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QCD Matter: Phases and Symmetries

Thermodynamics of QCD is controlled by temperature T and baryon chemical potential
µB .

Two limiting regimes:

Hadronic phase: confinement + spontaneous chiral symmetry breaking (SχSB).
Quark–Gluon Plasma (QGP): deconfinement + (approx.) restored chiral symmetry.

Lattice QCD at small µB shows a smooth crossover near Tc ∼ 155MeV; a first-order line
and a critical end point (CEP) may appear at larger µB .
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QCD Lagrangian and Global Symmetries

LQCD = −1

4
F a
µνF

aµν +

Nf∑
f=1

ψ̄f (iγ
µDµ −mf )ψf

Local SU(3)c gauge invariance.

Approximate chiral symmetry SU(Nf )L × SU(Nf )R for light quarks; explicitly broken by
mf .

U(1)A axial symmetry is broken by the anomaly.

Symmetry realization changes with T , µB , altering spectra, susceptibilities and transport.
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Order Parameters: ⟨q̄q⟩ and Φ

Chiral condensate:

⟨q̄q⟩ = −TrS(x , x) = −
∫

d4p

(2π)4
TrS(p)

drops quickly around Tc .

Polyakov loop (pure gauge order parameter):

Φ =
1

Nc
Trc P exp

[
i

∫ β

0
dτ A4(τ, x⃗)

]
with Φ ≈ 0 (confined) and Φ > 0 (deconfined).

Figure 1: Polyakov loop crossover (lattice
inspired).
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Thermodynamic Observables from Lattice QCD

Trace anomaly Θµ
µ = ϵ− 3P peaks near Tc , signaling strong interactions.

Speed of sound c2s = ∂P/∂ϵ exhibits a dip (“softest point”).

Figure 2: (ϵ− 3P)/T 4 vs T . Figure 3: c2s (T ) minimum near Tc .
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Experimental Access to the Phase Diagram
RHIC/LHC: high T , low µB ; RHIC BES explores finite µB .

Fluctuations of conserved charges, flow harmonics, dileptons probe phase structure.

Transport coefficients (η/s, ζ/s) are essential inputs to viscous hydrodynamics.

Figure 4: Sketch of QCD phase diagram with crossover, CEP and 1st-order line.
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Section Summary

Chiral and deconfinement transitions intertwine across the (T , µB) plane.

Lattice QCD constrains low-µB EOS; effective models extrapolate to higher µB .

Heavy-ion data + transport modeling aim to localize the CEP and constrain the EOS.

8 / 43



Polyakov–Nambu–Jona-Lasinio (PNJL) Model

Lagrangian (Euclidean)

LPNJL = q̄(iγµDµ −m0)q + G
[
(q̄q)2 + (q̄iγ5τ⃗q)2

]
− U(Φ, Φ̄,T ).

G induces SχSB: M = m0 − 2G ⟨q̄q⟩.

U mimics (statistical) confinement via Z (3) symmetry.

Mean-field: quarks couple to a static temporal A4 background.

Outputs: ⟨q̄q⟩, Φ, EOS and susceptibilities.
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Polyakov Potential and Statistical Confinement

U(Φ, Φ̄,T )

T 4
= −a(T )

2
Φ̄Φ + b(T ) ln

[
1− 6Φ̄Φ + 4(Φ3 + Φ̄3)− 3(Φ̄Φ)2

]
.

a(T ), b(T ) fitted to pure-gauge lattice data (reproduce Tc , Z (3) structure).

Modified Fermi factors f± suppress colored states at low T .

Figure 5: Shape of U across the crossover.
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Thermodynamics in PNJL

Ω(T , µB) = U(Φ, Φ̄,T ) +
(M −m0)

2

4G
− 2NfNc

∫ Λ

0

d3p

(2π)3
Ep

− 2TNf

∫
d3p

(2π)3
[
ln f+(p) + ln f−(p)

]
.

Solve ∂Ω/∂M = ∂Ω/∂Φ = ∂Ω/∂Φ̄ = 0.

