Recent CMS Results of Searches for Physics Beyond Standard Model

Alexander Lanyov (JINR) on behalf of the CMS Collaboration

ICSSNP-13

International Conference–Session of the Section of Nuclear Physics of the Physical Sciences Division of the Russian Academy of Sciences

Protvino, Russia

November 6, 2013

Recent Beyond Standard Model Results from CMS

CMS Public Physics Results:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Outline:

- Heavy Resonances (extended gauge models, extra dimensions) \implies dileptons, dijets, diphotons, $t\bar{t}$, dibosons, etc.
- Non-Resonant Signals
- Leptoquarks
- 4th Generation particles
- Supersymmetry
- Conclusions

Pixels (100 x 150 um²)

Dimuon Mass Spectrum

Dimuon mass distribution from several trigger paths

Models Beyond Standard Model for Dilepton Production

Extra gauge bosons appear naturally in various extensions of Standard Model:

- E₆ models: Z'_χ, Z'_ψ, Z'_ψ arise in different ways of breaking E₆ symmetry group Implemented in Pythia according to J. Rosner, Phys.Rev. D35 (1987) 2244 E₆ → SO(10) × U(1)_ψ; SO(10) → SU(5) × U(1)_χ; Q_{Z'} = Q_ψ sin(θ₆) + Q_χ cos(θ₆)
- SSM (Sequential Standard Model) or "reference" model The same coupling constants for Z' as for the SM
- Heavy graviton resonances are predicted by RS1 (Randall-Sundrum) model of TeV-scale gravity with one additional warped extra dimension: coupling constant $c = k/\bar{M}_{Pl}$

Non-resonant models such as ADD and Contact interactions:

- ADD (Arkani-Hamed–Dimopoulos–Dvali) model large flat extra dimensions, $N_{ED} = 2 7$, string scale M_s
- Contact interactions model comes from idea of quark and lepton compositeness. Conventional benchmark – 4-fermion interaction model $\mathcal{L} \sim \frac{4\pi}{\Lambda^2} (\bar{q}_L \gamma^{\mu} q_L) (\bar{l}_L \gamma_{\mu} l_L)$. Λ – the energy scale parameter for the contact interaction.

There exist also other models in which heavy dileptons appear.

Dimuon, M = 1.824 TeV

At $\sqrt{s} = 8$ TeV $\int L dt \approx 20$ fb⁻¹

nent at LHC, CERN

Muon 0.

Muon 1 pt = 882.75 eta = 0.988 phi = -2.065

pt = 897.88

eta = 0.518

phi = 1 095

Dielectron, M = 1.776 TeV

Search for Narrow Heavy Resonances in Dilepton Spectra (EXO-12-061)

Search for Narrow Heavy Resonances in Dilepton Spectra (EXO-12-061)

CMS limits are more restrictive than those previously obtained with similar direct searches by the Tevatron experiments or indirect searches by LEP-II experiments.

Generalizing to Other $Z' \rightarrow l^+ l^-$ Models — Plot c_u - c_d

Z' cross section can be expressed in terms of quantity $[c_u w_u + c_d w_d]$ (Phys. Rev. D83 (2011) 075012):

$$\sigma_{l+l^{-}}^{Z'} = \frac{\pi}{48s} \left[c_u w_u(s, M_{Z'}^2) + c_d w_d(s, M_{Z'}^2) \right]$$

 c_u , c_d contain information from the model-dependent couplings to fermions in the annihilation of charge 2/3 and -1/3 quarks, respectively.

 w_u, w_d contain information about PDFs for the annihilation at a given mass.

 $Z'_{\rm SSM}$ is a special case of generalized sequential standard models (GSM), Z'_{ψ} is one of the E_6 models,

generalized L-R models can also be included.

Plot show iso-contours of cross section with constant $c_u + (w_d/w_u)c_d$. Changing this combination (or $\int L dt$) by 1 order of magnitude moves the mass limits by ≈ 500 GeV.

