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Abstract

Transition to the reflective scattering mode which has emerged at the
highest LHC energy of

√
s = 13 TeV results in a relative shrinkage with

the energy of the impact parameter region responsible for the inelastic
hadron collisions. Respective increasing role of the multiplicity fluctuations
of quantum origin is emphasized.
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Historical remarks

The term anishadowing has been introduced in under consideration of
the “black disc limit” exceeding, 1993. This term means that
reduction of the inelastic interactions contribution with the energy
results in the elastic amplitude increase.
S.M. Troshin, N.E. Tyurin, Phys. Lett. B 316, 175 (1993)
The respective scattering mode can take place in the limited range
(dependent on the collision energy) of the impact parameter variation
when |f | > 1/2 only, i.e. in the region where the amplitude is beyond
the so called black disc limit. This mode differs from the shadow case
when both the elastic and inelastic components of the unitarity
equation grow up with the energy increase, and |f | < 1/2. (f is a
partial or an impact parametr elastic scattering amplitude).
Interpretation of antishadowing as a reflective scattering was
proposed. Analogy with optics, 2007.
Troshin S.M., Tyurin N.E., Int. J. Mod. Phys. A 22 (2007) 4437.
Positive reflective ability observation, the LHC results. This is not a
unique interpretation of antishadowing.
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More remarks

Transition from the shadow to reflective scattering is developing with
increase of the elastic scattering amplitude in the impact parameter
representation. This evolution is connected with formation of a peripheral
impact parameter profile of the inelastic overlap function (black ring
formation). The process of black ring formation starts at small impact
parameter values. It is expected that this will manifest itself in the elastic
scattering differential cross–section behavior at large transferred momenta.
Here we consider further consequences of the reflective scattering mode
presence for the multiplicity distribution emphasizing the role of the
impact parameter–dependent mean multiplicity and inelastic overlap
function. The consideration has a qualitative nature, it concerns mainly
the asymptotic energy region which is at least beyond the presently
available energies. But the presented conclusions are in correspondence
with the observed tendencies.
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Peripheral form of the inelastic overlap function

Unitarity equation for the elastic scattering amplitude F (s, t) has the form

ImF (s, t) = Hel(s, t) + Hinel(s, t), (1)

where Hel(s, t) is the two–particle intermidiate state contribution and
Hinel(s, t) is the sum of the contributions from the multi–particle
intermidiate states. For the forward scattering when −t = 0 Eq. (1) turns
into

σtot(s) = σel(s) + σinel(s), (2)

where σi (s) are the respective cross–sections. High–energy elastic
scattering amplitude is a predominantly imaginary and is given by the sum,
Eq. (1). In the impact parameter representation (i.e. in the framework of
quasiclassical geometrical picture, Fig. 1) the elastic and inelastic overlap
functions hel(s, b) and hinel(s, b) have different profiles at high energies.
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b

Figure: Schematic form of hadron scattering geometry.
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The unitarity equation, Eq. (1), for the elastic scattering amplitude in the
impact parameter representation, f (s, b), has a diagonal form, i.e.:

Imf (s, b)[1− Imf (s, b)] = [Ref (s, b)]2 + hinel(s, b). (3)

It is evident that Ref → 0 when Imf → 1 and under assumption of the
vanishing real part the following relation takes place (f → if ) for the
inelastic overlap function hinel(s, b):

hinel(s, b) = f (s, b)[1− f (s, b)]. (4)

The impact parameter representation provides a geometric, semiclassical
picture for hadron interactions. The elastic overlap function preserves
central profile when the energy increases. Contrary, the inelastic overlap
function becomes peripheral when f > 1/2. Indeed, for s and b values
where f (s, b) > 1/2, the inelastic overlap function, Eq. (4), decreases with
the energy growth and acqures a peripheral profile (Fig. 2).
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Figure: Schematic forms of inelastic overal function dependening on impact
parameter in the shadow (left) and reflective (right) scattering modes.
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Form of hinel(s, b) becomes relatively more narrow when s increases and
this concentrates our attention on the impact parameter values close to
position of the inelatic overlap function peak which we denote by R(s).
One should note that R(s) ∼ ln s at s → ∞. Thus, the probability of an
inelastic processes under hadron collision at the impact parameter b is

σinel(s, b) ≡ 4hinel(s, b). (5)

with maximum at b = R(s).
In what follows we use the function

Pn(s, b) ≡ σn(s, b)/σinel(s, b) (6)

for the multiplicity distribution at the energy s and impact parameter b. In
Eq. (6), σn(s, b) is the production cross–section of n particles (n ≥ 3) .
Influence of a peripheral form of the inelastic overlap function
hinel(s, b) on the multiplicity distribution Pn(s, b).
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Pn(s, b) is to be used for the calculations of the final states entropy and
other thermodynamic quantities in hadron interactions. Their impact
parameter dependence – an importance of the spatial proton’s structure
and is a replacement of Q2–dependence of the entropy under the
deep–inelastic scattering:
Z. Tu, D.E. Kharzeev and T. Ullrich, Phys. Rev .Lett. 124, 062001
(2020).

Pn(s) =

∫ ∞

0
Pn(s, b)σinel(s, b)bdb/

∫ ∞

0
σinel(s, b)bdb (7)

and

⟨n⟩(s) ≡
∑
n

nPn(s) =

∫ ∞

0
⟨n⟩(s, b)σinel(s, b)bdb/

∫ ∞

0
σinel(s, b)bdb,

(8)
and ⟨n⟩(s, b) ≡

∑
n nPn(s, b). The averaging corresponds to smoothing

the quantum fluctuations of multiplicity. Eq. (8): further averaging, now
over classical fluctuations of b. Pb+Pb collisions at the LHC:
E. Roubertie, M. Verdan, A. Kirchner and J.-Y. Ollitrault, arXiv:
2503.17035v1.
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Quantum fluctuations are smoothed out in the function ⟨n⟩(s, b) and it
makes this quantity relevant for a quasiclassical modelling in the
framework of impact parameter picture. In this regard it should be noted
that commutator of the impact parameter operator with the Hamiltonian
is vanishing at very high energies and the impact parameter itself becomes
a quasiclassical quantity.
B.R. Webber, Nucl. Phys. B 87, 269 (1975).

