



# Single top quark studies with the CMS detector

#### Natalia Tsirova

D.V. Skobeltsyn Institute of Nuclear Physics, Moscow State University

for the CMS collaboration

ICSSNP2013 06 November 2013

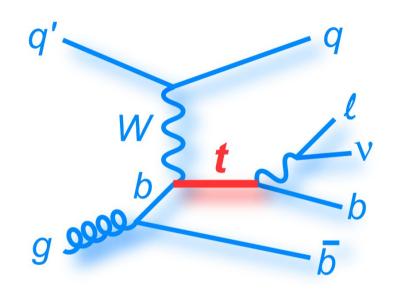
## **Outline**

- Single top processes and motivation
- Cross section measurements
  - → t-channel
  - → tW-channel
- Charge asymmetry
- W-helicity measurement
- Top quark polarization
- Summary

## Single top

#### Single top quark production:

|             | s-channel  q  w+  t  a  g  b | t-channel  q'  w  t  g  m  b  t  g | tW production  b  b  c  t  t  t  t  t  t  t  t  t  t |
|-------------|------------------------------|------------------------------------|------------------------------------------------------|
| LHC @ 7 TeV | 4.56 pb                      | 65.9 pb                            | 15.6 pb                                              |
| LHC @ 8 TeV | 5.55 pb                      | 87.2 pb                            | 22.2 pb                                              |


N. Kidonakis

## Single top features:

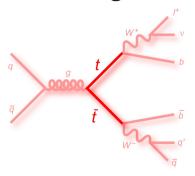
- Cross section proportional to  $|V_{tb}|^2 =>$  allows direct measurement
- Wtb vertex enables tests of V–A structure
- Test of b-quark structure function, u and d PDF and ratio
- Sensitive to new physics, e.g. anomalous couplings, 4th generation, W', H<sup>+</sup>

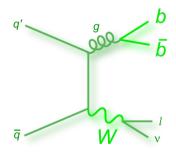
## t-channel cross section

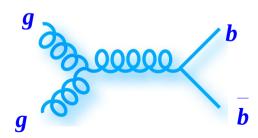
#### **Signature:**



Light jet with high pseudorapidity


Lepton (muon or electron)


Missing transverse energy


b-jet with high  $p_{_{\rm T}}$ 

Additional b-jet with lower  $p_{_{\mathrm{T}}}$ 

#### **Main backgrounds:**



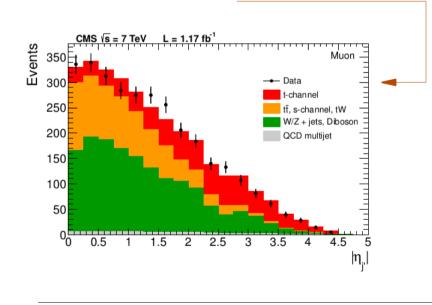


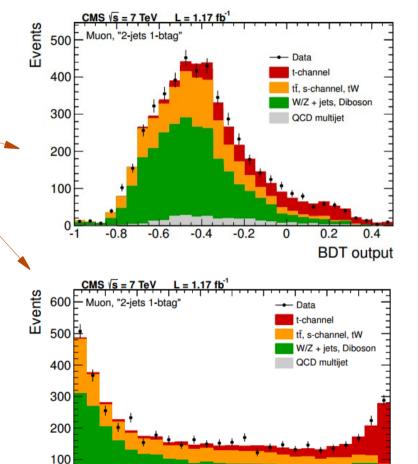


W+jets

QCD

## t-channel cross section: 7 TeV


Three analyses provided with 1.17 / 1.56 fb<sup>-1</sup> (muon / electron) of Data


#### **Multivariate analyses**

use multivariate methods (BDT, NN) to obtain a powerful discriminator between signal and background

## $|\eta_{i}|$ analysis

likelihood fit to pseudorapidity of light jet



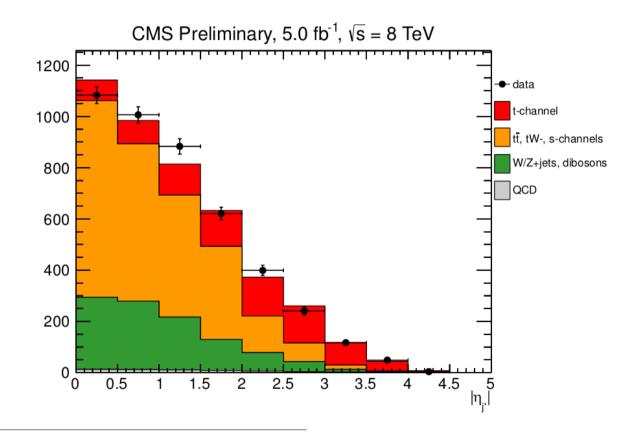


-0.8 -0.6

-0.4 -0.2

0.2

#### **Combination:**


 $\sigma_{t\text{-ch.}} = 67.2 \pm 6.1 \text{ pb} = 67.2 \pm 3.7 \text{ (stat.)} \pm 3.0 \text{ (syst.)} \pm 3.5 \text{ (theor.)} \pm 1.5 \text{ (lum.)} \text{ pb}$ 

