Chiral symmetry, Conformal breaking, and transport coefficients in the two-flavour PNJL theory

Jingxu Wu^{1,6} Yuwei Yin^{2,6} Chenjia Li^{1,6} Jiaming Chen^{3,6} Yifan He^{4,5,6} Wenze Wang^{3,6}

¹Faculty of Physics, Lomonosov Moscow State University
 ²Department of Physics, École Polytechnique, Palaiseau, France
 ³Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
 ⁴Department of Physics, Lanzhou University
 ⁵Lanzhou Center for Theoretical Physics
 ⁶GeZhi Theoretical Physics Reading Group

July 2025
Based on arXiv:2504.18567v1 [physics.gen-ph]

Outline

- Introduction to QCD Phases
- 2 Effective Models of QCD
- Transport Theory
- 4 CEP Observables and Phenomenology
- Discussion and Outlook
- **6** Conclusion

QCD Matter: Phases and Symmetries

- Thermodynamics of QCD is controlled by temperature T and baryon chemical potential μ_B .
- Two limiting regimes:
 - **Hadronic phase**: confinement + spontaneous chiral symmetry breaking (S χ SB).
 - Quark-Gluon Plasma (QGP): deconfinement + (approx.) restored chiral symmetry.
- Lattice QCD at small μ_B shows a smooth crossover near $T_c \sim 155\,\mathrm{MeV}$; a first-order line and a critical end point (CEP) may appear at larger μ_B .

QCD Lagrangian and Global Symmetries

$$\mathcal{L}_{ extsf{QCD}} = -rac{1}{4} F^{ extsf{a}}_{\mu
u} F^{ extsf{a}\mu
u} + \sum_{f=1}^{N_f} ar{\psi}_f (i\gamma^\mu D_\mu - m_f) \psi_f$$

- Local $SU(3)_c$ gauge invariance.
- Approximate chiral symmetry $SU(N_f)_L \times SU(N_f)_R$ for light quarks; explicitly broken by m_f .
- $U(1)_A$ axial symmetry is broken by the anomaly.
- ullet Symmetry realization changes with T, μ_B , altering spectra, susceptibilities and transport.

Order Parameters: $\langle \bar{q}q \rangle$ and Φ

Chiral condensate:

$$\langle \bar{q}q \rangle = -\mathrm{Tr}\,S(x,x) = -\int \frac{d^4p}{(2\pi)^4}\mathrm{Tr}\,S(p)$$

drops quickly around T_c .

• Polyakov loop (pure gauge order parameter):

$$\Phi = \frac{1}{N_c} \operatorname{Tr}_c \mathcal{P} \exp \left[i \int_0^\beta d\tau \, A_4(\tau, \vec{x}) \right]$$

with $\Phi \approx 0$ (confined) and $\Phi > 0$ (deconfined).

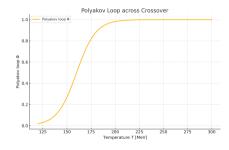


Figure 1: Polyakov loop crossover (lattice inspired).

Thermodynamic Observables from Lattice QCD

- Trace anomaly $\Theta^{\mu}_{\ \mu} = \epsilon 3P$ peaks near T_c , signaling strong interactions.
- Speed of sound $c_s^2 = \partial P/\partial \epsilon$ exhibits a dip ("softest point").

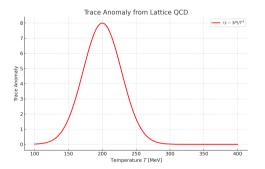


Figure 2: $(\epsilon - 3P)/T^4$ vs T.

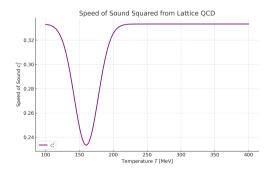


Figure 3: $c_s^2(T)$ minimum near T_c .

Experimental Access to the Phase Diagram

- RHIC/LHC: high T, low μ_B ; RHIC BES explores finite μ_B .
- Fluctuations of conserved charges, flow harmonics, dileptons probe phase structure.
- Transport coefficients $(\eta/s, \zeta/s)$ are essential inputs to viscous hydrodynamics.

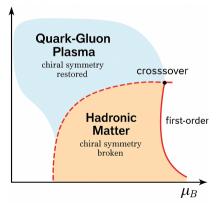


Figure 4: Sketch of QCD phase diagram with crossover, CEP and 1st-order line.

Section Summary

- Chiral and deconfinement transitions intertwine across the (T, μ_B) plane.
- Lattice QCD constrains low- μ_B EOS; effective models extrapolate to higher μ_B .
- Heavy-ion data + transport modeling aim to localize the CEP and constrain the EOS.

