Unitarity effects in high-energy elastic scattering

Emerson Luna
Instituto de Física
Universidade Federal do Rio Grande do Sul

XXXVII International Workshop on High Energy Physic "Diffraction of hadrons: Experiment, Theory, Phenomenology" Protvino, Russia, 2025

Outline

- Unitarization Schemes
 - ⇒ Born amplitudes: Pomeron and Odderon inputs
- The tension between the TOTEM and ALFA/ATLAS measurements
- Results
- Conclusion and Perspectives

- In order to describe the observed increase of $\sigma_{tot}(s)$, the Pomeron should have a supercritical intercept given by $\alpha_{\mathbb{P}}(0) = 1 + \epsilon$ with $\epsilon > 0$
- \Rightarrow the behavior of the total cross section for $\alpha_{\mathbb{P}}(0) > 1$ betokens the violation of the Froissart-Martin limit at some energy scale
- It is expected that unitarity can be enforced in high-energy hadron-hadron interactions by the inclusion of the exchange series $\mathbb{P} + \mathbb{PP} + \mathbb{PPP} + \dots$
- $\Rightarrow \alpha_{\mathbb{P}}(0)$ is an effective power representing *n*-Pomeron exchange processes, $n \ge 1$

Despite the advances in understanding the nature of the Pomeron in the last decades, we still need to learn how to fully compute the contributions from multiple-Pomeron exchange processes with $n \ge 3$

On the other hand, it is well-established that some unitarization schemes sum appropriately rescattering diagrams representing the exchange of several particular multiparticle states

- \Rightarrow these schemes are primarily based on phenomenological arguments
- \Rightarrow they are effective procedures for taking into account many of the properties of unitarity in the s-channel or,

at the very least,

for preventing the Froissart-Martin bound for σ_{tot} from being violated

■ We focus on two key unitarization schemes: the eikonal and the *U*-matrix approaches

Unitarization Schemes

Certain distinctive features of the high-energy $\mathcal{A}(s,t)$ are better illuminated when examined in the impact parameter *b*-representation:

$$2 \operatorname{Im} H(s, b) = |H(s, b)|^2 + G_{in}(s, b)$$
 (1)

- \Rightarrow $G_{in}(s, b)$ is the inelastic overlap function
- ☐ After the integration over two-dimensional impact parameter space:

$$\sigma_{tot}(s) = \sigma_{el}(s) + \sigma_{in}(s)$$

where

$$\sigma_{tot}(s) = rac{4\pi}{s} \operatorname{Im} \mathcal{A}(s, t = 0) = 2\pi \int_0^\infty b \, db \, 2 \operatorname{Im} \mathcal{H}(s, b)$$

$$\sigma_{el}(s) = \frac{\pi}{s^2} \int_{-\infty}^{0} dt \ |\mathcal{A}(s,t)|^2 = 2\pi \int_{0}^{\infty} b \ db \ |\mathcal{H}(s,b)|^2$$

$$\sigma_{in}(s) = 2\pi \int_0^\infty b \, db \, \left(2 \operatorname{Im} H(s,b) - |H(s,b)|^2\right)$$

□ After defining a function

$$\rho(s,b) = \frac{\operatorname{Re} H(s,b)}{\operatorname{Im} H(s,b)}$$

and solving the quadratic equation for Im H(s, b) resulting from (1):

$$\operatorname{Im} H(s,b) = \frac{1 \pm \sqrt{1 - (1 + \rho^2) G_{in}(s,b)}}{1 + \rho^2} \tag{2}$$

 \Rightarrow We see that $G_{in}(s,b)$ must fit onto the interval

$$0 \le G_{in}(s,b) \le (1+\rho^2)^{-1}$$

where we have required $\operatorname{Im} H(s, b)$ be real.

