$$+ 4s_{12}^{2} c_{13}^{2} (c_{13}^{2} c_{23}^{2} + s_{12}^{2} s_{23}^{2} s_{13}^{2} - 2c_{12} c_{23} s_{12} s_{23} s_{13} \cos \delta) \sin^{2} \frac{\Delta m_{12}^{2} L}{4E_{\nu}} \longrightarrow Solar$$

$$- 8c_{13}^{2} s_{13}^{2} s_{23}^{2} \cos \frac{\Delta m_{23}^{2} L}{4E_{\nu}} \frac{aL}{4E_{\nu}} \sin \frac{\Delta m_{13}^{2} L}{4E_{\nu}} (1 - 2s_{13}^{2}), \qquad \text{Matter}$$

$$s_{ij} = \sin \theta_{ij} \qquad c_{ij} = \cos \theta_{ij} \quad a[eV^{2}] = 2\sqrt{2}G_{F} n_{e} E_{\nu} = 7.6 \times 10^{-5} \rho \left[\frac{g}{cm^{3}}\right] E_{\nu} [GeV]$$

$$P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}) \qquad a \rightarrow -a \qquad \delta \rightarrow -\delta$$

$$Change sign for NH \rightarrow IH$$

CP measurements

- Max. ~ $\pm 25\%$ (L=295 km) change from $\delta=0$ case
- Measure 1st and 2nd oscillation maxima in $P(v_{\mu} \rightarrow v_{e})$
- Comparison of accelerator $P(v_{\mu} \rightarrow v_{e})$ and reactor $P(anti-v_{e} \rightarrow anti-v_{e})$

Matter effect → fake CP violation, BUT sensitive instrument to determine mass hierachy

Measurement of MH

Matter effect: appearance – accelerator experiments NOvA, LBNE, LBNO disappearance – PINGU,ORCA, INO, HyperK Interference effect between solar and atmospheric oscillations: reactor experiments JUNO, RENO50

accelerator experiments

MSW effect at ~6.5 GeV only neutrino beam

reactor experiments

$$P_{ee} = 1 - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21} - \sin^{2} 2\theta_{13} \sin^{2} \Delta_{31} - \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \Delta_{21} \cos 2\Delta_{31} \pm \frac{1}{2} \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin 2\Delta_{21} \sin 2\Delta_{31}$$

θ₂₃ measurement

 $\nu_{\mu}\,\text{disappearance}$

T2K: sensitivity to CP

Nova

LBL experiment using neutrino off-axis narrow-band beam from FNAL

Beam schedule

NOvA: first run in September 2013 with beam operating at ~300 kW

Beam intensity will be increased up to 500 kW next year and to 700 kW in 2 years.

Far Detector mass will be added at a rate of about 1 kton/3 weeks. Full installation of NOvA detectors will be completed in 2014.

Mass Hierarchy

Significance of the MH determination

CP violation

Significance with which NOvA (+T2K) can establish CP violation.

The significance goes to zero at $\delta = 0$ and $\delta = \pi$ since there is no CP violation at those points. The dips in the peaks occur because the mass ordering has not been resolved.

Best case: CP violation at 1.6 σ (Nova only) and 2.0 σ (Nova + T2K)

Far Future Prospects

JUNO and RENO50

Two reactor experiments with L~ 50 km proposed in China and Korea

RENO50

10 Kton liquid scintillator L~47 km (very close to optimal) RENO used as near detector Data taking expected to start in 2019

JUNO

20 Kton liquid scintillator L=53 km (very close to optimal) 2 reactors, each of them with $P\sim18$ GW Data taking expected to start in 2020

JUNO can determine the mass hierarchy with a confidence level of $\Delta\chi 2 \sim 19$ (4.4 σ) after 6 years of data taking

LBNE

The US based LBL project

Neutrino beam from FNAL to Homestake L = 1300 km, Ep= 80-120 GeV, 0.7-2.3 kW NuMI $E_v = 0.5 - 5$ GeV

1st stage: far detector 10 kt LAr TPC, on surface 2nd stage: far detector 34 kt Lar TPC, underground

Sensitivity to MH and CP phase

39

T2HK: CPV discovery potential

MH is known !

High sensitivity to CP phase for systematics < 5%

LAGUNA/LBNO

European LBL project Wide band neutrino beam from CERN to Pyhasalmi (Finland) L = 2300 km

Far detector

R&D: LAr demonstrator at CERN

LAGUNA/LBNO sensitivity

More than 5σ determination of MH for all δ values

Conclusion

• 2011-2013

- θ_{13} is measured and large Open very exiting perspectives in neutrino oscillations
- Observation of $v_{\mu} \rightarrow v_{e}$ appearance at 7.5 σ significance A new type of transformation among neutrinos has firmly established
- Near future:
- precision measurements of neutrino mixing parameters
- an initial search for CP violation in lepton sector
- Far future:
 - measurement of CP violation in lepton sector
 - determination of neutrino mass hierarchy