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B In order to describe the observed increase of o(s), the Pomeron
should have a supercritical intercept given by ap(0) = 1+ ¢ withe > 0

= the behavior of the total cross section for ap(0) > 1 betokens the
violation of the Froissart-Martin limit at some energy scale

B It is expected that unitarity can be enforced in high-energy
hadron-hadron interactions by the inclusion of the exchange series
P+ PP+ PPP + ...

= ap(0) is an effective power representing n-Pomeron exchange
processes, n > 1

Despite the advances in understanding the nature of the Pomeron in

the last decades, we still need to learn how to fully compute the
contributions from multiple-Pomeron exchange processes with n > 3
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On the other hand, it is well-established that some unitarization
schemes sum appropriately rescattering diagrams representing the
exchange of several particular multiparticle states

= these schemes are primarily based on phenomenological
arguments

= they are effective procedures for taking into account many of the
properties of unitarity in the s-channel or,

at the very least,

for preventing the Froissart-Martin bound for o from being violated

B We focus on two key unitarization schemes: the eikonal and the
U-matrix approaches



Unitarization Schemes

B Certain distinctive features of the high-energy A(s, t) are better
illuminated when examined in the impact parameter b-representation:

21m H(s, b) = |H(s, b)|> + Gin(s, b) (1)J

= Gijn(s, b) is the inelastic overlap function

OJ After the integration over two-dimensional impact parameter space:

otot(S) = del(S) + Tin(S) J

where

oroi(S) = 4glm A(s,t=0) = 271/0 bdb2ImH(s, b) J
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0 o)
oo(S) = %/_ dt | A(s, t)|2:27r/0 bdb |H(s, b)]

oin(S) = 2r /0 “bab (2ImH(s. b) - |H(s.b)?)

O After defining a function

Re H(s, b)

p(s. b) = m A (s, b)

and solving the quadratic equation for Im H(s, b) resulting from (1):

141/1— (1+p2) Gin(s, )
1+ p?




= We see that Gj,(s, b) must fit onto the interval

0 < Gin(s,b) < (1+p%)"

where we have required Im H(s, b) be real.

B The construction of unitarized scattering amplitudes relies on two
formal steps:

Step 1. The choice of a Born term F(s, t) with the crossing-even and
crossing-odd parts defined as

FE(s,t) = % FPP(s, t) &+ FPP(s, t)]
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[0 The correspondent crossing-even and crossing-odd Born
amplitudes in b-space are given by

(s, b) = / q0qJo(bg) F=(s, )

Step 2. Consists of writing the scattering amplitude Hgg(s, b) in terms
of the Born amplitudes x7p(s, b)

= Once this is done, .A27(s, t) is finally obtained from the inverse
Fourier-Bessel transform of HZ7(s, b):

AP(s,1) = s / b db Jo(bq) HE.(s, b)
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Eikonal Unitarization

B The eikonal unitarization corresponds to the solution of equation (2)
with the minus sign

= The eikonal scheme (Es) leads us to the relation

H(s,b) = i [1 — &X(=P)] J

so that

Apes)(8, 1) = IS/ bdb Jy(bq) [ elx(s, b)} J

O In the Es there is an upper limit on the imaginary part of H(s, b),

0 < ImH(s,b) < (1 4 p?)! J
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Eikonal Unitarization

0 Solving the Unitarity Eq. (1) for Gj5(s, b) in terms of x(s, b) yields

Gin(s,b) = 1 — e 2mx(s:) J

= The positivity condition on Gj,(s, b) and the upper limit on ImH(s, b)
restrict the imaginary part of x(s, b) over

0 < Imx(s, b) < —~In v
=B/ = "5 1402

= In the limit of a perfectly absorbing profile H(s, b) and x(s, b) are
purely imaginary

= In this limit we have the asymptotic result o/t = 1/2
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U-matrix Unitarization

B The U-matrix unitarization corresponds to the solution of the
unitarity equation (2) with the plus sign

= The U-matrix scheme (Us) leads us to the relation

~ x(s,b)
H(s,b) = =5 (s b)2 J
so that
Aus(s.t)=is [~ babu(ba) | 20 J

O In the Us the ImH(s, b) is constrained to lie in the interval

(1+p%)~" <ImH(s,b) < 2(1 4 p?)~! J
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U-matrix Unitarization

(0 In the black disc and p — 0 limits we have

ImH(s,b) =2

and

[H(s, b)|> = 4

= These results lead us to the asymptotic behavior o/ 1ot = 1

= Thus H(s, b) may exceed the black disc limit in this approach
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Born Input Amplitudes

B The input Born amplitudes are associated with Reggeon exchange
amplitudes

= The corresponding amplitudes in the b-space are given by

d .
x(s,b) = [ G290 75,

where i = —, +, P, and Q.