■ The construction of unitarized scattering amplitudes relies on two formal steps:

Step 1. The choice of a Born term $\mathcal{F}(s,t)$ with the crossing-even and crossing-odd parts defined as

$$\mathcal{F}^{\pm}(s,t) = rac{1}{2} \left[\mathcal{F}^{
ho
ho}(s,t) \pm \mathcal{F}^{ar{
ho}
ho}(s,t)
ight]$$

☐ The correspondent crossing-even and crossing-odd Born amplitudes in *b*-space are given by

$$\chi^{\pm}(s,b)=rac{1}{s}\int_{0}^{\infty}q\,dq\,J_{0}(bq)\mathcal{F}^{\pm}(s,-q^{2})$$

Step 2. Consists of writing the scattering amplitude $H_{\bar{p}p}^{pp}(s,b)$ in terms of the Born amplitudes $\chi_{\bar{p}p}^{pp}(s,b)$

 \Rightarrow Once this is done, $\mathcal{A}^{pp}_{\bar{p}p}(s,t)$ is finally obtained from the inverse Fourier-Bessel transform of $H^{pp}_{\bar{p}p}(s,b)$:

$$\mathcal{A}^{
ho
ho}_{ar
ho
ho}(s,t)=s\int_0^\infty b\,db\,J_0(bq)\,H^{
ho
ho}_{ar
ho
ho}(s,b)$$

Eikonal Unitarization

- The eikonal unitarization corresponds to the solution of equation (2) with the minus sign
- ⇒ The eikonal scheme (Es) leads us to the relation

$$H(s,b) = i\left[1 - e^{i\chi(s,b)}\right]$$

so that

$$\mathcal{A}_{[Es]}(s,t) = is \int_0^\infty b \, db \, J_0(bq) \left[1 - e^{i\chi(s,b)}
ight]$$

 \square In the Es there is an upper limit on the imaginary part of H(s,b),

$$0 \le \operatorname{Im} H(s, b) \le (1 + \rho^2)^{-1}$$

Eikonal Unitarization

 \square Solving the Unitarity Eq. (1) for $G_{in}(s,b)$ in terms of $\chi(s,b)$ yields

$$G_{in}(s,b) = 1 - e^{-2 \operatorname{Im} \chi(s,b)}$$

 \Rightarrow The positivity condition on $G_{in}(s,b)$ and the upper limit on ImH(s,b) restrict the imaginary part of $\chi(s,b)$ over

$$0 \leq \operatorname{Im}\chi(s,b) \leq -rac{1}{2}\ln\left(rac{
ho^2}{1+
ho^2}
ight)$$

- \Rightarrow In the limit of a perfectly absorbing profile H(s,b) and $\chi(s,b)$ are purely imaginary
- \Rightarrow In this limit we have the asymptotic result $\sigma_{el}/\sigma_{tot} = 1/2$

*U***-matrix Unitarization**

- The U-matrix unitarization corresponds to the solution of the unitarity equation (2) with the plus sign
- \Rightarrow The *U*-matrix scheme (Us) leads us to the relation

$$H(s,b) = \frac{\chi(s,b)}{1 - i\chi(s,b)/2}$$

so that

$$\mathcal{A}_{[\mathit{Us}]}(s,t) = is \int_0^\infty b \, db \, J_0(bq) \left[rac{2\chi(s,b)}{\chi(s,b)+2i}
ight]$$

 \square In the Us the Im H(s, b) is constrained to lie in the interval

$$(1+\rho^2)^{-1} \le \operatorname{Im} H(s,b) \le 2(1+\rho^2)^{-1}$$

*U***-matrix Unitarization**

 \square In the black disc and $\rho \to 0$ limits we have

$$Im H(s,b) = 2$$

and

$$|H(s,b)|^2=4$$

- \Rightarrow These results lead us to the asymptotic behavior $\sigma_{\it el}/\sigma_{\it tot}=1$
- \Rightarrow Thus H(s,b) may exceed the black disc limit in this approach

Born Input Amplitudes

- The input Born amplitudes are associated with Reggeon exchange amplitudes
- ⇒ The corresponding amplitudes in the b-space are given by

$$\chi_i(s,b) = rac{1}{s} \int rac{d^2q}{2\pi} \, e^{i\mathbf{q}\cdot\mathbf{b}} \, \mathcal{F}_i(s,t)$$

where $i = -, +, \mathbb{P}$, and \mathbb{O} .

