Results on the search for the $B_s \rightarrow \mu\mu$ decay in the ATLAS experiment using 4.9 fb⁻¹ of integrated luminosity

S. M. Turchikhin

Skobeltsyn Institute of Nuclear Physics Moscow State University

International Conference-Session of the Section of Nuclear Physics of PSD RAS

IHEP, Protvino

05-08 November 2013

Introduction

- ► The decay B_s → µ⁺µ⁻ is forbidden at tree level in the Standard Model (FCNC)
- Occurs via "box" and "penguin" diagrams in the SM:
- ► Standard Model predicts branching ratios $\mathscr{B}(B^0_s \to \mu^+ \mu^-) = (3.56 \pm 0.30) \times 10^{-9},$ $\mathscr{B}(B^0_d \to \mu^+ \mu^-) = (1.07 \pm 0.10) \times 10^{-10}$
- Might be substantially enhanced by non-SM contributions

- ► Search was earlier performed by CDF, D0, CMS, LHCb
- CMS and LHCb had an evidence of the decay:
 - LHCb: $\mathscr{B} = (2.9^{+1.1}_{-1.0}) \times 10^{-9}$
 - CMS: $\mathscr{B} = (3.0^{+1.0}_{-0.9}) \times 10^{-9}$
- ▶ ATLAS previously published an analysis of 2.4 fb⁻¹ (half 2011 data): $\mathscr{B}(B_s \to \mu\mu) < 2.2 \times 10^{-8}$ @ 95 % C.L.
- ► Here, the update on full 2011 data is presented ATLAS-CONF-2013-076

Analysis in a nutshell

▶ Normalization to the reference channel $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$

$$\mathscr{B}(B_s \to \mu^+ \mu^-) = \mathscr{B}(B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+) \times \frac{f_u}{f_s} \times \frac{N_{\mu^+ \mu^-}}{N_{J/\psi K^+}} \times \frac{A_{J/\psi K^+}}{A_{\mu^+ \mu^-}} \frac{\epsilon_{J/\psi K^+}}{\epsilon_{\mu^+ \mu^-}}$$

- ▶ $N_{\mu^+\mu^-}$ is a number of observed signal events, $N_{J/\psi K^+}$ is taken from the reference decay mode fit
- $\blacktriangleright \ \frac{A_{J/\psi K^+}}{A_{\mu+\mu^-}} \frac{\epsilon_{J/\psi K^+}}{\epsilon_{\mu+\mu^-}} \text{ obtained from simulation}$
- ▶ 4.9 fb⁻¹ of pp data collected in 2011 at 7 TeV are used
- Signal candidate selection based on multivariate technique (BDT) with 13 input variables
- \blacktriangleright Upper limit on $\mathscr{B}(B_s \to \mu^+ \mu^-)$ obtained using CL_{s} method
- "Blind" analysis: the signal mass region [5066, 5666] MeV is not used until the analysis procedure is finalized and frozen

ATLAS detector

Trigger

- Dedicated di-muon trigger used to select events online
- ▶ Two opposite-side muons with $p_T > 4$ GeV required at LVL1 (hardware) trigger
- ► They are confirmed at High-Level Trigger and fit to a common vertex
- Same trigger for both signal and reference decay mode

Data events preselection (before BDT training)

 $B_s \to \mu^+ \mu^-$

- ▶ $p_T(B_s) > 8 \text{ GeV}, |\eta(B_s)| < 2.5$
- ▶ $p_T(\mu) > 4 \text{ GeV}, |\eta(\mu)| < 2.5$

►

► $\chi^2(\mu^+\mu^-) < 2.0$

 $B^+ \to J/\psi K^+$

- ▶ $p_T(B_s) > 8 \text{ GeV}, |\eta(B_s)| < 2.5$
- ▶ $p_T(\mu) > 4$ GeV, $|\eta(\mu)| < 2.5$
- ▶ $p_T(K) > 2.5 \text{ GeV}, |\eta(K)| < 2.5$