= The physical amplitudes in b-space are obtained by summing of all
possible exchanges:

XE(5,b) = x2(8,b) + x+(8,b) £ x_(8,b) + oo (s, b J

D 4 44 13/42



= Here y.(s,b) (x_(s, b)) isthe C = +1 (C = —1) Reggeon
contribution

= xr(S, b) (xo(s, b)) is the Pomeron (Odderon) contribution
= &g is the Odderon phase factor
O &g is associated with the positivity property

[0 However, unlike Pomeron, the Odderon is not constrained by
positivity requirements

From a theoretical standpoint, this implies that it is not possible to
determine the phase of the Odderon mathematically



B Specifically, the Born amplitude for each single exchange is

a;(t)
Fi(s, 1) = B3(t)mi(1) ( s )

So

= [32(t) is the elastic proton-Reggeon vertex

= «,(t) is the Regge trajectory

= 7n;(t) = —ie 2% is the odd-signature factor
= ni(t) = —e~'2%() is the even-signature factor

= sy = 1 GeV? is an energy scale
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B For Reggeons with positive charge-conjugation:

Ba(t) = B (0) exp(r t/2) J

and

ar(t) =1 -y + oyt J

(0 Similarly, the Reggeons with negative charge-conjugation are
described by the parameters 5_(0), r—, n—, and o’

B For Pomeron exchange we adopt

., mE
ap(t) = ap(0) + apt + 35,3 h(r)

where ap(0) = 1 + ¢ and
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7 Vitr—1 2

with ¢ > 0, 7 = 4m?/|t|, m = 1 GeV, and m, = 139.6 MeV

hr) = -2 F2(t) |27 — (1 + 7)¥21n (E) +n (::—2)} (3)}

= F.(t) is the form factor of the pion-Pomeron vertex:

F(t) = Be/(1 — t/a) J

= [ specifies the value of the pion-Pomeron coupling
= we take the additive quark model relation 3, /5p(0) = 2/3

The third term on the right-hand side of (3) corresponds to pion-loop
insertions and is generated by t-channel unitarity
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B We investigated two different forms for the proton-Pomeron vertex
O The first vertex, specifying our “Model I”, is given by

rpt

Be(t) = Br(0) exp <2> }

O The second proton-Pomeron vertex, referred to as “Model 117, has
the power-like form

0
o) = Tt~ /) “’J

= Note that the parameter a; in (4) is the same as the one in the
expression for F(t)

= we fix this parameter at a; = m2 = (0.776 GeV)?
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B The total cross section, the elastic differential cross section, and the
p parameter are expressed in terms of the physical amplitude Agg(s, t),

47
oy ™P(s) =~ Im AZ(s.t = 0)

doPP: pp

Tdt ‘App(s t)‘

Re A2°(s,t = 0)
Im AZ7(s, t = 0)

pPPPP(5) =

tor?ether with the replacements A2 (s, t) = Afgsfp (s, ) or Afﬁs”p (s, 1),
where
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APREP(s, 1) = s /0 bab.Jo(bq) [1 — €550

and

p o 2xP(s, b)
Y ='/ bdbdy(bq) | PR ")
Al (s.1) =is ! o( CI)[ \2(s.b) + 2i




The Odderon input

B The Born amplitude for the Odderon contribution is represented as

ag(t)
Fols, t) = B3(1) no(1) (S—SO> }

us

where no(t) = —ie~'z20()

O In the formulation of “Model III”, we employ an exponential form
factor for the proton-Odderon vertex:

Bo(t) = Bo(0) exp (%) }

with rop = rp/2
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The Odderon input

O In the formulation of “Model IV”, we adopt the power-like form for the
proton-Odderon vertex:

Bo(t) =

Bo(0)
(1 —t/m2)(1 - t/ao)

with ag = 2ap
= The relationship between ag and ap that must satisfy the constraint

ag > ap to avoid non-physical amplitudes when using a power-like
form factor
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The Odderon input

B From the standpoint of QCD (at the lowest order) the C = +1
amplitude arises from the exchange of two gluons and the C = —1
amplitude from the exchange of three gluons

B Extensive theoretical studies have been directed towards uncovering
corrections to these results, particularly in higher orders

O In this scenario, the leading-log approximation allows for the
summation of certain higher-order contributions to physical
observables in high-energy particle scattering processes

= This approach was widely used in the study of the QCD-Pomeron
through the BFKL equation
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The Odderon input

= In BFKL equation terms of the order (asIn(s))" are systematically
summed at high energy (large s) and small strong coupling o

= The simplistic notion of bare two-gluon exchange gives way to the
BFKL Pomeron, which, in an alternative representation, can be seen
as the interaction of two reggeized gluons with one another

B Beyond the BFKL Pomeron, the most elementary entity within
perturbative QCD is the exchange involving three interacting reggeized
gluons

