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Motivation

We will discuss the recent development of the Field
Correlator Method (FCM), with applications to the most
interesting areas of QCD physics obtained in the lattice
data and experiment. These areas include:
a) the theory of the colormagnetic confinement at all
temperatures;
b) The theory of colormagnetic and colorelectric
interactions and their applications to QCD
thermodynamics also as for observable effects.



Field Cumulant method.

First steps

The aim is to find fundamental properties of the
vacuum configurations which ensure confinement, and
more technically, to introduce a formalism which enables
one to describe long-range processes in terms of
background-field vacuum correlators. At the present
stage no proof of the proposed approach can be given,
some assumptions can be however qualitatively checked
against experimental data and conventional wisdom.



Field Cumulant method.

Main statements

We assume that gluon fields can be decomposed into the
non-perturbative part and quantum fluctuations.

We assume that both non-perturbative gauge potentials
and non-perturbative fields strength’s are large in the
QCD scale

All physical amplitudes and Green functions are obtained
by averaging over background field configurations.

QCD vacuum correlation length is extremely small i.e we
are dealing with stochastic vacuum



Field Cumulant method.

What’s the price for that?

The area law in this model, Between colour charges!

<W (C ) >= exp(−σSmin)

σ =
1

2

∫
d2xD(x)(1 + O(FT 2

g ))

D(x) is some function that we will describe below,
O(FT 2

g ) is contribution of higher order cumulants. F is
gluon field strength, Tg - vacuum correlation length.



Field Cumulant method. Some illustrations.

Figure: The baryon in the FCM picture.



Field Cumulant method.Some illustrations.

Figure: The glueball in the FCM picture.



Field Cumulant method.Some illustrations.

Figure: The baryon in the FCM picture.



Field Cumulant method.Some illustrations.

Figure: The glueball in the FCM picture.



String tension important relations.

As a consequence of our assumption of very small
correlation length an important role in FCM plays bilocal
correlator (BC) of gluonic fields strength :

g2

Nc
< trf Φ(y , x)Fµν(x)Φ(x , y)Fλρ(y) >≡ Dµν,λρ(x , y)

Symbol <> means averaging over Yang-Mills action
S = 1

4g2

∫
d4x(F a

µν)

F a
µν = ∂µAν − ∂νAµ + gf abcAb

µA
c
ν , a = 1..N2

c − 1

Φ(x , y) = Pexp(i
∫ x

y
Aµdz

µ), µ = 1..4 is the Wilson line
in fundamental representation.



Strings tension main relations.
As for BC:

g2

Nc
< trf Φ(y , x)Fµν(x)Φ(x , y)Fλρ(y) >≡ Dµν,λρ(x , y)

We can write BC as follows:

Dµν,λρ(x , y) = (δµλδνρ − δµρδνλ)D(x − y) +

+
1

2
(
∂

∂xµ
(x − y)λδνρ + perm.))D1(x − y)

D(x − y),D1(x − y) - are scalar functions. We also can
add index E or H in D,D1 , because colormagnetic and
colour electric contributions separates in sense
<< EH >>= 0.



Strings tension main relations.

Functions DE ,H(x),DE ,H
1 (x) define all confining QCD

dynamics and in particular the string tensions:

σE = 1/2

∫
(d2z)i4D

E (z), σH = 1/2

∫
(d2z)ikD

H(z)

If we define a dependency of DE/H(z) with temperature
we will obtain string tension (σE/H) behaviour.



Strings tension main relations.

The most interesting fact is that at T > 0 σE (T ) and
σH(T ) = σs(T ) behave differently. Namely: σE (T )
displays a spectacular drop before T = Tc and
disappears above T = Tc , while in contrast to that
σs(T ) grows almost quadratically at large T

As a consequence tremendous differences in
colourmagnetic and colourelectric condensates
behaviours.



Gluelump and bilocal correlator of gluonic field
strength.

We need to find a connection between D(x) and so
called gluelump Green’s function.

For this purpose we rewrite the expression for BC in the
form:

g2

Nc
< trf Φ(y , x)Fµν(x)Φ(x , y)Fλρ(y) >=

=
g2

Nc
trf < F a

µν(x)[T aΦ(x , y)T bΦ(y , x ]Fλρ(y) >

The integration in the last expression is performed along
the straight line connecting the points x and y. Thus we
obtain the following expression:



Gluelump and bilocal correlator of gluonic field
strength.