CMS Collaboration, Phys. Lett. B714 (2012) 158 — for 5 fb⁻¹ at $\sqrt{s} = 7$ TeV

Search for RS1 model in Dilepton Mass Spectrum (Phys. Lett. B720 (2013) 63)

The measured dilepton mass spectra are consistent with predictions from SM. An RS1 graviton with coupling constant c = 0.10 is excluded below 2.39 TeV. An RS1 graviton with coupling constant c = 0.05 is excluded below 2.03 TeV. For search in diphoton mass spectrum (Phys. Rev. Lett. 108 (2012) 111801) An RS1 graviton with coupling constant c = 0.10 is excluded below 1.84 TeV. An RS1 graviton with coupling constant c = 0.05 is excluded below 1.84 TeV. For ADD model, values of the model parameter M_S up to 4.94 TeV are excluded at 95% C.L. (EXO-12-027, EXO-12-031)

See talk by M. Savina

Samples with 5 fb⁻¹ at $\sqrt{s} = 7$ TeV

CI model comes from idea of quark and lepton compositeness. Conventional benchmark for CI in the dilepton channel: Left-left isoscalar model (Eichten et al.): $\mathcal{L} = \eta \frac{4\pi}{\Lambda^2} (\bar{q}_L \gamma^{\mu} q_L) (\bar{l}_L \gamma_{\mu} l_L), \quad \eta = \pm 1$

95% C.L. lower limits are set on Λ, the energy scale parameter for the contact interaction:
9.5 and 13.1 TeV for destructive and constructive interference.

different types of exotic resonances are set in the range 1.2–5.1 TeV. Many of them extend the previous exclusions from the dijet mass search.

Model	Final State	Obs. Mass Excl.	Exp. Mass Excl.			
		[TeV]	[TeV]			
String Resonance (S)	qg	[1.20,5.08]	[1.20,5.00]			
Excited Quark (q*)	qg	[1.20,3.50]	[1.20,3.75]			
E_6 Diquark (D)	qq	[1.20,4.75]	[1.20,4.50]			
Axigluon (A)/Coloron (C)	qq	[1.20, 3.60] + [3.90, 4.08]	[1.20,3.87]			
Color Octet Scalar (s8)	gg	[1.20,2.79]	[1.20,2.74]			
W' Boson (W')	qq	[1.20,2.29]	[1.20,2.28]			
Z' Boson (Z')	qq	[1.20,1.68]	[1.20,1.87]			
RS Graviton (G)	qq+gg	[1.20,1.58]	[1.20,1.43]			

JHEP 01 (2013) 013

Search for $t\bar{t}$ resonances (arxiv:1309.2030, accepted to Phys.Rev.Lett.)

A. Lanyov Overview of beyond the Standard Model results from CMS 12

Search for 2nd-generation scalar leptoquarks (PAS EXO-12-042)

Search for vector-like quarks (B2G-12-015, B2G-12-019, B2G-12-021)

Search for Baryon Number Violation (BNV) in Top Quark Decays (arXiv:1310.1618)

- Strong Baryon Number Violation (BNV) effects predicted in many BSM models
- BNV is a necessary condition for the observed baryon asymmetry in the Universe — А. Д. Сахаров, Письма ЖЭТФ, 5 (1967) 32
- BNV in top quark system suggested in Z. Dong et al., Phys. Rev. D85 (2012) 016006 BNV could be probed at quark level, with top flavor clearly identified
- Signature: One t quark having BNV decay $(t \rightarrow \bar{b} \bar{c} \mu^+)$ One t quark having SM hadronic decay to 3 jets $(\bar{t} \rightarrow W^- \bar{b} \rightarrow d \bar{u} \bar{b})$ \implies Events with 1 isolated lepton (μ or e) + at least 5 jets (at least one b tagged) + low MET No significant excess of events over the expected yield from SM processes \implies Upper limit of 0.0015 at 95% C.L. on branching of a hypothetical BNV decay $t \rightarrow l + 2j$ The first results on a BNV process involving the top quark

Exotica 95% CL Limits

Many other searches of Exotica at CMS has been performed.