 \Rightarrow The physical amplitudes in *b*-space are obtained by summing of all possible exchanges:

$$\chi^{pp}_{ar{p}p}(s,b) = \chi_{\mathbb{P}}(s,b) + \chi_{+}(s,b) \pm \chi_{-}(s,b) \pm \xi_{\mathbb{O}}\chi_{\mathbb{O}}(s,b)$$

- \Rightarrow Here $\chi_{+}(s,b)$ ($\chi_{-}(s,b)$) is the C=+1 (C=-1) Reggeon contribution
- $\Rightarrow \chi_{\mathbb{P}}(s,b) \ (\chi_{\mathbb{O}}(s,b))$ is the Pomeron (Odderon) contribution
- $\Rightarrow \xi_{\mathbb{O}}$ is the Odderon phase factor
- $\square \xi_0$ is associated with the positivity property
- ☐ However, unlike Pomeron, the Odderon is not constrained by positivity requirements

From a theoretical standpoint, this implies that it is not possible to determine the phase of the Odderon mathematically

Specifically, the Born amplitude for each single exchange is

$$\mathcal{F}_i(s,t) = eta_i^2(t) \eta_i(t) \left(rac{s}{s_0}
ight)^{lpha_i(t)}$$

- $\Rightarrow \beta_i^2(t)$ is the elastic proton-Reggeon vertex
- $\Rightarrow \alpha_i(t)$ is the Regge trajectory
- $\Rightarrow \eta_i(t) = -ie^{-i\frac{\pi}{2}\alpha_i(t)}$ is the odd-signature factor
- $\Rightarrow \eta_i(t) = -e^{-i\frac{\pi}{2}\alpha_i(t)}$ is the even-signature factor
- \Rightarrow $s_0 \equiv 1 \text{ GeV}^2$ is an energy scale

■ For Reggeons with positive charge-conjugation:

$$\beta_+(t) = \beta_+(0) \exp(r_+ t/2)$$

and

$$\alpha_+(t) = 1 - \eta_+ + \alpha'_+ t$$

- \square Similarly, the Reggeons with negative charge-conjugation are described by the parameters $\beta_{-}(0)$, r_{-} , η_{-} , and α'_{-}
- For Pomeron exchange we adopt

$$lpha_{\mathbb{P}}(t) = lpha_{\mathbb{P}}(0) + lpha_{\mathbb{P}}' t + rac{m_{\pi}^2}{32\pi^3} h(au)$$

where $\alpha_{\mathbb{P}}(0) = 1 + \epsilon$ and

$$h(\tau) = -\frac{4}{\tau} F_{\pi}^{2}(t) \left[2\tau - (1+\tau)^{3/2} \ln \left(\frac{\sqrt{1+\tau}+1}{\sqrt{1+\tau}-1} \right) + \ln \left(\frac{m^{2}}{m_{\pi}^{2}} \right) \right]$$
 (3)

with $\epsilon > 0$, $\tau = 4m_\pi^2/|t|$, m = 1 GeV, and $m_\pi = 139.6$ MeV

 \Rightarrow $F_{\pi}(t)$ is the form factor of the pion-Pomeron vertex:

$$F_{\pi}(t) = \beta_{\pi}/(1-t/a_1)$$

- $\Rightarrow \beta_{\pi}$ specifies the value of the pion-Pomeron coupling
- \Rightarrow we take the additive quark model relation $\beta_{\pi}/\beta_{P}(0) = 2/3$

The third term on the right-hand side of (3) corresponds to pion-loop insertions and is generated by t-channel unitarity

- We investigated two different forms for the proton-Pomeron vertex
- ☐ The first vertex, specifying our "Model I", is given by

$$eta_{\mathbb{P}}(t) = eta_{\mathbb{P}}(0) \exp\left(rac{r_{\mathbb{P}}t}{2}
ight)$$

☐ The second proton-Pomeron vertex, referred to as "Model II", has the power-like form

$$\beta_{\mathbb{P}}(t) = \frac{\beta_{\mathbb{P}}(0)}{(1 - t/a_1)(1 - t/a_{\mathbb{P}})} \tag{4}$$