Thus we obtain the following expression

2tr(T aΦ(x , y)T bΦ(y , x)) = Φab
adj(x , y),

and finally we have:

Dµν,λρ(x , y) =
g2

2N2
c

tradj < F a
µν(x)Φab

adj(x , y)F b
λρ(y) >

At the next step we need to find connection between BC
and so called gluelump Green’s functions .



Gluelump and bilocal correlator of gluonic field
strength.

Expanding Fµν into abelian (parentheses ) and
nonabelian parts:

Fµν = (∂µAν − ∂νAµ)− ig [Aµ,Aν ]

we can write BC as:

Dµν,λρ(x , y) = D0
µν,λρ(x , y) + D1

µν,λρ(x , y) + D2
µν,λρ(x , y)

where the number at the top of the letter D means
power minus two of coupling constant g.



Gluelump and bilocal correlator of gluonic field
strength.

For D0(x , y) we obtain:

D0
µν,λρ(x , y) =

g2

2N2
c

(
∂

∂xµ

∂

∂yν
G 1g (x , y) + perm.) + ∆0

µν,λρ

∆0
µν,λρ(x , y) contains contribution of higher field

cumulants, which we systematically discard.

We obtained the expression for one-gluelump Green
function:

G 1g
µν(x , y) =< tradj Âµ(x)Φ̂adj(x , y)Âν(y) >



Gluelump and bilocal correlator of gluonic field
strength.

G 1g
µν(x , y) =< tradj Âµ(x)Φ̂adj(x , y)Âν(y) >

From the physical point of view this equation describes
the gluon that is moving in the field of adjoint source.
Interaction between two objects in the adjoint
representation is leading to formation of the string that
according to Casimir scaling law found in the framework
of FCM.



Gluelump and bilocal correlator of gluonic field
strength.

Figure: One-gluelump Green function.Bold straight line is trajectory of
adjoint source that interacts with gluon (dashed line) through adjoint
string).



Gluelump and bilocal correlator of gluonic field
strength.
D2
µν,λρ(x , y) is of basic importance, since ensures

confinement via D(x-y) and is expressed via two-gluon
gluelump Green’s function G 2g (x , y).

The expression for D2
µν,λρ(x , y) reads as:

D2
µν,λρ(x , y) = − g4

2N2
c

< tradj([Aµ(x),Aν(x)]Φ̂(x , y)[Aλ(y),Aρ(y)]) >

Its immediately yields the following expression for D(x-y):

D(x − y) =
g4(N2

c − 1)

2
G 2gl(x , y)



Gluelump and bilocal correlator of gluonic field
strength.

Figure: Two-gluelump Green function. Continuous and dashed lines are
gluons trajectories. Bold straight line is trajectory of adjoint source.
Shaded domain is x-y plane that is perpendicular to z axes. Sides of
shaded triangle are fundamental strings.



Gluelump and bilocal correlator of gluonic field
strength.

Two- gluelump Green’s function at non-zero temperature
reads as:

G 2g (x − y ,T ) =

=

∫ ∞
0

ds

∫ ∞
0

ds̄

∫
Dwz4D

w z̄4

∫
D3zD3z̄exp(−S) <W (Czz̄) >

S =
1

4

∫ s

0

dτ(
dzµ
dτ

)2 +
1

4

∫ s̄

0

d τ̄(
dz̄µ
d τ̄

)2

The Wilson loop W (Czz̄) is averaged over gluon fields
along the paths z, z̄ in the field of a static adjoint source
with spatial coordinate ~r = (0, 0, 0) that moves along
z-axis entirely. This procedure leads to formation of
strings between gluons themselves and glouns and the
source.



Gluelump and bilocal correlator of gluonic field
strength.

One can calculate the part of the path integral in
temporal direction:

J4 ≡
∫

(Dz4)x4x4e
−K4 =

+∞∑
n=−∞

1

2
√
πs

e−
(nβ)2

4s

Js,s̄(s, s̄,T ) =
1

4π
√
ss̄
ϑ3(e−

1
4sT2 )ϑ3(e−

1
4s̄T2 )

Where we have used the relation:

+∞∑
n=−∞

e−
n2

4sT2 ≡ ϑ3(q), q = e−
1

4sT2



Gluelump and bilocal correlator of gluonic field
strength.