Polyakov-Nambu-Jona-Lasinio (PNJL) Model

Lagrangian (Euclidean)

$$\mathcal{L}_{\mathsf{PNJL}} = ar{q} (i \gamma^\mu D_\mu - m_0) q + G \left[(ar{q} q)^2 + (ar{q} i \gamma^5 ec{ au} q)^2
ight] - \mathcal{U}(\Phi, ar{\Phi}, T).$$

- G induces $S\chi SB$: $M = m_0 2G\langle \bar{q}q \rangle$.
- \mathcal{U} mimics (statistical) confinement via Z(3) symmetry.
- Mean-field: quarks couple to a static temporal A_4 background.
- Outputs: $\langle \bar{q}q \rangle$, Φ , EOS and susceptibilities.

Polyakov Potential and Statistical Confinement

$$\frac{\mathcal{U}(\Phi,\bar{\Phi},T)}{T^4} = -\frac{a(T)}{2}\,\bar{\Phi}\Phi + b(T)\ln\left[1 - 6\bar{\Phi}\Phi + 4(\Phi^3 + \bar{\Phi}^3) - 3(\bar{\Phi}\Phi)^2\right].$$

- a(T), b(T) fitted to pure-gauge lattice data (reproduce T_c , Z(3) structure).
- Modified Fermi factors f_{\pm} suppress colored states at low T.

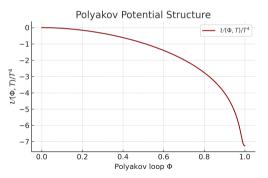


Figure 5: Shape of \mathcal{U} across the crossover.

Thermodynamics in PNJL

$$\Omega(T, \mu_B) = \mathcal{U}(\Phi, \bar{\Phi}, T) + \frac{(M - m_0)^2}{4G} - 2N_f N_c \int_0^{\Lambda} \frac{d^3p}{(2\pi)^3} E_p$$
$$-2TN_f \int \frac{d^3p}{(2\pi)^3} \left[\ln f_+(p) + \ln f_-(p) \right].$$

- Solve $\partial \Omega / \partial M = \partial \Omega / \partial \Phi = \partial \Omega / \partial \bar{\Phi} = 0$.
- EOS: $P = -\Omega$, $s = -\partial\Omega/\partial T$, $n_B = -\partial\Omega/\partial\mu_B$.
- $T_c(\mu_B)$: from inflection points of order parameters; CEP: divergent susceptibilities.

QM/PQM Models and FRG Improvements

(P)QM Lagrangian:

$$\mathcal{L}_{\mathsf{QM}} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - g(\sigma + i\gamma_{5}\vec{\tau}\cdot\vec{\pi}))q + \mathcal{L}_{\sigma}, \qquad \mathsf{PQM: add} \; \mathcal{U}(\Phi,\bar{\Phi},T).$$

- Mesonic O(4) fields $(\sigma, \vec{\pi})$ encode explicit chiral dynamics and fluctuations.
- Adding the Polyakov loop (PQM) provides statistical confinement.
- FRG: evolve Γ_k to include quantum/thermal fluctuations \rightarrow smoother crossovers, shifted CEP.

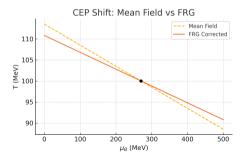


Figure 6: CEP shift: mean-field (black) and FRG (red).

Model Comparison Summary

Model	Chiral	Conf.	Order Params	Pros / Limitations
NJL	✓	×	σ	Simple; analytic; no gluons/Polyakov; no confinement
PNJL	✓	Δ	σ, Φ	Adds Polyakov loop; semi-quantitative deconfinement; MF artifacts
QM	✓	×	σ (mesonic)	Includes meson fluctuations; quarks unconfined
PQM	✓	Δ	σ,Φ	Chiral $+$ (de)confinement trends; parameter sensitive
PQM+FRG	✓	Δ	σ, Φ	Fluctuations via FRG; better CEP; numerically heavy

Table 1: \checkmark : present; \times : absent; \triangle : approximate/statistical.

AdS/CFT Bounds and Comparison

- KSS bound: $\eta/s \ge 1/4\pi$ in strongly coupled $\mathcal{N}{=}4$ SYM; PNJL values approach but respect it.
- No strict lower bound for ζ/s ; often scales with conformal breaking $(\epsilon 3P)$ or $(1/3 c_s^2)$.
- Holographic estimate: $\zeta/\eta \sim (1/3 c_s^2)$ —qualitatively consistent with our trends.