- \Rightarrow Note that the parameter a_1 in (4) is the same as the one in the expression for $F_{\pi}(t)$
 - \Rightarrow we fix this parameter at $a_1 = m_\rho^2 = (0.776 \, \text{GeV})^2$

■ The total cross section, the elastic differential cross section, and the ρ parameter are expressed in terms of the physical amplitude $\mathcal{A}_{\bar{p}p}^{\rho\rho}(s,t)$,

$$\sigma_{tot}^{
ho
ho,ar
ho
ho}(s)=rac{4\pi}{s}\operatorname{Im}\mathcal{A}_{ar
ho
ho}^{
ho
ho}(s,t=0)$$

$$\frac{d\sigma^{\rho\rho,\bar{\rho}\rho}}{dt}(s,t) = \frac{\pi}{s^2} \left| \mathcal{A}^{\rho\rho}_{\bar{\rho}\rho}(s,t) \right|^2$$

$$ho^{pp,ar{p}p}(s) = rac{\mathsf{Re}\,\mathcal{A}^{pp}_{ar{p}p}(s,t=0)}{\mathsf{Im}\,\mathcal{A}^{pp}_{ar{p}p}(s,t=0)}$$

together with the replacements $\mathcal{A}_{\bar{p}p}^{pp}(s,t) = \mathcal{A}_{[Es]}^{pp,\bar{p}p}(s,t)$ or $\mathcal{A}_{[Us]}^{pp,\bar{p}p}(s,t)$, where

$$\mathcal{A}_{[Es]}^{
ho
ho,ar
ho}(s,t)=is\int_0^\infty b\,db\,J_0(bq)\left[1-e^{i\chi^{
ho
ho}_{ar
ho
ho}(s,b)}
ight]$$

and

$$\mathcal{A}_{[Us]}^{
ho p,ar{p}
ho}(s,t) = is\int_0^\infty b\,db\,J_0(bq)\left[rac{2\chi_{ar{p}
ho}^{
ho}(s,b)}{\chi_{ar{p}
ho}^{
ho p}(s,b)+2i}
ight]$$

The Born amplitude for the Odderon contribution is represented as

$$\mathcal{F}_{\mathbb{O}}(s,t) = eta_{\mathbb{O}}^2(t)\,\eta_{\mathbb{O}}(t)\left(rac{s}{s_0}
ight)^{lpha_{\mathbb{O}}(t)}$$

where $\eta_{\mathbb{O}}(t) = -ie^{-i\frac{\pi}{2}\alpha_{\mathbb{O}}(t)}$

☐ In the formulation of "Model III", we employ an exponential form factor for the proton-Odderon vertex:

$$eta_{\mathbb{O}}(t) = eta_{\mathbb{O}}(0) \exp\left(\frac{r_{\mathbb{O}}t}{2}\right)$$

with $r_{\mathbb{O}} = r_{\mathbb{P}}/2$

 \square In the formulation of "Model IV", we adopt the power-like form for the proton-Odderon vertex:

$$eta_{\mathbb{O}}(t) = rac{eta_{\mathbb{O}}(0)}{(1 - t/m_{
ho}^2)(1 - t/a_{\mathbb{O}})}$$

with $a_{\mathbb{O}} = 2a_{\mathbb{P}}$

 \Rightarrow The relationship between $a_{\mathbb{O}}$ and $a_{\mathbb{P}}$ that must satisfy the constraint $a_{\mathbb{O}} \geq a_{\mathbb{P}}$ to avoid non-physical amplitudes when using a power-like form factor

- From the standpoint of QCD (at the lowest order) the C = +1 amplitude arises from the exchange of two gluons and the C = -1 amplitude from the exchange of three gluons
- Extensive theoretical studies have been directed towards uncovering corrections to these results, particularly in higher orders
- ☐ In this scenario, the leading-log approximation allows for the summation of certain higher-order contributions to physical observables in high-energy particle scattering processes
- \Rightarrow This approach was widely used in the study of the QCD-Pomeron through the BFKL equation