EOS: P = −Ω, s = −∂Ω/∂T , nB = −∂Ω/∂µB .

Tc(µB): from inflection points of order parameters; CEP: divergent susceptibilities.
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QM/PQM Models and FRG Improvements
(P)QM Lagrangian:

LQM = q̄(iγµ∂µ − g(σ + iγ5τ⃗ · π⃗))q + Lσ, PQM: add U(Φ, Φ̄,T ).

Mesonic O(4) fields (σ, π⃗) encode explicit chiral dynamics and fluctuations.

Adding the Polyakov loop (PQM) provides statistical confinement.

FRG: evolve Γk to include quantum/thermal fluctuations → smoother crossovers, shifted CEP.

Figure 6: CEP shift: mean-field (black) and FRG (red). 12 / 43



Model Comparison Summary

Model Chiral Conf. Order Params Pros / Limitations

NJL ✓ × σ Simple; analytic; no gluons/Polyakov; no
confinement

PNJL ✓ △ σ,Φ Adds Polyakov loop; semi-quantitative de-
confinement; MF artifacts

QM ✓ × σ (mesonic) Includes meson fluctuations; quarks un-
confined

PQM ✓ △ σ,Φ Chiral + (de)confinement trends; param-
eter sensitive

PQM+FRG ✓ △ σ,Φ Fluctuations via FRG; better CEP; numer-
ically heavy

Table 1: ✓: present; ×: absent; △: approximate/statistical.

13 / 43



AdS/CFT Bounds and Comparison

KSS bound: η/s ≥ 1/4π in strongly coupled N=4 SYM; PNJL values approach but respect it.

No strict lower bound for ζ/s; often scales with conformal breaking (ϵ− 3P) or (1/3− c2s ).

Holographic estimate: ζ/η ∼ (1/3− c2s )—qualitatively consistent with our trends.
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Microscopic Origin of τf

Parametrizations: τf = C/T ; or τf = 1/(nσv) with n the thermal density and σ an effective cross
section.

pQCD/HTL: at high T , τ−1∼ g4T ln(1/g); near Tc hadronic/mesonic scatterings dominate.

Lattice guidance: spectral reconstructions of correlators can constrain rates, but remain
challenging.
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Kubo Formalism for Viscosity

Retarded correlators

η = lim
ω→0

1

20ω

∫
d4x e iωtθ(t)⟨[Txy (x),Txy (0)]⟩,

ζ = lim
ω→0

1

9ω

∫
d4x e iωtθ(t)⟨[Tµ

µ(x),T
ν
ν(0)]⟩.

Spectral densities enter via ImGR . Non-perturbative extraction is hard ⇒ we resort to kinetic theory /
RTA.
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Kinetic Theory: Relaxation Time Approximation

(∂t + v⃗ · ∇)f = − f − f (0)

τf
, f (0) =

1

e(Ep−µ)/T + 1
.

Linearize: f = f (0) + δf , solve for δf under shear/bulk perturbations.

Single τf captures microscopic scattering; can depend on T , µB , p.

Use PNJL quasiparticle dispersion Ep(T , µB) for consistency.
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Final Expressions for η and ζ

η(T , µB) =
1

15T

∫
d3p

(2π)3
p4

E 2
p

τf f
(0)

[
1− f (0)

]
,

ζ(T , µB) =
1

T

∫
d3p

(2π)3
τf f

(0)
[
1− f (0)

]( p2

3Ep
− c2s Ep

)2

.

c2s = ∂P/∂ϵ from the PNJL EOS.

Bulk viscosity is controlled by conformal breaking (ϵ− 3P) or (1/3− c2s ).
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Numerical Scheme
Grid: T ∈ [60, 300] MeV, µB ∈ [0, 600] MeV; solve the coupled gap equations point-by-point.

Momentum integrals: Gauss–Legendre in p (radial) + analytic 4π angular factor; cutoff pmax ∼ 3
GeV.