•
$$\chi^2(\mu^+\mu^-K^+) < 6.0$$

▶ $2.915 < m(\mu^+\mu^-) < 3.175 \; {\rm GeV}$

Background composition and multivariate selection

Two main sources of background

- Combinatorial background (continuum)
 - Smooth mass spectrum
 - BDT classifier is trained to suppress this background
 - ▶ $b\bar{b} \rightarrow \mu^+ \mu^- X$ provides a good description
- ▶ Resonant background from $B \to h^+ {h'}^-$ decays, $h = \pi$ or K
 - π and K can be misidentified as muons (at $2.1/4.1/3.3 \times 10^{-3}$ for $\pi/K^+/K^-$ respectively)
 - Peaks in the signal mass region
 - Irreducible background, shown to be small w.r.t. the continuum

Multivariate classifier based on Boosted Decision Trees (BDT) technique is used for signal selection

- \blacktriangleright Training with $b\bar{b}\to \mu^+\mu^-X$ MC as background and $B_s\to \mu^+\mu^-$ MC as signal
- Optimizing by maximization of $P = \epsilon_{sig}/(1 + \sqrt{N_{bkg}})$
- \blacktriangleright Half of the data sidebands are used for N_{bkg} in optimization, other half for evaluation of the expected background

Multivariate selection

Variable	Description	4
		isolation with PV association, DATA
L_{xy}	Scalar product in the transverse plane of $(\Delta \vec{x} \cdot \vec{p}^B) / \vec{p}_T^B $	60.9 isolation without PV association, DATA
I _{0.7}	Ratio of $ \vec{p}_T^B $ to the sum of $ \vec{p}_T^B $ and the transverse momenta of all tracks with	isolation with PV association, MC
isolation	$p_{\rm T} > 0.5$ GeV within a cone $\Delta R < 0.7$ from the B direction, excluding B decay products	5 0.8 isolation without PV association, MC
$ \alpha_{2D} $	Absolute value of the angle in the transverse plane between $\Delta \vec{x}$ and \vec{p}^8	₩ 0.7 [] **********************************
$p_{\rm L}^{\rm min}$	Minimum momentum of the two muon candidates along the B direction	5 0.6 + + +
p_{T}^{B}	B transverse momentum	
ct significance	Proper decay length $ct = L_{xy} \times m_B / p_T^B$ divided by its uncertainty	ATLAS Preliminary
. 2 . 2	Significance of the separation between production (PV) and decay vertex (SV)	0.4 S = 7 TeV
$\chi_{\bar{z}}, \chi_{\bar{x}y}$	$\Delta \vec{x}^T \cdot \left(\sigma_{\Delta \vec{x}}^2\right)^{-1} \cdot \Delta \vec{x}$, in <i>z</i> and (<i>x</i> , <i>y</i>), respectively	0.3 $Ldt = 4.9 \text{ fb}^{-1}$
ן min מן min	Absolute values of the minimum distance of closest approach in the xy plane or along z	
120 XVI - , 120 XI	of tracks in the event to the B vertex	
ΔR	Angle $\sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ between $\Delta \vec{x}$ and \vec{p}^B	0.1 ⁻
		السيثيبيا بينا بينا بينا بينا بينا بينا بينا
$ d_0 ^{\max}$, $ d_0 ^{\min}$	Absolute values of the <i>B</i> descu are dusts relative to the primary vertex	°0 2 4 6 8 10 12 14 16 18 20 22
	transverse plane of the B decay products relative to the primary vertex	Mean number of interactions per crossing

- Isolation variable I_{0.7} is redefined using PV association to eliminate the impact of pile-up
- ► All MC samples have been reweighted using the *B*⁺ sideband-subtracted data to compensate the data-MC discrepancies
 - Signal and reference decay MC reweighted in terms of p_T and η of B meson
 - Continuum background MC also reweighted similarly using B_{s} sideband events
 - ► The residual discrepancies are moderate and accounted for in systematics