- \Rightarrow In BFKL equation terms of the order $(\alpha_s \ln(s))^n$ are systematically summed at high energy (large s) and small strong coupling α_s
- ⇒ The simplistic notion of bare two-gluon exchange gives way to the BFKL Pomeron, which, in an alternative representation, can be seen as the interaction of two reggeized gluons with one another
- Beyond the BFKL Pomeron, the most elementary entity within perturbative QCD is the exchange involving three interacting reggeized gluons
- ☐ The evolution of the three-gluon Odderon exchange as energy increases is governed by the BKP equation
- \Rightarrow A bound state solution of this Odderon equation was obtained with the intercept $\alpha_{\mathbb{Q}}(0) = 1$

■ Based on these QCD findings, we adopt in this work the simplest conceivable form for the Odderon trajectory:

$$\alpha_{\mathbb{O}}(t) = 1$$

Results

- The LHC has released exceptionally precise measurements of diffractive processes
- ☐ These measurements, particularly the total and differential cross sections obtained from ATLAS and TOTEM Collaborations, enable us to determine the Pomeron and Odderon parameters accurately
- ⇒ However, these experimental results unveil a noteworthy tension between the TOTEM and ATLAS measurements
- \Rightarrow For instance, when comparing the TOTEM and the ATLAS result for σ_{tot}^{pp} at $\sqrt{s}=8$ TeV, the discrepancy between the values corresponds to 2.6 σ

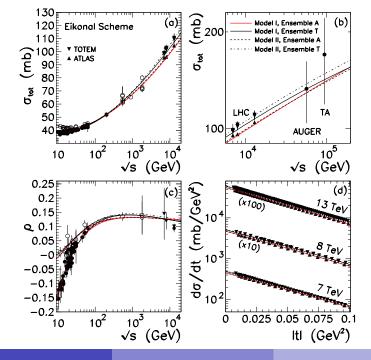
Results

- In order to systematically explore the tension between TOTEM and ATLAS results, we perform global fits to *pp* and *p̄p* forward scattering data and to *pp* differential cross-section data while considering two distinct datasets, one with TOTEM measurements and the other with ATLAS measurements
- ☐ The two data ensembles can be defined as follows:
- **Ensemble A**: $\sigma_{tot}^{pp,\bar{p}p}$ data + $\rho^{pp,\bar{p}p}$ data + ATLAS data on $\frac{d\sigma}{dt}$ at 7, 8, and 13 TeV;
- **Ensemble T**: $\sigma_{tot}^{pp,\bar{p}p}$ data + $\rho^{pp,\bar{p}p}$ data + TOTEM data on $\frac{d\sigma}{dt}$ at 7, 8, and 13 TeV
- \Rightarrow We carry out global fits to the two distinct ensembles using a χ^2 fitting procedure, where χ^2_{min} follows a χ^2 distribution with ν DoF
- \Rightarrow We adopt an interval $\chi^2 \chi^2_{min}$ corresponding to a 90% confidence level (CL).

Pomeron Analysis

Table: The Pomeron and secondary Reggeons parameters values obtained in global fits to Ensembles A and T after the eikonal unitarization.

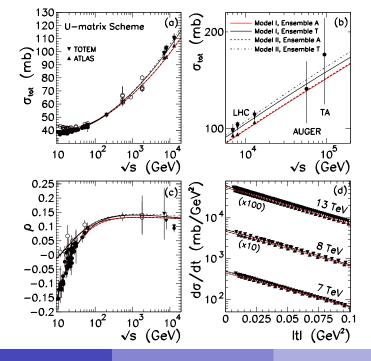
	Ensemble A		Ensemble T	
	Model I	Model II	Model I	Model II
ϵ	0.1014±0.0033	0.1112±0.0013	0.1248 ± 0.0027	0.1336 ± 0.0023
α_{P}' (GeV $^{-2}$)	$0.2938 {\pm} 0.0022$	0.1148 ± 0.0076	$0.56 \times 10^{-9} \pm 0.11$	0.009 ± 0.040
$eta_{\mathbb{P}}(0)$	2.154 ± 0.063	1.999 ± 0.023	1.814 ± 0.043	1.742 ± 0.028
$r_{\mathbb{P}}$ (GeV ⁻²)	2.375 ± 0.019	_	7.448 ± 0.087	_
$a_{\mathbb{P}}$ (GeV $^{-2}$)	_	0.829 ± 0.081	_	0.499 ± 0.084
η_+	$0.360 {\pm} 0.048$	0.344 ± 0.030	$0.286{\pm}0.025$	0.262 ± 0.015
$\beta_{+}(0)$	4.56 ± 0.47	4.37 ± 0.34	4.02 ± 0.21	3.93 ± 0.14
η	0.556 ± 0.010	0.550 ± 0.089	$0.536 {\pm} 0.067$	0.530 ± 0.064
$\beta_{-}(0)$	3.68 ± 0.16	3.55 ± 0.67	3.41 ± 0.49	3.39 ± 0.46
ν	226	226	350	350
χ^2/ν	0.86	0.83	0.74	0.65