Limits have been set. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Summaries for Supersymmetry Limits

Direct stop searches

Gluino pair production

Limits for EWKino models

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Supersymmetry 95% CL Limits

Projections for $Z' \rightarrow \mu \mu$ at $\sqrt{s} = 14$ TeV (ArXiv:1307.7135)

Other projections can be found in CMS White paper at Snowmass'2013 (arXiv:1307.7135). See also results reported at ECFA HL LHC Experiments Workshop (in Aix-Les-Bains, Oct 1-3). https://indico.cern.ch/conferenceDisplay.py?confId=252045

Conclusions

- CMS detector performance is excellent, new results are produced at very high rate.
- Many papers in Exotica at CMS around 70, impossible to mention all. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
- Impressive agreement of the data with the Standard Model. Many searches for new physics have been performed, limits are set.
- New physics can hiding in very interesting final states that demonstrate the capability of the detector. *Past projections from CERN Courier, Dec. 2009*
- CMS is well situated to continue to probe nature for new physics models.
- Stay tuned...

Thank you

Backup

slides

CMS Detector

Detector: Compact Muon Solenoid (CMS)

Statistics of Integrated Luminosity

CMS Publications

Search for leptonic decays of W' bosons (EXO-12-060)

SSM W' with M < 3.35 TeV was excluded at 95% C.L.

These results are also interpreted in the framework of split universal extra dimensions and exclusion limits on Kaluza–Klein W_{KK}^2 states are set: $M_{W_{KK}^2} < 1.7 - 3.7$ TeV for bulk mass parameter $\mu = 0.05 - 10$ TeV. Another reinterpretation is performed in terms of compositeness, which would manifest itself as a four-fermion contact interaction, setting a limit on the new contact interaction scale Λ of 13.0 (10.9) TeV for the electron (muon) channel. Search for a heavy neutrino and right-handed W of the left-right symmetric model (EXO-12-017)

No excess over expectations from standard model processes is observed. Combining 7 + 8 TeV data and electron + muon channels, We exclude the region in the two-dimensional parameter (M_{W_R}, M_{N_ℓ}) space that extends beyond $M_{W_R} = 2.9$ TeV.

28

Summary of Electroweak Physics Results

Discovery of $B_s \rightarrow \mu^+\mu^-$ (Phys. Rev. Lett. 111 (2013) 101804)

SM predicts $Br(B_s \rightarrow \mu\mu) = 3.6 \pm 0.3 \times 10^{-9}$

At the EPS HEP conference in Stockholm CMS (and LHCb) reported results for $B_s \to \mu^+ \mu^-$. Br $(B_s \to \mu \mu) = (3.0^{+1.0}_{-0.9}) \times 10^{-9}$ (significance of 4.3 σ).

Upper limit for $B_0 \rightarrow \mu^+ \mu^-$ Br $(B_0 \rightarrow \mu \mu) < 1.1 \times 10^{-9}$ at the 95% C.L. is determined.

These processes are sensitive to search for BSM physics.

Both results are in agreement with the expectations from SM.

Discovery of Higgs

Higgs-like boson has been discovered, $M_H = 125.7 \pm 0.3 \pm 0.3$ GeV. Many its properties are studied, they resemble, up to now, the Standard model. What's next?

Search for Di-Boson Resonances (EXO-12-021, EXO-12-022)

ZZ: Signature: dilepton + recoiled jet with mass compatible with Z mass.

Additional information from jet substructure is used to reduce the background from SM.

Limits on a narrow-width bulk RS graviton model with $\tilde{k} = 0.5$ and mass smaller than 710 GeV are excluded at 95'

WW: Signature: one lepton + large MET + recoiled jet with mass compatible with Z mass

Upper limits are set on bulk graviton production cross section times branching ratio to WW in the range from 70 fb to 3 fb for resonance masses between 0.8 and 2.5 TeV, respectively.