Data – MC comparison

B^+ signal yield extraction

- ► Same BDT selection is applied to the reference channel
- ▶ Two-dimensional extended unbinned ML fit to $m_{\mu^+\mu^-K^+}$ and $\delta m_{\mu^+\mu^-K^+}$ distribution
 - Either single or double gaussian for signal mass
 - Exponential for combinatorial background
 - Complementary error function for partially reconstructed decays
 - Crystal Ball for $B^+ \to J/\psi \pi^+$ contribution
 - $\delta m_{\mu^+\mu^-K^+}$ is described using kernel estimate
- Totally 15214 events with ± 1.1 % stat. and ± 2.4 % syst.

description	contribution
PDG branching fractions and f_s/f_d	8.5%
K^{\pm} tracking efficiency	5%
vertexing efficiency	2%
K^{\pm} charge asymmetry. in $B^{\pm} \rightarrow J/\psi K^{\pm}$	1%
$B^{\pm} \rightarrow J/\psi K^{\pm}$ yield	2.4%
$R_{A\epsilon}$	6.9%
total (comb. in quadrature)	12.5%

- ► The observed upper limit is $\mathscr{B}(B_s \to \mu^+ \mu^-) < 1.5(1.2) \times 10^{-8}$ @ 95 (90)% C.L.
- ► The expected limit was $\mathscr{B}(B_s \to \mu^+ \mu^-) < 1.6^{+0.7}_{-0.4}(1.3^{+0.7}_{-0.4}) \times 10^{-8}$ @ 95 (90)% C.L.

Events / 60 MeV

▶ Using 4.9 fb⁻¹ of pp data collected in 2011 ATLAS has set an upper limit on $B_s \rightarrow \mu^+\mu^-$ decay branching ratio

 $\mathscr{B}(B_s \to \mu^+ \mu^-) < 1.5 \times 10^{-8}$ @ 95 % C.L.

- ▶ The analysis on 2012 data (20 fb⁻¹) is on-going
- A number of new ideas to be implemented
- ► We hope to be competitive with CMS and LHCb after processing the full Run I statistics

Backup slides

Other experiments results

Status on Spring 2013

Links to the most recent papers with observation:

- CMS PRL 111 (2013) 101804, arXiv:1307.5025
- LHCb PRL 111 (2013) 101805, arXiv:1307.5024

Likelihood and numbers

 $\mathcal{L} = \operatorname{Poisson}(N_{SR}^{obs} | \epsilon \mathcal{B} + N_{bkg} + N_{B \to hh}) \operatorname{Poisson}(N_{bkg,SB}^{obs} | R_{bkg} N_{bkg}) \times \operatorname{Gauss}(\epsilon^{obs} | \epsilon, \sigma_{\epsilon}) \operatorname{Gauss}(R_{bkg}^{obs} | R_{bkg}, \sigma_{R_{bkg}})$

Channel	$A \times \epsilon$	$R_{A\epsilon}$
B^+	$1.317 \pm 0.008\%$ (stat)	$0.267 \pm 1.8\%$ (stat) $\pm 6.0\%$ (syst)
B_s^0	$4.929 \pm 0.084\%$ (stat)	$0.207 \pm 1.8\%$ (stat) $\pm 0.9\%$ (syst)

quantity	value
$N_{J/\psi K^{\pm}}$	$15214\pm1.10\%\pm2.39\%$
$R_{A\epsilon}$	$0.267 \pm 1.8\% \pm 6.9\%$
SES	$(2.07\pm 0.26)\cdot 10^{-9}$
R_{bkg}^{obs}	1.240 ± 0.050
$N_{SR}^{exp} \mid N_{SR}^{obs}$	6.75 6
N ^{obs} bka.SB	8
$N_{B \rightarrow hh}$	0.30

BDT shape

Optimized cuts:

- BDT > 0.118
- ▶ $|\Delta m| < 121 \text{ MeV}$