Pomeron Analysis

Table: The Pomeron and secondary Reggeons parameters values obtained in global fits to Ensembles A and T after the *U*-matrix unitarization.

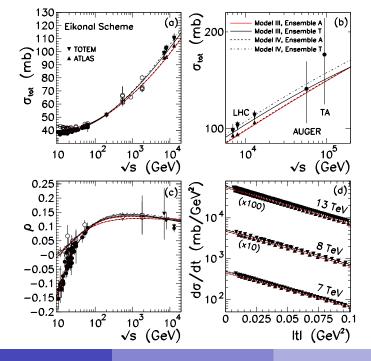
	Ensemble A		Ensemble T	
	Model I	Model II	Model I	Model II
ϵ	0.0911 ± 0.0037	0.0981 ± 0.0029	0.1129±0.0048	0.1150±0.0070
$\alpha'_{I\!\!P}$ (GeV $^{-2}$)	$0.4425{\pm}0.0085$	0.2728 ± 0.0089	$0.05{\pm}0.14$	0.10 ± 0.12
$eta_{\mathbb{P}}(0)$	2.271 ± 0.075	2.140 ± 0.056	1.926 ± 0.085	1.92 ± 0.11
$r_{\mathbb{P}}$ (GeV ⁻²)	0.1051 ± 0.0061	_	7.2 ± 2.8	_
$a_{\mathbb{P}}$ (GeV $^{-2}$)	_	40±20	_	0.62 ± 0.49
η_+	0.356 ± 0.057	0.369 ± 0.049	$0.325 {\pm} 0.050$	0.314 ± 0.053
$\beta_{+}(0)$	4.71 ± 0.65	4.51 ± 0.48	4.18 ± 0.43	4.14 ± 0.44
η	0.551 ± 0.098	0.551 ± 0.043	0.545 ± 0.074	0.542 ± 0.075
$\beta_{-}(0)$	3.59 ± 0.74	3.54 ± 0.34	3.43 ± 0.54	$3.43 {\pm} 0.54$
ν	226	226	350	350
χ^2/ν	0.85	0.86	0.71	0.64



Pomeron \oplus **Odderon Analysis**

Table: The Pomeron, Odderon and secondary Reggeons parameters values obtained in global fits to Ensembles A and T after the eikonal unitarization. We show the results with $\xi_0 = -1$.