Microscopic Origin of τ_f

- Parametrizations: $\tau_f = C/T$; or $\tau_f = 1/(n\sigma v)$ with n the thermal density and σ an effective cross section.
- pQCD/HTL: at high T, $\tau^{-1} \sim g^4 T \ln(1/g)$; near T_c hadronic/mesonic scatterings dominate.
- Lattice guidance: spectral reconstructions of correlators can constrain rates, but remain challenging.

Kubo Formalism for Viscosity

Retarded correlators

$$\eta = \lim_{\omega \to 0} \frac{1}{20\omega} \int d^4x \, e^{i\omega t} \theta(t) \langle [T_{xy}(x), T_{xy}(0)] \rangle,$$
 $\zeta = \lim_{\omega \to 0} \frac{1}{9\omega} \int d^4x \, e^{i\omega t} \theta(t) \langle [T^{\mu}_{\ \mu}(x), T^{\nu}_{\ \nu}(0)] \rangle.$

Spectral densities enter via $\operatorname{Im} G^R$. Non-perturbative extraction is hard \Rightarrow we resort to kinetic theory / RTA.

Kinetic Theory: Relaxation Time Approximation

$$(\partial_t + \vec{v} \cdot \nabla) f = -rac{f - f^{(0)}}{ au_f}, \qquad f^{(0)} = rac{1}{e^{(\mathcal{E}_p - \mu)/T} + 1}.$$

- Linearize: $f = f^{(0)} + \delta f$, solve for δf under shear/bulk perturbations.
- Single τ_f captures microscopic scattering; can depend on T, μ_B, p .
- Use PNJL quasiparticle dispersion $E_p(T, \mu_B)$ for consistency.

Final Expressions for η and ζ

$$\eta(T, \mu_B) = \frac{1}{15T} \int \frac{d^3p}{(2\pi)^3} \frac{p^4}{E_p^2} \tau_f f^{(0)} \Big[1 - f^{(0)} \Big] ,$$

$$\zeta(T, \mu_B) = \frac{1}{T} \int \frac{d^3p}{(2\pi)^3} \tau_f f^{(0)} \Big[1 - f^{(0)} \Big] \left(\frac{p^2}{3E_p} - c_s^2 E_p \right)^2 .$$

- $c_s^2 = \partial P/\partial \epsilon$ from the PNJL EOS.
- Bulk viscosity is controlled by conformal breaking $(\epsilon-3P)$ or $(1/3-c_s^2)$.

Numerical Scheme

- Grid: $T \in [60, 300]$ MeV, $\mu_B \in [0, 600]$ MeV; solve the coupled gap equations point-by-point.
- Momentum integrals: Gauss–Legendre in p (radial) + analytic 4π angular factor; cutoff $p_{\sf max} \sim 3$ GeV.
- τ_f : choose model $(C/T \text{ or } 1/(n\sigma v))$; test sensitivity.
- Error control: refine p grid until < 1% variation in η/s , ζ/s .

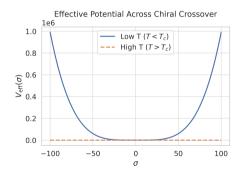


Figure 7: $V_{\text{eff}}(\sigma, T)$ flattens near T_c .

Results: η/s and ζ/s Maps

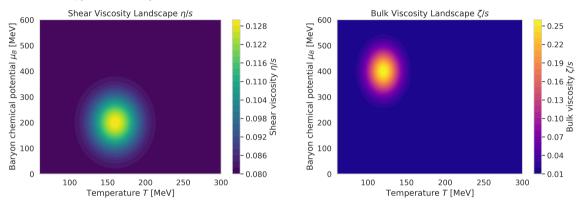


Figure 8: η/s valley along the crossover.

Figure 9: ζ/s peak near the CEP.

- η/s minimized around $T_c(\mu_B)$ \Rightarrow enhanced scattering/collective modes.
- ζ/s enhanced where $c_s^2 \rightarrow 0 \Rightarrow$ strong conformal breaking.

Critical Dynamics Interpretation

- Near the CEP, long-range fluctuations (soft modes) drive bulk viscosity up (critical slowing down).
- Shear viscosity dips as scattering off critical modes increases.
- Phenomenology: affects flow fluctuations, higher-order cumulants of conserved charges.

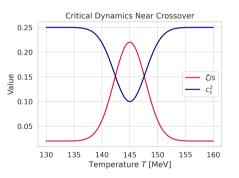


Figure 10: Soft modes boost ζ/s near criticality.