NN output

## t-channel cross section: 8 TeV

 $|\eta_{i'}|$  analysis: the same strategy as for 7 TeV

Provided with 5.0 fb<sup>-1</sup> of Data (muon channel)



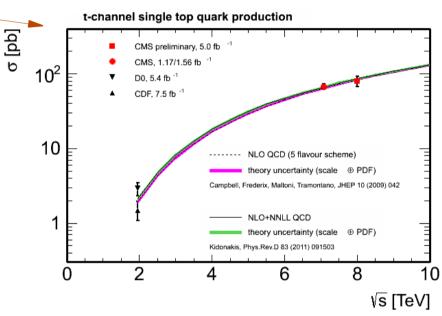
#### **Result:**

$$\sigma_{t-{\rm ch.}} = 80.1 \pm 5.7 {\rm (stat.)} \pm 11.0 {\rm (syst.)} \pm 4.0 {\rm (lumi.)} ~{\rm pb}$$

## t-channel cross-section

#### **Cross sections:**

7 TeV:  $\sigma_{t\text{-ch.}} = 67.2 \pm 6.1 \text{ pb} = 67.2 \pm 3.7 \text{ (stat.)} \pm 3.0 \text{ (syst.)} \pm 3.5 \text{ (theor.)} \pm 1.5 \text{ (lum.)} \text{ pb}$ 


**8 TeV:**  $\sigma_{t-\text{ch.}} = 80.1 \pm 5.7 (\text{stat.}) \pm 11.0 (\text{syst.}) \pm 4.0 (\text{lumi.}) \text{ pb}$ 

#### Ratio

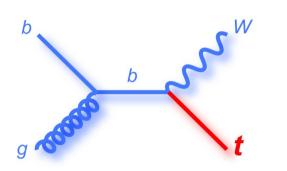
cross section (8 TeV) / cross section (7 TeV):

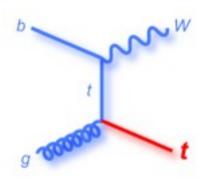
$$R_{8\ TeV/7\ TeV} = 1.14 \pm 0.12 (\text{stat.}) \pm 0.14 (\text{syst.})$$

 $\rightarrow$  obtained only with  $|\eta_{i'}|$  analysis



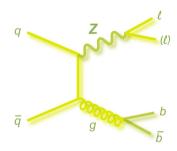
#### $|V_{tb}|$ extraction


$$|V_{\rm tb}| = \sqrt{\frac{\sigma_{t-{\rm ch.}}}{\sigma_{t-{\rm ch.}}^{\rm th}}}$$
 calculated with  $|V_{_{\rm tb}}|=1$ 


7 TeV: 
$$|f_{L_V} V_{tb}| = 1.020 \pm 0.046 \text{ (exp.)} \pm 0.017 \text{ (theor.)}$$

8 TeV: 
$$|f_{L_V} V_{tb}| = 0.96 \pm 0.08$$
 (exp.)  $\pm 0.02$  (theor.)

## Associated tW production


#### **Signature:**





#### **Main backgrounds:**



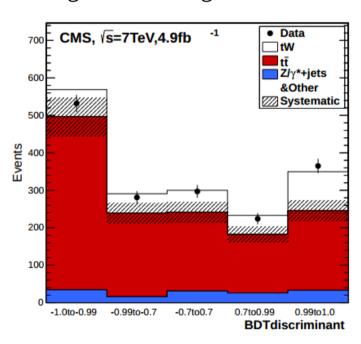


Z+jets

#### **SM predictions:**

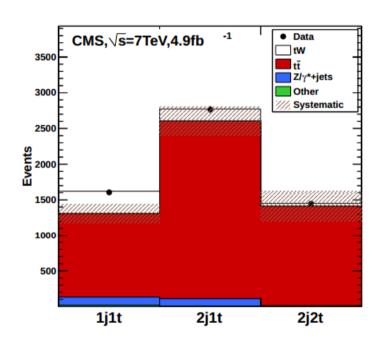
7 TeV:  $\sigma_{_{\rm tW}} = 15.6 \pm 0.4 \pm 1.1 \; {\rm pb}$ 