(0 The evolution of the three-gluon Odderon exchange as energy
increases is governed by the BKP equation

= A bound state solution of this Odderon equation was obtained with
the intercept ap(0) = 1



The Odderon input

Bl Based on these QCD findings, we adopt in this work the simplest
conceivable form for the Odderon trajectory:

ap(t) =1 J
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Results

B The LHC has released exceptionally precise measurements of
diffractive processes

0 These measurements, particularly the total and differential cross
sections obtained from ATLAS and TOTEM Collaborations, enable us
to determine the Pomeron and Odderon parameters accurately

= However, these experimental results unveil a noteworthy tension
between the TOTEM and ATLAS measurements

= For instance, when comparing the TOTEM and the ATLAS result for

of,ff; at /s = 8 TeV, the discrepancy between the values corresponds
to2.6 o
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Results

B In order to systematically explore the tension between TOTEM and
ATLAS results, we perform global fits to pp and pp forward scattering
data and to pp differential cross-section data while considering two
distinct datasets, one with TOTEM measurements and the other with
ATLAS measurements

O The two data ensembles can be defined as follows:

Ensemble A: 075" data + pPPPP data + ATLAS data on 2 at 7, 8, and
13 TeV; B

Ensemble T: 575" data + pPPPP data + TOTEM data on 27 at 7, 8,
and 13 TeV

= We carry out global fits to the two distinct ensembles using a x?
fitting procedure, where 2 . follows a x? distribution with » DoF

= We adopt an interval y? — x2.. corresponding to a 90% confidence
level (CL).
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Pomeron Analysis

Table: The Pomeron and secondary Reggeons parameters values obtained
in global fits to Ensembles A and T after the eikonal unitarization.

Ensemble A Ensemble T
Model | Model Il Model | Model Il
€ 0.1014+0.0033 0.11124+0.0013 0.1248+0.0027 0.1336+0.0023
ap (GeV—2) 0.2938+0.0022 0.11484+0.0076 0.56 x 10~% +0.11 0.009+0.040
Bp(0) 2.15440.063 1.999+0.023 1.814+0.043 1.7424+0.028
rp (GeV—2) 2.3754+0.019 — 7.448+0.087 —
ap (GeV~—2) — 0.829+0.081 — 0.499+0.084
N+ 0.36040.048 0.34440.030 0.28640.025 0.262+0.015
B+(0) 4.56+0.47 4.37+0.34 4.02+0.21 3.93+0.14
n— 0.556+0.010 0.55040.089 0.536+40.067 0.530+0.064
B-(0) 3.68+0.16 3.55+0.67 3.41+0.49 3.39+0.46
v 226 226 350 350
X2 /v 0.86 0.83 0.74 0.65
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Pomeron Analysis

Table: The Pomeron and secondary Reggeons parameters values obtained
in global fits to Ensembles A and T after the U-matrix unitarization.

Ensemble A

Ensemble T
Model | Model Il Model | Model Il
€ 0.0911+£0.0037 0.0981+£0.0029 0.1129+0.0048 0.11504+0.0070
ap (GeV—2)  0.4425+0.0085 0.272840.0089 0.05+0.14 0.10+0.12
Bp(0) 2.2714+0.075 2.140+0.056 1.926+0.085 1.92+0.11
rp (GeV—2)  0.1051+0.0061 — 7.2+2.8 —
ap (GeV—2) — 40+20 — 0.62+0.49
N+ 0.356+0.057 0.369+0.049 0.32540.050 0.314+0.053
B+(0) 4.714+0.65 4.51+£0.48 4.18+0.43 4.144-0.44
n— 0.551+0.098 0.55140.043 0.54540.074 0.542+0.075
B-(0) 3.59+0.74 3.54+0.34 3.43+0.54 3.43+0.54
v 226 226 350 350
X2 /v 0.85 0.86 0.71 0.64
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Pomeron © Odderon Analysis

Table: The Pomeron, Odderon and secondary Reggeons parameters values
obtained in global fits to Ensembles A and T after the eikonal unitarization.
We show the results with g = —1.

Ensemble A Ensemble T
Model Ill Model IV Model Ill Model IV
€ 0.1017+£0.0043 0.1043+0.0026 0.1247+0.0048 0.1335+0.0041
ap (GeV—2) 0.283+0.036 0.2424+0.012 0.94 x 10~* +0.059 0.0140.11
Bp(0) 2.14640.083 2.116+0.011 1.81540.080 1.744+0.035
e (GeV—2) 2.58+0.68 — 7.45+0.13 —
ap (GeV—2) — 31+£11 — 0.50+0.16
Bo(0) 0.47+0.24 0.40+0.17 0.31+0.24 0.27+0.20
i 0.359+0.055 0.353+0.020 0.285+0.051 0.26140.013
B+(0) 4.52+0.54 4.47+0.29 4.00+0.38 3.91+0.16
n— 0.4823+0.0019 0.482+0.077 0.490+0.030 0.489+40.077
B-(0) 3.20+0.13 3.19+0.50 3.14+0.22 3.15+0.50
v 225 225 349 349
X2 /v 0.84 0.80 0.73 0.65
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Pomeron © Odderon Analysis

Table: The Pomeron, Odderon and secondary Reggeons parameters values
obtained in global fits to Ensembles A and T after the U-matrix unitarization.

