Session of Nuclear Physics Division of Russian Academy of Science. 5-8.11.2013, Protvino

Nuclear matter studies with the ALICE experiment at LHC

for the ALICE collaboration

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:30:46 Fill : 1482 Run : 137124 Event : 0x00000000D3BBE693

Outline

- ALICE detector
- Global properties of heavy-ion collisions
- Anisotropic flow
- LF particle spectra
- HF spectra
- Quarkonia
- Hard probes
- Correlations
- Upgrade plans

ALICE detector

Charged particle identification in ALICE

ALICE overview

Datasets in Run1

Collision system, √s (TeV)	2009	2010	2011	2012	2013
pp 0.9 TeV	3 µb ⁻¹	0.14 nb ⁻¹			
pp 2.36 TeV	0.7 µb ⁻¹				
pp 2.76 TeV			1.3 nb ⁻¹		1.3 nb ⁻¹
pp 7 TeV		10 nb ⁻¹	1 pb ⁻¹		
pp 8 TeV				8 pb ⁻¹	
p-Pb 5.02 TeV					30 nb ⁻¹
Pb-Pb 2.76 TeV		10 µb ⁻¹	100 µb ⁻¹		

Global event properties

Charged multiplicity

Mean transverse momentum

Comparison with models:

- None describe Pb-Pb
- EPOS describes pp and is consistent with p-Pb data but with tension (parametrizaions of collective effects)
- PYTHIA8 with color reconnection (CR) consistent with pp data
- Glauber MC does not describe p-Pb data (incoherent superposition of NN collisions)

Size, lifetime, yields

 $\overline{\Omega}^+$ d

 v_2 vs. p_T does not change between RHIC (200 GeV) and LHC (2.76 TeV) energy

the ~30% increase of p_{T} -integrated elliptic flow at LHC is then explained by higher mean p_{T} (stronger radial flow)

ALICE overview

Anisotropic flow (2)

ALI-DER-55748

Identified particle elliptic flow

- Mass ordering at low \textbf{p}_{T} described by hydrodynamics
- Particle species dependence persists up to $p_{\rm T}{\sim}8~GeV/c$

Light-flavor particle spectra

Identified hadron spectra in p-Pb

•Spectra become harder with increasing multiplicity and increasing particle mass

Identified hadron production in p-Pb

Comparison with models:

Blast-wave

Hydro inspired model

EPOS LHC

- hard/soft scattering contribute to jet/bulk
- bulk matter described with hydro

Krakow

- initial conditions from Glauber MC
- viscous hydrodynamic expansion
- statistical hadronization at freeze-out

DPMJET

- QCD-inspired model based on Gribov-Glauber Approach
- reproduces $dN_{ch}/d\eta$ in NSD p-Pb

Identified hadron spectra in Pb-Pb

ALICE overview

Identified hadron production in Pb-Pb

arXiv:1303.0737

 $p_{_{\rm T}}$ (GeV/c)

From comparison to RHIC and hydrodynamic models:

• large radial flow at the LHC

Hydrodynamic models:

- VISH2+1 (viscous hydro)
- HKM (hydro+UrQMD)
- Krakow (viscous correctons)
- EPOS (hydro+UrQMD)

Are collective effect present in the system?

- Hydrodynamic flow exhibits a characteristic mass ordering
- QCD inspired models (DPMJET) cannot describe data
- Hydrodynamic models (EPOS, Krakow) are consistent with data

05.11.2013

Baryon anomaly in Pb-Pb

- Baryon to meson ratio increasing with centrality for $p_T < 8$ GeV/c.
 - Enhancement at moderate \boldsymbol{p}_{T} is consistent with radial flow
 - May be explained by quark recombination from QGP (coalescence model)
- For $p_T > 8$ GeV/c no dependence on centrality and collision system
 - Consistent with fragmentation in vacuum

Nuclei and hyper-nuclei

- Deuterons show hardening with increase of centrality (radial flow).
- d/p ratio does not depend on multiplcity.

- Hypertriton (p,n,Λ) yield is measured in Pb-Pb collisions.
- Production rate of ³_AH is described by thermal model.
- Lifetime measured.