Pn(s) ≃ Pn(s, b)|b=R(s). (9)

Pn(s, b)|b=R(s) = σn(s, b)|b=R(s) (10)

and the mean multiplicity ⟨n⟩(s):
⟨n⟩(s) ≃ ⟨n⟩(s, b)|b=R(s) (11)

Pn(s, b) receives contributions from the two sources of different origins.
These are the characteristic b-dependence of Pn(s, b) associated with the
varying b–values and the quantum fluctuations over n at fixed values of b.
Quantum fluctuations of multiplicity become more significant gaining an
extra weight with the energy increase.
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The amplitude value f (s, 0) moves from the region of (0, 1/2] into the
region of [1/2, 1), increases and tends to unity at s → ∞. The inelastic
overlap function hinel(s, 0) monotonically decreases and tends to 0 at
s → ∞. σn(s, b) at b = 0 should also decrease with energy for any n ≥ 3.

lim
s→∞

σn(s, b) = 0. (12)

⟨∆b2⟩inel/⟨b2⟩inel ∼ σinel(s)/σtot(s) ∼ R−1(s) (13)

and
σtot(s) ∼ σel(s) ∼ R2(s) and ⟨b2⟩el ∼ ⟨b2⟩inel ∼ R2(s) (14)

while

σinel(s) ≃ 8πR(s)

∫ ∞

0
dbhinel(s, b) (15)

Sergey Troshin Multiplicity distribution 13 / 17



Modelling the mean multiplicity ⟨n⟩(s, b)
Averaging contained in ⟨n⟩(s, b) smooths the quantum fluctuations of
multiplicity. Assumption:

⟨n⟩(s, b) = ν(s)σinel(s, b). (16)

Integrated mean multiplicity ⟨n⟩(s):

⟨n⟩(s) = ν(s)

∫ ∞

0
σ2
inel(s, b)bdb/

∫ ∞

0
σinel(s, b)bdb. (17)

The ratio of the integrals in Eq. (17) is limited by unity. and
asymptotically ν(s) → ⟨n⟩(s).
⟨n⟩(s, b) studies can be extracted from the inclusive overlap functions
introduced in:
N. Sakai, Nuov. Cim. A 21, 368 (1974)

⟨n⟩(s, b) = 4ν(s)f (s, b)[1− f (s, b)]. (18)

Invariance of ⟨n⟩(s, b) under replacement f → 1− f , the same average
multiplicity value corresponding to both values: f and 1− f .
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Conclusion

Two scattering modes at high energies: the shadow scattering mode
(SSM) and the antishadow one. An existence of the RSM is allowed if we
do not introduce constraint |f | ≤ 1/2. RSM existence becomes ultimate in
view of the maximal strength principle by Chew and Frautchi. It is also
implied by invariance of the inelastic overlap function under replacement
f → 1− f .
Gradual transition to the RSM corresponds to the relative shrinkage
of the impact parameter variation region effectively populated by
the inelastic processes. No such effect in the case of a shadow
scattering mode with flat dependence on impact parameter.
Two different sources of multiplicity fluctuations in hadron production at
modern energies: one is due to variation of the collision impact parameter
value and another one associated with quantum fluctuations of multiplicity
at fixed impact parameters. Transition to the reflective scattering mode
with the energy increase makes the quantum fluctuations a dominant
mechanism associated with the multiplicity fluctuations.
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Discussion

Analogy with quantum optics can be useful for the modelling the particle
distributions at fixed impact parameters. Use of the gamma–distribution

Pn(s, b) =
kk

⟨n⟩Γ(k)
zk−1e−kz (19)

as a kernel is good for nuclei–nuclei and hadron–nuclei reactions. k is a
parameter and z = n/⟨n⟩(s, b). It is relevant for the various systems.
Extension for description of the small systems such as hadrons and their
interactions is supported by the experimentally observed similarity of the
observables in nuclear and hadron reactions, discovered the ridge and
other collective effects under interactions of small systems. Application to
hadron collisions is complimentary gaining advantage from validity of the
unitarity condition in this case. Gamma–distribution has also been applied
for modelling the eikonal treated as a stochastic quantity. Exponential
form is tranformed into a rational representation of the scattering
amplitude where an averaged eikonal function serves as an input.
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But, it is difficult to expect relevance of gamma–distribution for the
asymptotic energies with a dominance of the quantum fluctuations of
multiplicity. How to separate quantum fluctuations of multiplicity at finite
energies? Studies of the difference z̄ ≡ nF − nB versus the sum
n ≡ nF + nB .
T.T. Chou and C.N. Yang, Int. J. Mod. Phys. A, Vol. 2, No 6
(1987)1727-1753.
σn for fixed n is determined by the inelastic activity, i.e. the impact
parameter responsible for inelastic collisions, studies of fluctuations of z̄ at
fixed values of n should be helpful.
Cumulative activity of inelastic events under hadron collisions
S.M. Troshin, N.E. Tyurin
Int.J.Mod.Phys.A 38 (2023) 29n30, 2350160
Analogy of particle production with quantum optics→ distribution
of photocounts is similar to multiplicity distribution.

Reflective scattering → ring-like form of incoming exitation light
beam instead of its spot-like form

The End
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