Uncertainties and Sensitivity Analysis

- Parameter scan: vary G, Λ , T_0 , τ_f model; record shifts in minima/maxima of η/s , ζ/s .
- **Grid convergence**: increase N_p , N_T , N_μ until changes < 1%.
- Model comparison: benchmark against lattice-inspired parametrizations or FRG/DSE outputs.
- Systematics: choice of Polyakov potential, momentum cutoff, quasiparticle ansatz.

Beyond Viscosity: Other Transport Coefficients

- Baryon diffusion D_B and conductivity κ_B : control charge transport near CEP.
- **Electric conductivity** σ_{el} : enters electromagnetic emissivities (photons/dileptons).
- Thermal conductivity κ_T : relevant at finite μ_B for heat flow.
- Methods: Kubo formulas for conserved currents, kinetic theory with PNJL quasiparticles, or FRG functional transport.

CEP-sensitive Observables (Heavy-ion Experiments)

- Higher-order cumulants of net-proton/net-charge: $C_4/C_2 = \kappa \sigma^2$, $C_3/C_2 = S\sigma$, etc.
- Non-monotonic energy dependence (RHIC BES-II): search for peak/dip structures vs. $\sqrt{s_{NN}}$.
- Intermittency, scaled factorial moments in transverse-momentum bins.
- Softening signals: directed flow v_1 , bulk viscosity imprint on longitudinal decorrelations.
- Dilepton/soft photon rates: sensitive to spectral changes near chiral restoration.

Benchmarking vs Other Approaches

- **FRG/PQM**: compare η/s , ζ/s near CEP (shape and magnitude).
- Lattice-inspired fits: EOS, $c_s^2(T)$ at $\mu_B \approx 0$ set baseline.
- Dyson-Schwinger (DSE): transport via Schwinger-Keldysh or memory-function methods.
- Overlay key curves (PNJL vs FRG vs hydro-extracted ranges) to assess robustness.

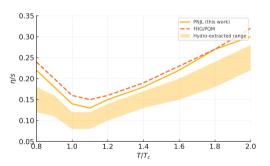


Figure 11: Overlay of $\eta/s(T)$ from different methods.

Effects of Magnetic Field and Vorticity

- Strong B fields in non-central collisions $(eB \sim m_\pi^2)$ modify dispersion and scattering \Rightarrow transport anisotropy.
- Chiral Magnetic/Vortical Effects (CME/CVE): induce anomalous currents, alter conductivities.
- Shear viscosity splits into longitudinal/transverse parts in $B \neq 0$; bulk viscosity gains extra terms.
- Vorticity couples to spin degrees of freedom (global polarization), sensitive to relaxation times.

Limitations and Future Work

Model content

- 2-flavor PNJL: no strange quark; extend to 2+1 or full QCD-like Polyakov sector.
- Mean-field artifacts: missing mesonic/critical fluctuations (FRG/DSE can cure partly).

Microscopic inputs

- ullet au_f is model-dependent; needs kinetic-theory or lattice-informed scattering rates.
- Near the CEP the quasiparticle picture weakens (critical slowing down).

Next steps

- Bayesian model-to-data calibration with heavy-ion observables.
- ullet Event-by-event hydro including critical fluctuations and T, μ_B -dependent transport.
- Couple to astrophysical EOS (NS mergers, cooling) to constrain η, ζ .

Conclusion

- Built a PNJL-based framework to compute η/s and ζ/s on the (T, μ_B) plane.
- Found an η/s valley along the crossover and a ζ/s peak near the CEP.
- These patterns provide guidance for viscous hydrodynamics and CEP searches.
- The setup is extensible: add flavors, FRG fluctuations, and microscopic rates from first principles.

Acknowledgments

- Faculty of Physics, Moscow State University for continuous support.
- GeZhi Theoretical Physics Reading Group for insightful discussions.
- Lanzhou Center for Theoretical Physics for the collaborative environment.
- Thanks to the audience for questions and feedback!
- Endless thanks to my beloved Li Xin, whose support turns every challenge in physics into possibility

Q&A

Questions and Discussion

Executive Summary (Take-home Messages)

- **1** η/s hits a minimum, ζ/s spikes near criticality both trace phase structure.
- 2 PNJL reproduces lattice trends at low μ_B and extrapolates to finite density.
- Transport inputs are pivotal for hydrodynamic modeling and CEP searches.
- **1** Uncertainties stem from τ_f modeling and mean-field limitations.