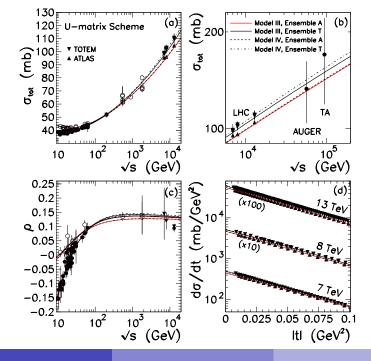
	Ensemble A		Ensemble T	
	Model III	Model IV	Model III	Model IV
ϵ	0.1017±0.0043	0.1043±0.0026	0.1247±0.0048	0.1335±0.0041
$\alpha_{I\!\!P}'$ (GeV $^{-2}$)	0.283 ± 0.036	0.242 ± 0.012	$0.94 \times 10^{-4} \pm 0.059$	0.01 ± 0.11
$eta_{\mathbb{P}}(0)$	2.146 ± 0.083	2.116 ± 0.011	1.815 ± 0.080	1.744 ± 0.035
$r_{\mathbb{P}}$ (GeV $^{-2}$)	2.58 ± 0.68	_	7.45 ± 0.13	_
$a_{\mathbb{P}}$ (GeV $^{-2}$)	_	31±11	_	0.50 ± 0.16
$eta_{\mathbb{O}}(0)$	$0.47{\pm}0.24$	0.40 ± 0.17	0.31 ± 0.24	0.27 ± 0.20
η_+	0.359 ± 0.055	0.353 ± 0.020	$0.285{\pm}0.051$	0.261 ± 0.013
$\beta_{+}(0)$	4.52 ± 0.54	4.47 ± 0.29	4.00 ± 0.38	3.91 ± 0.16
η	0.4823 ± 0.0019	0.482 ± 0.077	0.490 ± 0.030	0.489 ± 0.077
$\beta_{-}(0)$	3.20 ± 0.13	3.19 ± 0.50	3.14 ± 0.22	3.15 ± 0.50
ν	225	225	349	349
χ^2/ν	0.84	0.80	0.73	0.65



Pomeron \oplus **Odderon Analysis**

Table: The Pomeron, Odderon and secondary Reggeons parameters values obtained in global fits to Ensembles A and T after the *U*-matrix unitarization. We show the results with $\xi_0 = -1$.

	Ensemble A		Ensemble T	
	Model III	Model IV	Model III	Model IV
ϵ	0.0938 ± 0.0045	0.0978 ± 0.0047	0.1115±0.0035	0.1148±0.0060
$\alpha_{I\!\!P}'$ (GeV $^{-2}$)	$0.364 {\pm} 0.029$	0.273 ± 0.031	0.10 ± 0.15	0.106 ± 0.098
$eta_{\mathbb{P}}(0)$	2.215 ± 0.075	2.146 ± 0.066	1.951 ± 0.063	1.919 ± 0.093
<i>r</i> _ℙ (GeV ⁻²)	1.57 ± 0.58	_	6.2 ± 3.0	_
$a_{\mathbb{P}}$ (GeV $^{-2}$)	_	40±24	_	0.63 ± 0.41
$eta_{\mathbb{O}}(0)$	$0.44{\pm}0.20$	0.23 ± 0.15	$0.32{\pm}0.18$	0.27 ± 0.18
η_+	0.374 ± 0.031	0.369 ± 0.026	0.327 ± 0.071	0.313 ± 0.046
$\beta_{+}(0)$	4.62 ± 0.50	4.49 ± 0.64	4.18 ± 0.72	4.12 ± 0.38
η	0.490 ± 0.047	0.48 ± 0.33	0.49 ± 0.21	0.50 ± 0.12
$\beta_{-}(0)$	3.18 ± 0.18	3.08 ± 0.79	3.11 ± 0.42	3.17 ± 0.71
ν	225	225	349	349
χ^2/ν	0.83	0.84	0.71	0.64



Conclusions and Perspectives

- The presence of the Odderon immediately impacts the behavior of total cross sections, particularly generating different growth patterns for $\sigma_{tot}^{pp}(s)$ and $\sigma_{tot}^{\bar{p}p}(s)$ at high energies
- \Rightarrow With an asymptotic non-zero crossing-odd term $\mathcal{A}^-(s,t)$ in the scattering amplitude, it is possible to demonstrate that $|\Delta\sigma|$ can be at most $|\Delta\sigma|=k\ln s$ in the limit $s\to\infty$, where k is a constant
- After introducing the Odderon, the eikonal scheme demonstrates a slight advantage over the *U*-matrix scheme, mirroring the scenario where the Pomeron is the sole asymptotically dominant entity
- We observe that for an Odderon with a phase factor $\xi_{\mathbb{O}} = +1$, all eight $\beta_{\mathbb{O}}(0)$ values obtained are consistent with zero (errors significantly surpassing central values)