8 TeV:  $\sigma_{_{\rm tW}} = 22.2 \pm 0.6 \pm 1.4 \text{ pb}$ 


N. Kidonakis: PRD 82, 054018 (2010)

## Associated tW production: 7 TeV

#### Two analyses provided with 4.9 fb<sup>-1</sup> of Data


#### **Multivariate analysis**

BDT is used to obtain a powerful discriminator between signal and background



#### **Cut-based analysis**

as a cross-check



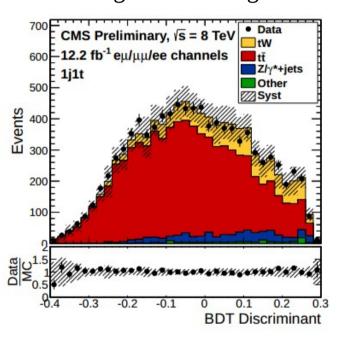
#### **Measured cross-section:**

BDT 16 (+5 -4) pb Cut-based 15 (+-5) pb

#### **Significance:**

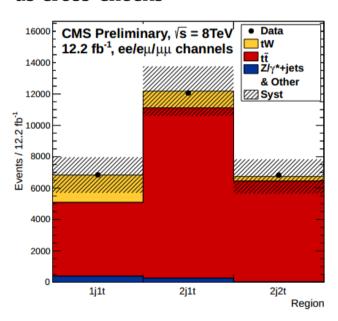
BDT  $4\sigma$  Cut-based  $3.5\sigma$ 




$$|\mathbf{V}_{\text{tb}}|$$
 extraction:  $|V_{\text{tb}}| = \sqrt{\frac{\sigma_{\text{tW}}}{\sigma_{\text{tW}}^{\text{th}}}} = 1.01^{+0.16}_{-0.13} (\text{exp.})^{+0.03}_{-0.04} (\text{th.})$ 

## Associated tW production: 8 TeV

#### Three analyses provided with 12.2 fb<sup>-1</sup> of Data


#### **Multivariate analysis**

BDT is used to obtain a powerful discriminator between signal and background



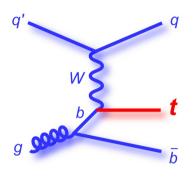
#### Cut-based analysis Template fit to $p_{_{\rm T}}$ of the system

as cross-checks



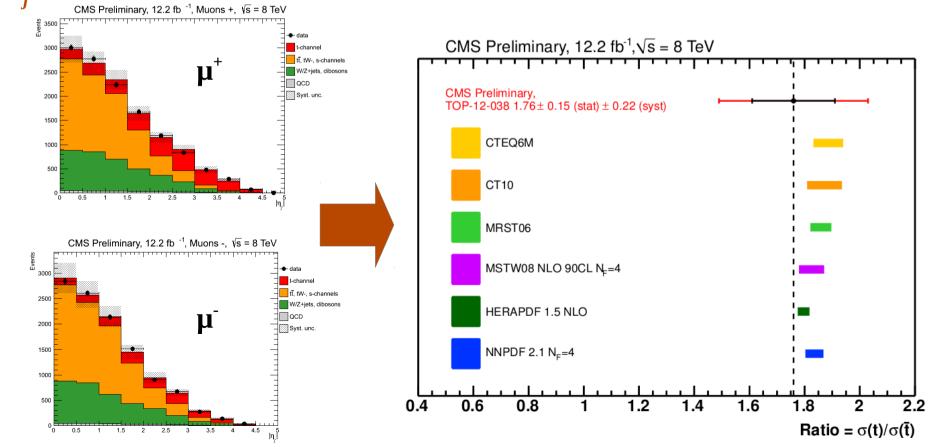
#### **Measured cross-section:**

**BDT** 23.4 (+5.5 -5.4) pb
Cut-based 33.9 (+-8.6) pb
Template fit 24.3 (+8.6 -8.8) pb


#### **Significance:**

BDT6σCut-based3.6σTemplate fit4σ

FIRST OBSERVATION


|V<sub>tb</sub>| extraction: 
$$|V_{tb}| = \sqrt{\frac{\sigma_{tW}}{\sigma_{tW}^{th}}} = 1.03 \pm 0.12 (exp.) \pm 0.04 (th.)$$