What's New in This Work

- Joint treatment of chiral restoration and transport in a single PNJL framework.
- Systematic (T, μ_B) scan with consistent gap-equation solutions for M, Φ .
- Combined analysis of η/s and ζ/s , highlighting CEP sensitivity.
- Clear road map for upgrading to FRG-based fluctuations and microscopic τ_f .

Astrophysical Relevance

- Bulk viscosity impacts damping of density oscillations in neutron stars / mergers.
- Shear viscosity affects r-mode stability, differential rotation, and thermalization.
- Finite- μ_B transport data inform EOS tables used in multi-messenger simulations.
- Future: interface PNJL/FRG transport with relativistic MHD codes.

Slide Index (Backup Navigation)

- Appendix A: RTA derivation details
- Appendix B: Numerical workflow & parameters
- Appendix C: Extra Kubo formulas (diffusion, conductivity)
- Appendix D: Benchmarks & cross-checks

Style/Practical Notes (For Presenter)

- \bullet Keep ≤ 1 minute per technical slide; dwell longer on result plots.
- Have backup slides ready for τ_f modeling, sensitivity, CEP observables.
- If time-limited: show "Executive Summary" + two key result plots + What's New.

RTA Derivation (Details)

Start from Boltzmann in LR frame:

$$(\partial_t + \vec{v} \cdot \nabla_{\vec{x}})f = C[f], \qquad C[f] \approx -\frac{\delta f}{\tau_f}, \quad f = f^{(0)} + \delta f.$$

Shear perturbation: $u_i(\vec{x})$, $\nabla_{\langle i}u_{j\rangle}$. Project δf onto tensor basis $\sim p_{\langle i}p_{j\rangle}$:

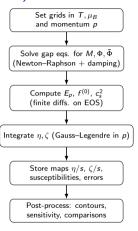
$$\delta f = -\tau_f f^{(0)} (1 - f^{(0)}) \frac{\rho_{\langle i} \rho_{j \rangle}}{2 T E_p} \nabla_{\langle i} u_{j \rangle}.$$

Insert into T_{ij} , angular average \Rightarrow

$$\eta = \frac{1}{15T} \int \frac{d^3p}{(2\pi)^3} \frac{p^4}{E_p^2} \tau_f f^{(0)} (1 - f^{(0)}).$$

Analogous bulk channel uses $\delta f \propto (\frac{p^2}{3E_p} - c_s^2 E_p)$ giving ζ .

Numerical Workflow (Flowchart)



Symbols and Parameters

Symbol	Meaning	Source/Note
$T, \mu_B \ M(T, \mu_B) \ \Phi, \bar{\Phi} \ c_s^2$	Temperature, baryon chem. pot. Constituent quark mass Polyakov loop variables Speed of sound squared	Input grid PNJL gap eq. PNJL potential \mathcal{U} $c_s^2 = \partial P/\partial \epsilon$
$ au_f$	Relaxation time	Model: C/T or $1/(n\sigma v)$
η,ζ	Shear/Bulk viscosity	RTA integrals (this work)
s	Entropy density	$s=-\partial\Omega/\partial T$
ϵ, P	Energy density, pressure	From PNJL EOS

Kubo for Other Transport Coefficients

- Baryon conductivity κ_B : $\kappa_B = -\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G^R_{J^i_B J^i_B}(\omega, 0)$.
- $\bullet \ \ \textbf{Electric conductivity} \ \sigma_{\mathrm{el}} \colon \ \sigma_{\mathrm{el}} = -\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \ G^R_{J^i_{\mathrm{em}},J^i_{\mathrm{em}}}.$
- Thermal conductivity κ_T : via heat current correlator at finite μ_B .

In kinetic theory, replace T_{ij} operator with appropriate current and repeat RTA steps.

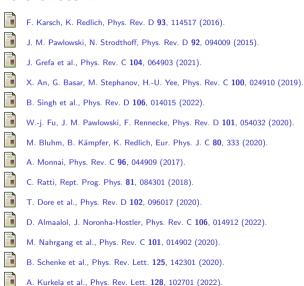
Benchmark & Cross-checks

- Compare EOS pieces $(P/T^4, \epsilon/T^4)$ with lattice (HotQCD, Wuppertal-Budapest).
- Check η/s minimum $\sim (0.1-0.2)$ vs hydro-extracted values from RHIC/LHC.
- Verify ζ/s peak width/height sensitivity to τ_f , c_s^2 parametrization.
- Cross-check CEP location with FRG/PQM and Dyson-Schwinger results.

References I



References II



References III