Conclusions and Perspectives

- ⇒ Consequently, the remaining parameters assume values very closely resembling the scenario where the Pomeron dominates the scattering amplitude
- The Odderon phase is well-defined and is equal to $\xi_0 = -1$
- An ongoing analysis focusing solely on high-energy data, considering exclusively the contributions from Pomeron and Odderon, is imperative to ascertain the stability of the Odderon phase factor
- Ongoing investigations involving a two-channel model are underway, focusing on the study of eikonal and *U*-matrix unitarization schemes within the context of our analysis

THANK YOU

Resummations in QCD

- Every physical observable can be written, in pQCD, as a power series in α_s
- ⇒ in these series the coupling constant is accompanied by large logarithms, which need to be resummed
- ⇒ according to the type and to the powers of logarithms that are effectively resummed one gets different evolution equations
- The solution of the DGLAP equation sums over all orders in α_s the contributions from leading, single, collinear logarithms of the form $\alpha_s \ln \left(Q^2/Q_0^2\right)$
- \implies it does not include leading, single, soft singularities of the form $\alpha_s \ln (1/x)$, which are treated instead by the BFKL equation
- The BFKL equation describes the x-evolution of PDFs at fixed Q^2

Resummations in QCD

■ The phase space regions which contribute these logarithms enhancements are associated with configurations in which successive partons have strongly ordered transverse, k_T , or longitudinal, $k_L \equiv x$, momenta:

$$\Rightarrow \alpha_s L_Q \sim 1, \ \alpha_s L_X \ll 1: \ Q^2 \gg k_{T,n}^2 \gg \cdots \gg k_{T,1}^2 \gg Q_0^2$$
$$\Rightarrow \alpha_s L_X \sim 1, \ \alpha_s L_Q \ll 1: \ X \ll x_n \ll \cdots \ll x_1 \ll x_0$$

- At small-x and slow Q^2 (where gluons are dominant) we do not have strongly ordered k_T
 - \Rightarrow we have to integrate over the full range of k_T
 - \Rightarrow this leads us to work with the *unintegrated* gluon PDF $\tilde{g}(x, k_T^2)$:

$$xg(x,Q^2) = \int^{Q^2} \frac{dk_T^2}{k_T^2} \tilde{g}(x,k_T^2)$$

Positivity

- The phase factor is associated with the positivity property
- ⇒ However, unlike Pomeron, the Odderon is not constrained by positivity requirements
- ⇒ From a theoretical standpoint, this implies that it is not possible to determine the phase of the Odderon mathematically
- \Box This issue can be succinctly grasped: in the forward direction the physical amplitudes $\mathcal{F}^{pp}_{\bar{p}p}(s)$ can be written as $\mathcal{F}^{pp}_{\bar{p}p}(s) = F^+(s) \pm F^-(s)$
- \square Considering that the only relevant contributions are those arising from the Pomeron and the Odderon exchanges, we can write the symmetric and antisymmetric amplitudes as $F^+(s) = R_{\mathbb{P}}(s) + iI_{\mathbb{P}}(s)$ and $F^-(s) = R_{\mathbb{Q}}(s) + iI_{\mathbb{Q}}(s)$

 \Box From the optical theorem, we have $s\sigma_{tot}^{pp,\bar{p}p}(s)=4\pi\operatorname{Im}\mathcal{F}_{\bar{p}p}^{pp}(s)>0$, which implies that

$$\operatorname{Im} \mathcal{F}^{
hop}_{ar{
ho}
ho}(s) = I_{\mathbb{P}}(s) \pm I_{\mathbb{O}}(s) > 0$$

and, in turn,

$$I_{\mathbb{P}}(s) > |I_{\mathbb{O}}(s)|$$

As a consequence,

$$I_{\mathbb{P}}(s) = \frac{s}{2} \left[\sigma_{tot}^{pp}(s) + \sigma_{tot}^{\bar{p}p}(s) \right] > 0$$

while

$$I_{\mathbb{O}}(s) = rac{s}{2} \left[\sigma_{tot}^{pp}(s) - \sigma_{tot}^{ar{p}p}(s)
ight]$$

is not bound by the same positivity requirements