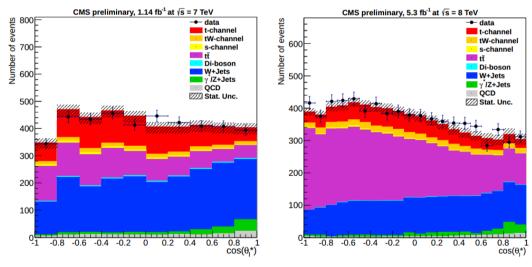
## Charge asymmetry: 8 TeV



- → The top quark inherits the sign of the charge from the light quark q'
- → The cross section ratio depends on light quark PDF, sensitive to new physics (due to Wtb vertex presence)
- → An effective handle to constrain different parton distribution function models

 $|\eta_{ij}|$  analysis: template fit to pseudorapidity of the light jet provided with 12.2 fb<sup>-1</sup> of Data



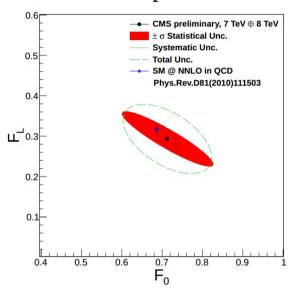

COSAi\*

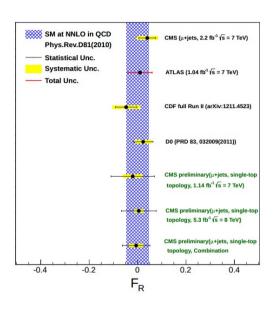
## W-helicity measurements

- W boson from top quark decay is polarized
- Fractions are involved in the distribution of  $cos(\theta^*)$

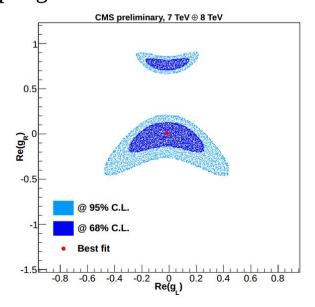
$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_l^*} = \frac{3}{8} (1 - \cos\theta_l^*)^2 F_L + \frac{3}{8} (1 + \cos\theta_l^*)^2 F_R + \frac{3}{4} \sin^2\theta_l^* F_0$$

The measurement of W-helicity fractions is provided in t-channel for **7 and 8 TeV** with 1.14 fb<sup>-1</sup> and 5.3 fb<sup>-1</sup> of Data: *likelihood fit to cos*( $\theta$ \*)





SM prediction:  $F_L \approx 0.30, F_R \approx 0, F_0 \approx 0.70$ 

$$F_L = 0.293 \pm 0.069(\text{stat.}) \pm 0.030(\text{syst.}),$$
  
 $F_0 = 0.713 \pm 0.114(\text{stat.}) \pm 0.023(\text{syst.}),$   
 $F_R = -0.006 \pm 0.057(\text{stat.}) \pm 0.027(\text{syst.}).$ 


## W-helicity measurements

• Results are consistent with SM predictions





• Limits on anomalous tensor couplings from this measurement

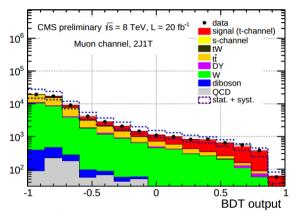


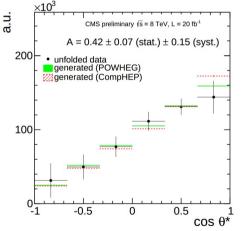
## Top quark polarization

The measurement is provided for **8 TeV** with 19.7 fb<sup>-1</sup> of Data:

- In t-channel production the top quark is 100% polarized
- Spin asymmetry:

$$A_l \equiv rac{1}{2} \cdot P_t \cdot \alpha_l = rac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N(\downarrow)}$$


- likelihood fit to BDT discriminator to obtain signal and background yields
- $cos(\theta^*)$  (angle between lepton and light quark) to measure the spin asymmetry


$$A_{l} = \frac{N(\cos\theta_{unfolded}^{*} > 0) - N(\cos\theta_{unfolded}^{*} < 0)}{N(\cos\theta_{unfolded}^{*} > 0) + N(\cos\theta_{unfolded}^{*} < 0)}$$

#### **Results:**

$$A_l = 0.41 \pm 0.06(stat.) \pm 0.16(syst.) = 0.41 \pm 0.17$$

$$P_t = 0.82 \pm 0.12(stat.) \pm 0.32(syst.)$$





## Summary

- The first measurements of single top production and properties are published: t-channel and associated tW production cross sections at 7 and 8 TeV,  $|V_{tb}|$ , charge asymmetry, W helicities, polarization
- The next round of analyses are in progress: differential cross sections, top mass and rare s-channel production
- Further searches for deviations from SM predictions in single top are in progress