ALI-PREL-54325

R_{AA} of $\pi,\,K,\,p$

- p_T>8 GeV/c: strong suppression (factor 3-5) in central Pb-Pb collisions for all particle species
- Much smaller suppression in peripheral collisions

Heavy-flavor particle spectra

D-meson R_{pA} , R_{AA}

Quarkonia

J/ψ production in p-Pb

Models:

- Shadowing model CEM + EPS09 NLO (Vogt)
 - backward rapidity data well reproduced, strong shadowing favoured at forward rapidity
- Coherent energy loss (Arleo et al.) with pp data parametrization
 - y-dependence well reproduced, better agreement with pure energy loss
- Gluon saturation (Fuji et al.): Color Glass Condensate framework with CEM LO
 - underestimate the data by a factor two

$\Psi(2S)$, Y(1S) in p-Pb

The stronger suppression of $\Psi(2S)$ relatively to J/ Ψ is not described by initial state CNM and coherent energy loss Suppression of Y(1S) is similar to that of J/ Ψ , though uncertainties are still large

J/ψ production in Pb-Pb

- J/ Ψ less suppressed at low p_{τ} than high p_{τ}
- Different $p_{\rm T}$ dependence of $\rm R_{AA}$ at LHC and RHIC

Y(1S) in Pb-Pb

- Suppression increases for most central collisions
- Small rapidity dependence

Hard probes

Charged particle suppresion

Jet quenching in Pb-Pb and p-Pb

 $R_{pPb} = 1$ for charged jets

CNM have a negligible effect on the crosssection

binary scaling holds

Correlations

Correlation functions: technique

Signal (same event) pair yield

$$S\left(\Delta\eta,\Delta\varphi\right) = \frac{1}{N_{\text{trig}}} \frac{\mathrm{d}^2 N_{\text{same}}}{\mathrm{d}\Delta\eta \,\mathrm{d}\Delta\varphi}$$

summed over all events in event class, then divided

Background (mixed event) yield $B\left(\Delta\eta,\Delta\varphi\right) = \frac{1}{B\left(0,0\right)} \frac{\mathrm{d}^2 N_{\mathrm{mixed}}}{\mathrm{d}\Delta\eta \,\mathrm{d}\Delta\varphi}$

Associated yield per trigger particle

$$\frac{1}{N_{\rm trig}} \frac{{\rm d}^2 N_{\rm assoc}}{{\rm d}\Delta\eta\,{\rm d}\Delta\varphi} = \frac{S\left(\Delta\eta,\Delta\varphi\right)}{B\left(\Delta\eta,\Delta\varphi\right)}$$

Double ridge in p-Pb

pp and low-multiplicity p-Pb contain only jet-like correlations - shape of jet-like correlations in all event classes is the same

Subtraction high- minus low-multiplicity p-Pb events

- removes jet-like correlations

-reveals double ridge

Various explanations of the double ridge: from hydrodynamic flow to color-glass condensate

PLB 719 (2013) 29

Upgrade

LS1 progress

- Complete TRD (install 5 modules)
- Adding 1 PHOS module (4 in total)
- Installing1 CPV module
- Installing new calorimeter DCAL (8 supermodules)
- Numerous detector consolidation activity

LS2 and beyond

Physics goals:

- Detailed characterization of the QGP
- Measurement of heavy-quark transport parameters:
 - diffusion coefficient (QGP eq. of state, η/s)
 - \rightarrow RAA and azimuthal anisotropy of HF
- Measurement of low-mass and low- $p_{\rm T}$ dielectrons:
 - chiral symmetry restoration $\rightarrow \rho$ spectral function
 - γ production from QGP (temp.) \rightarrow low mass di-lepton continuum
- J/ ψ , ψ ', and possibly χ_c states down to zero p_T
 - statistical hadronization vs. dissociation/recombination scenario
- Jets
 - Heavy-flavor tagged jets (gluon vs. quark induced jets and charm fragmentation)

Realization:

- New, high-resolution, low-material ITS
- Upgrade of TPC with replacement of MWPCs with GEMs and read-out electronics.
- New forward silicon tracker for the muon arm: MFT
- Run ALICE at collision rate 50 kHz
- Target integrated luminosity Pb-Pb: 10 nb⁻¹
- Preparations of all other detectors for readout at 50kHz (TRD, TOF, EMCAL, MCH, MTR, ZDC, V0/T0, PHOS) → "ALICE High Rate Detector Upgrade" TDR

Time scale:

• LS2 (2018-2019, 18 months)

Summary

- Complete dataset of pp, p-Pb, Pb-Pb collisions of Run1 and their classification on centrality allow one to study proterties of hot QCD matter in many details.
- Excellent PID capabilities of charged and neutral particles ensures precise studies of QCD properties vs flavor and mass.
- p-Pb and Pb-Pb data cannot be explained just by superposition of NN collisions
- Collective effects dominate in all observables at low and moderate $\ensuremath{p_{\text{T}}}\xspace$.
- Run2 and Run3 will bring ALICE to the precision level which will allow one to discriminate among the different models.