τf : choose model (C/T or 1/(nσv)); test sensitivity.

Error control: refine p grid until < 1% variation in η/s, ζ/s.

Figure 7: Veff(σ,T ) flattens near Tc . 19 / 43



Results: η/s and ζ/s Maps

Figure 8: η/s valley along the crossover. Figure 9: ζ/s peak near the CEP.

η/s minimized around Tc(µB) ⇒ enhanced scattering/collective modes.

ζ/s enhanced where c2s →0 ⇒ strong conformal breaking.
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Critical Dynamics Interpretation

Near the CEP, long-range fluctuations (soft modes) drive bulk viscosity up (critical slowing down).

Shear viscosity dips as scattering off critical modes increases.

Phenomenology: affects flow fluctuations, higher-order cumulants of conserved charges.

Figure 10: Soft modes boost ζ/s near criticality.
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Uncertainties and Sensitivity Analysis

Parameter scan: vary G , Λ, T0, τf model; record shifts in minima/maxima of η/s, ζ/s.

Grid convergence: increase Np, NT , Nµ until changes < 1%.

Model comparison: benchmark against lattice-inspired parametrizations or FRG/DSE outputs.

Systematics: choice of Polyakov potential, momentum cutoff, quasiparticle ansatz.
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Beyond Viscosity: Other Transport Coefficients

Baryon diffusion DB and conductivity κB : control charge transport near CEP.

Electric conductivity σel: enters electromagnetic emissivities (photons/dileptons).

Thermal conductivity κT : relevant at finite µB for heat flow.

Methods: Kubo formulas for conserved currents, kinetic theory with PNJL quasiparticles, or FRG
functional transport.
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CEP-sensitive Observables (Heavy-ion Experiments)

Higher-order cumulants of net-proton/net-charge: C4/C2 = κσ2, C3/C2 = Sσ, etc.

Non-monotonic energy dependence (RHIC BES-II): search for peak/dip structures vs.
√
sNN .

Intermittency, scaled factorial moments in transverse-momentum bins.

Softening signals: directed flow v1, bulk viscosity imprint on longitudinal decorrelations.

Dilepton/soft photon rates: sensitive to spectral changes near chiral restoration.
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Benchmarking vs Other Approaches

FRG/PQM: compare η/s, ζ/s near CEP (shape and magnitude).

Lattice-inspired fits: EOS, c2s (T ) at µB ≈0 set baseline.

Dyson–Schwinger (DSE): transport via Schwinger-Keldysh or memory-function methods.

Overlay key curves (PNJL vs FRG vs hydro-extracted ranges) to assess robustness.

Figure 11: Overlay of η/s(T ) from different methods.
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Effects of Magnetic Field and Vorticity

Strong B fields in non-central collisions (eB∼m2
π) modify dispersion and scattering ⇒ transport

anisotropy.

Chiral Magnetic/Vortical Effects (CME/CVE): induce anomalous currents, alter conductivities.

Shear viscosity splits into longitudinal/transverse parts in B ̸= 0; bulk viscosity gains extra terms.

Vorticity couples to spin degrees of freedom (global polarization), sensitive to relaxation times.
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Limitations and Future Work

Model content

2-flavor PNJL: no strange quark; extend to 2+1 or full QCD-like Polyakov sector.

Mean-field artifacts: missing mesonic/critical fluctuations (FRG/DSE can cure partly).

Microscopic inputs

τf is model-dependent; needs kinetic-theory or lattice-informed scattering rates.

Near the CEP the quasiparticle picture weakens (critical slowing down).

Next steps

Bayesian model-to-data calibration with heavy-ion observables.

Event-by-event hydro including critical fluctuations and T , µB -dependent transport.

Couple to astrophysical EOS (NS mergers, cooling) to constrain η, ζ.
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Conclusion

Built a PNJL-based framework to compute η/s and ζ/s on the (T , µB) plane.

Found an η/s valley along the crossover and a ζ/s peak near the CEP.

These patterns provide guidance for viscous hydrodynamics and CEP searches.