 $\underset{\text{A. Lanyov}}{\text{WZ: SSM:}} \underbrace{M_{W'} > 1.143 \text{ TeV}}_{\text{Overview of beyond the Standard Model results from CMS}} \underbrace{141801 \text{ at } \sqrt{s} = 7 \text{ TeV}}_{\text{ICSSNP-13}} \underbrace{1233}_{\text{OCMM}} \underbrace{1233}_{\text{ICSSNP-13}} \underbrace{1233}_{\text{ICSNP-13}} \underbrace{12333}_{\text{ICSNP-13}} \underbrace{1233}_{\text{ICSNP-13}} \underbrace{1233}_{\text{ICSNP-13}} \underbrace{$

32

Search for RS1 model in Diphoton Mass Spectrum (Phys. Rev. Lett. 108 (2012) 111801)

We observe no excess in diphoton production above the rate predicted from SM background.

We exclude at 95% CL resonant graviton production in the RS1 model with values of M_1 less than 0.86–1.84 TeV depending on the normalized coupling strength, \tilde{k} .

$ ilde{k}$	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
M_1 [TeV]	0.86	1.13	1.27	1.39	1.50	1.59	1.67	1.74	1.80	1.84

For ADD models, values of the effective Planck scale M_S less than 2.3–3.8 TeV are excluded at 95% C.L., depending on the number of extra dimensions $n_{\rm ED}$.

Search for ADD in Dilepton Spectra (EXO-12-027, EXO-12-031)

Search for the effects of ADD — large extra dimensions in dilepton invariant mass spectrum The SM expectation is found to be consistent with the measurement.

CMS set limits on the model parameter M_s up to 4.94 TeV at 95% C.L. for $\mu\mu + ee$, depending on the number of extra dimensions $n_{\rm ED}$.

The observed 95% C.L limits on ADD models significantly improve the previous limits evaluated with 2011 data and provide the best limits based on dilepton events to date.

Search for Microscopic Black Holes (JHEP 07 (2013) 178)

CMS set limits on the minimum Black Hole mass of 4.3–6.2 TeV. The last analysis at $\sqrt{s} = 8$ TeV has a substantially increased sensitivity compared to previous searches.

Search for Monojet + MET (PAS EXO-12-048)

Search for events with an energetic jet and MET.

Limits are placed on ADD model parameter $M_{\rm D}$ as a function of number of extra dimensions δ . Yet another interpretation: DM... Event yields for representative signal points from ADD, dark matter and Unparticles after passing the full selection criteria and various MET thresholds, corresponding to an integrated luminosity of 19.5 fb^{-1} .

0							
MET (GeV) \rightarrow	> 250	> 300	> 350	> 400	> 450	> 500	> 550
ADD LO $M_D = 3$ TeV, $\delta = 3$	4496	2888	1885	1265	881	603	422
ADD LO $M_D = 4$ TeV, $\delta = 3$	1071	685	454	310	210	150	108
${\rm DM}~\Lambda=850~{\rm GeV},~M_{\chi}=1~{\rm GeV}$	1774	1103	693	454	297	202	137
${\rm DM}~\Lambda=950~{\rm GeV},~M_{\chi}=1~{\rm GeV}$	1137	707	444	291	190	129	88
Unparticles $d_U = 1.7, \Lambda_U = 2 \text{ TeV}$	4328	2220	1237	700	378	218	141
Unparticles $d_U = 1.7, \Lambda_U = 3 \text{ TeV}$	1859	905	478	247	158	103	60

Search for Dark Matter – Monojet + MET (PAS EXO-12-048)

Search for Dark Matter – Monolepton + MET (PAS EXO-13-004)

Search for Heavy Stable Charged Particles (JHEP 07(2013) 122)

Long-lived neutral particles decaying to dijets (PAS EXO-12-038)

No significant excess is observed above standard model expectations. $_{10^3}$ Upper limit is set with 95% C.L. on the production cross section of a heavy scalar particle H⁰ in the mass range 200–1000 GeV,

decaying into a pair of long-lived neutral X^0 particles with mass range 50–350 GeV.

For X^0 mean proper lifetimes 0.1–200 cm the upper limits are typically 0.3–300 fb.

Additionally, the results are interpreted for a supersymmetric model containing long-lived neutralinos that decay through an R-parity violating coupling into two quarks and a muon. For a pair production of squarks that decay to long-lived neutralinos, we exclude squark masses up to 1000 GeV for the neutralino mean lifetimes between 0.1—10 cm.

 10^{2}

cτ [cm]

10