
Polarization and kinematic properties of the fragmentation functions
q → W± + q′ and q → Z0 + q

Alsu G. Bagdatova∗, Sergey P. Baranov†

P. N. Lebedev Institute of Physics, 53 Lenin Avenue, 119991 Moscow, Russia
∗ bagdatovaag@lebedev.ru, † baranovsp@lebedev.ru

Objectives
We consider the processes q → W+ q′ and
q → Z+ q and derive the respective fragmentation
functions as functions of two kinematic variables:
the longitudinal momentum fraction z and trans-
verse momentum pT of the produced bosons with
respect to the parent quark. We take into account
phase space restrictions connected with nonzero
masses of the gauge bosons and with limited ini-
tial energy. We separately consider three different
polarization states of the bosons.

Introduction

The structure of the proton, when probed at increasing
energies, reveals increasing complexity of its composi-
tion. Not only light quarks and gluons can be found
among the proton’s constituents, but also heavy quarks
and, maybe, even the electroweak bosons W and Z.
Our note focuses on the presenting bosons in the real
form as final state quanta. The emission of the final
state quanta can be conveniently described in terms
of quark fragmentation functions q → W±+ q′ and
q → Z0+ q. This issue has already been addressed
in the pioneering works1,2 and later in Refs.3,4,5,6. We
have, however, introduced three innovations that were
absent in the previous calculations known to the au-
thors.

First, we consider the fragmentation function as a
function of two (rather than one) kinematic vari-
ables, z and pT .
Second, we take into account phase space limita-
tions connected with nonzero W and Z masses and
nonzero pT . This may be especially important for
particle event generators7,8 running at the energies
of real colliders (and not at

√
s → ∞).

Third, we make distinction between two transverse
polarizations (the polarization vector may either lie
in the boson production plane or be perpendicular
to this plane).

Calculation

To calculate the quark to W fragmentation function,
we start with the process

e+e− → γ∗ → q̄ + q +W (1)
considered in the virtual photon rest frame.
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Figure 1:Feynman diagrams considered in the derivation of the
q → Wq′ or q → Zq fragmentation functions.

The diagrams constitute a gauge invariant subset of
all lowest order diagrams. When the input energy be-
comes large, the entire process can be factorized.
The fully differential cross section for the process (1)
reads

dσ(e+e− →W q q̄) = 1
2s

1
(2π)5

ds1 ds2 dϕ dψ d cos θ
32s

×
∣∣∣M(ee→ γ∗ →Wq q̄)

∣∣∣2, (2)
where s1 = (p1 + pW )2, s2 = (p2 + pW )2, and ϕ, ψ. θ
are three Euler’s angles.
The differential cross section of the ’prequel’ process
is

dσ(e+e−→ q q̄) = 1
2s

1
(2π)2

∣∣∣M(ee→γ∗ →q q̄)
∣∣∣2

×λ1/2(s,p∗2,m2
q)

8s dΩ , (3)
where p∗ is the momentum of the parent quark.
After dividing Eq.(2) by Eq.(3) we obtain

dD (q∗→Wq)= 1
(2π)3

1
4λ1/2(s,p∗2,m2

q)

∣∣∣M(γ∗→W q q̄)
∣∣∣2∣∣∣M(γ∗→q q̄)

∣∣∣2
×ds1ds2 dϕ dψ d cos θ. (4)

By introducing the light-cone variable z = p+
W/p

∗+ =
(EW + pW,||)/(E∗ + |p∗|) and integrating over all
other variables Eq.(4) can be reduced to the conven-

tional fragmentation function:
Dq/W (z) =

∫
D (q∗ → W q) δ(z − p+

W/p
∗+)

×ds1 ds2 dϕ dψ d cos θ. (5)
We also consider fragmentation function with un-
integrated pT dependence: D (z, pT ; s).
The phase space limitations make the fragmentation
function scale dependent. At low s, the scale de-
pendence mostly comes from a requirement that the
quark energy be large enough to produce a heavy bo-
son. At much higher energies, the scale dependense
is dominated by radiative corrections (not considered
in this note).

Numerical results

To be definite, we show the results obtained for quark
to W fragmentation, q → Wq′. To come from W
to Z one only has to change the boson mass and an
overall normalizing factor.
The plots show strong dependence on the input energy
s, which roughly determines the energy of the radiating
quark: E∗ ≃ |p∗| ≃ s/2.
– At low s, the lack of phase space pushes the fragmen-
tation function towards large z and makes the overall
probability small.
– At larger s, the fragmentation function tends to
smaller z and the overall normalization increases.
– Finally, at very high s, it restores the shape of
Weizsäcker-Williams approximation in full consistency
with the results1,2,7 (gray solid curves in Fig.2).

We separately show three different polarization
states of the bosons.
– Dashed curves, the transverse polarization vector
lies in the Wq production plane;
– Dotted curves, the transverse polarization per-
pendicular to the production plane;
– Dash-dotted curves, longitudinal polarization;
– Solid curves, the sum of all contributions.

Interesting Outcomes
– The transverse momentum is by far not negligible and can cause a substantial deviation of the produced boson from the direction of the parent quark.
– The phase space restrictions do dramatically affect the shape and the overall normalization of the effective W and Z spectra.
– A significant difference between two transverse polarization states of the produced bosons is observed.
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Figure 2:Behavior of Dq/W (z, pT ; s) as function of z.
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Figure 3:Transverse momentum distributions Dq/W (z, pT ; s).
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Figure 4:Double differential distributions for Dq/W (z, pT ; s).
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