The setup is extensible: add flavors, FRG fluctuations, and microscopic rates from first principles.
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Q&A

Questions and Discussion
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Executive Summary (Take-home Messages)

1 η/s hits a minimum, ζ/s spikes near criticality — both trace phase structure.

2 PNJL reproduces lattice trends at low µB and extrapolates to finite density.

3 Transport inputs are pivotal for hydrodynamic modeling and CEP searches.

4 Uncertainties stem from τf modeling and mean-field limitations.
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What’s New in This Work

Joint treatment of chiral restoration and transport in a single PNJL framework.

Systematic (T , µB) scan with consistent gap-equation solutions for M,Φ.

Combined analysis of η/s and ζ/s, highlighting CEP sensitivity.

Clear road map for upgrading to FRG-based fluctuations and microscopic τf .
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Astrophysical Relevance

Bulk viscosity impacts damping of density oscillations in neutron stars / mergers.

Shear viscosity affects r-mode stability, differential rotation, and thermalization.

Finite-µB transport data inform EOS tables used in multi-messenger simulations.

Future: interface PNJL/FRG transport with relativistic MHD codes.
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Style/Practical Notes (For Presenter)

Keep ≤ 1 minute per technical slide; dwell longer on result plots.

Have backup slides ready for τf modeling, sensitivity, CEP observables.

If time-limited: show “Executive Summary” + two key result plots + What’s New.
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RTA Derivation (Details)

Start from Boltzmann in LR frame:

(∂t + v⃗ ·∇x⃗)f = C [f ], C [f ] ≈ −δf
τf
, f = f (0) + δf .

Shear perturbation: ui (x⃗), ∇⟨iuj⟩. Project δf onto tensor basis ∼ p⟨ipj⟩:

δf = −τf f (0)(1− f (0))
p⟨ipj⟩
2TEp

∇⟨iuj⟩.

Insert into Tij , angular average ⇒

η =
1

15T

∫
d3p

(2π)3
p4

E 2
p

τf f
(0)(1− f (0)).

Analogous bulk channel uses δf ∝ ( p2

3Ep
− c2s Ep) giving ζ.
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Numerical Workflow (Flowchart)
Set grids in T , µB

and momentum p

Solve gap eqs. for M,Φ, Φ̄
(Newton–Raphson + damping)

Compute Ep , f (0), c2s
(finite diffs. on EOS)

Integrate η, ζ (Gauss–Legendre in p)

Store maps η/s, ζ/s,
susceptibilities, errors

Post-process: contours,
sensitivity, comparisons
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Symbols and Parameters

Symbol Meaning Source/Note

T , µB Temperature, baryon chem. pot. Input grid

M(T , µB) Constituent quark mass PNJL gap eq.

Φ, Φ̄ Polyakov loop variables PNJL potential U
c2s Speed of sound squared c2s = ∂P/∂ϵ

τf Relaxation time Model: C/T or 1/(nσv)

η, ζ Shear/Bulk viscosity RTA integrals (this work)

s Entropy density s = −∂Ω/∂T

ϵ,P Energy density, pressure From PNJL EOS
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Kubo for Other Transport Coefficients

Baryon conductivity κB : κB = − lim
ω→0

1

ω
ImGR

J i
BJ

i
B
(ω, 0).

Electric conductivity σel: σel = − lim
ω→0

1

ω
ImGR

J i
emJ i

em
.

Thermal conductivity κT : via heat current correlator at finite µB .

In kinetic theory, replace Tij operator with appropriate current and repeat RTA steps.
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Benchmark & Cross-checks

Compare EOS pieces (P/T 4, ϵ/T 4) with lattice (HotQCD, Wuppertal-Budapest).

Check η/s minimum ∼ (0.1−0.2) vs hydro-extracted values from RHIC/LHC.

Verify ζ/s peak width/height sensitivity to τf , c
2
s parametrization.

Cross-check CEP location with FRG/PQM and Dyson–Schwinger results.
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