We show the results with g = —1.

Ensemble A
Model 111 Model IV Model T
€ 0.0938+0.0045 0.0978+0.0047 0.1115+0.0035 0.1148+0.0060
ap (GeV—?3) 0.36440.029 0.27340.031 0.10+0.15
Be(0) 2.2154+0.075 2.14640.066 1.951+0.063
rp (GeV—2) 1.574+0.58 — 6.24+3.0
ap (GeV—2) — 40+24 —
Bo(0) 0.44+0.20 0.23+0.15 0.32+0.18
N+ 0.37440.031 0.3694-0.026 0.32740.071
5+(0) 4.624+0.50 4.494-0.64 4.184+0.72
- 0.49040.047 0.48+0.33 0.49+0.21
B8-(0) 3.18+0.18 3.08+0.79 3.11+0.42
v 225 225 349
X2 /v 0.83 0.84 0.71
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Conclusions and Perspectives

B The presence of the Odderon immediately impacts the behavior of
total cross sections, particularly generating different growth patterns
for o} (s) and of(s) at high energies

= With an asymptotic non-zero crossing-odd term A~ (s, t) in the
scattering amplitude, it is possible to demonstrate that |Ac| can be at
most |Ac| = kIn s in the limit s — oo, where k is a constant

B After introducing the Odderon, the eikonal scheme demonstrates a
slight advantage over the U-matrix scheme, mirroring the scenario
where the Pomeron is the sole asymptotically dominant entity

B We observe that for an Odderon with a phase factor {op = +1, all

eight 5p(0) values obtained are consistent with zero (errors
significantly surpassing central values)
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Conclusions and Perspectives

= Consequently, the remaining parameters assume values very
closely resembling the scenario where the Pomeron dominates the
scattering amplitude

B The Odderon phase is well-defined and is equal to {g = —1

B An ongoing analysis focusing solely on high-energy data,
considering exclusively the contributions from Pomeron and Odderon,
is imperative to ascertain the stability of the Odderon phase factor

B Ongoing investigations involving a two-channel model are underway,

focusing on the study of eikonal and U-matrix unitarization schemes
within the context of our analysis
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Resummations in QCD

B Every physical observable can be written, in pQCD, as a power
series in ag

— in these series the coupling constant is accompanied by large
logarithms, which need to be resummed

= according to the type and to the powers of logarithms that are
effectively resummed one gets different evolution equations

B The solution of the DGLAP equation sums over all orders in « the
contributions from leading, single, collinear logarithms of the form
asln (QZ/QS)

— it does not include leading, single, soft singularities of the form
asIn(1/x), which are treated instead by the BFKL equation

B The BFKL equation describes the x-evolution of PDFs at fixed Q?
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Resummations in QCD

B The phase space regions which contribute these logarithms
enhancements are associated with configurations in which successive
partons have strongly ordered transverse, kr, or longitudinal, k; = x,

momenta:

= aslg~ 1, asky <1 > K2 > > k2 >

=S asly ~1,aslg<< 1 X< Xp < - € X <€ X
B At small-x and slow Q? (where gluons are dominant) we do not have
strongly ordered k1

= we have to integrate over the full range of kr

= this leads us to work with the unintegrated gluon PDF
9(x, k3):
@ k2
xg(x. )= [ T o0x. )

T



Positivity
B The phase factor is associated with the positivity property

= However, unlike Pomeron, the Odderon is not constrained by
positivity requirements

= From a theoretical standpoint, this implies that it is not possible to
determine the phase of the Odderon mathematically

[J This issue can be succinctly grasped: in the forward direction the
physical amplitudes F£7(s) can be written as 75 (s) = F(s) + F(s)

] Considering that the only relevant contributions are those arising
from the Pomeron and the Odderon exchanges, we can write the
symmetric and antisymmetric amplitudes as F*(s) = Rp(S) + ilp(S)
and F~(s) = Ro(s) + ilo(s)



(1 From the optical theorem, we have soP577(s)
which implies that

Im F22(s) = ke(8) + Io(s) > 0

— PP
= 4mIm F5,(s) > 0,

and, in turn,

le(s) > [lo(s)]

As a consequence,

b(s) = 3 [ofh(s) + oRa(s)] >0

while

lo(s) = 5 [Utot(s) - Utot( )]

is not bound by the same positivity requirements
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