G 2g (x − y ,T ) =

∫ ∞
0

ds

∫ ∞
0

ds̄

∫
D3zD3z̄exp(−Sspatial)Js,s̄(s, s̄,T )

Sspatial - is a rest part of the action without fourth
component containing ”spatial” Wilson factor.

Changing s = t
2ω1
, s̄ = t

2ω2
,with third coordinate, as

”Euclidean time



Gluelump and bilocal correlator of gluonic field
strength.

Finally we obtain:

G 2g (t,T ) =
t

8π

∫ ∞
0

dω1

ω
3/2
1

∫ ∞
0

dω2

ω
3/2
2

∫
(D2z1)xy (D2z̄2)xy ·

·e−
∑

i=1,2 Ki (ωi )−Vtϑ3(e−
ω1

2tT2 )ϑ3(e−
ω2

2tT2 )

here label xy means xy-plane. For Ki(ωi), i , j = 1, 2:

Ki (ωi ) =

∫ t

0

dτE (
ωi

2
+
ωi

2
(
dxj
dτE

)2)



Gluelump and bilocal correlator of gluonic field
strength.

The potential of interaction between gluons themselves
and gluons with adjoint source reads as:

V (z , z̄) = σf (|~z |+ |~̄z |+ |~z − ~̄z |)

σf - is string tension in the fundamental representation.

So we have all ingredients to obtain the spatial string
tension!



Spatial string tension.

After very complicated calcualtions we have:

σs(T ) =
g4(T )(N2

c − 1)

4

∫
d2zz/(8π)

∫
dω1dω2(ω1ω2)−3/2

×
∑

n=0,1,

|ψn(0, 0)|2 exp(−Mn(ω1, ω2)z)f (
√
z/2ω1T )f (

√
z/2ω2T )



Running coupling

Figure: Behaviour of g(T )4

g(Tc )4 as a function of T
Tc

.

At temperatures much lower than Tc there is a freezing
of the running coupling.



Spatial string tension.

One can write σs(T ) after the averaging with respect to
ω1,2 and z in the following form:

σs(T ) = constg4(T ) < f 2(
√
z/(2ω)T ) >

σs(T ) = constg4(T )f 2(

√
z/2ωT )

σs(T ) = constg4(T )f 2(wT )

Lets test our arguments and try to find the value of w ,
that will describes the all lattice data for spatial string
tension.



Running coupling

Figure: Behaviour of g(T )4

g(Tc )4 as a function of T
Tc

.

At temperatures much lower than Tc there is a freezing
of the running coupling.



General expression for the spatial string tension
vs lattice data

Figure: Spatial string tension σs(T )/σ for SU(3) gauge theory as
function of T/Tc . The lattice data with errors are from G. Boyd et al.,(
Nucl. Phys. B 469), 419 (1996). Tc=270 MeV



Main results, And physical consequences.

We obtained color-magnetic string tension for various
temperatures. Even at very high(5Tc) temperatures the
colour-magnetic string doesn’t breaks

Non-perturbative dynamic and thermodynamic even at very big
temperatures!Additional scale

√
σs that is competed with T exists

Non-perturbative Debye-mass that proportional to
√
σ(T )

emerges.Colour-magnetic condensate still growing with
temperatures

Does colour-magnetic string never breaks?

Of course it breaks but at extremly high tempertures!



What’s about physical applications.
At temperatures above deconfinement transition we can
calculate thermodynamical potentials for QCD.It
decomposes into two parts, for gluons we obtain:

Pgl = 2(N2
c − 1)

∫ ∞
0

ds

s

∑
n=1,2..

G n(s).

Here s is the proper time, and for G n(s) one can obtain:

G n(s) =

∫
(Dz)ωonexp(−K )t̂r a <W a

Σ(Cn) >,

where K = 1
4

∫ s

0
dτ
(
dzµ

dτ

)2
, and W a

Σ(Cn) is the adjoint
Wilson loop defined for the gluon path Cn, which has
both temporal (i4) and spacial projections (ij), and t̂r a is
the normalized adjoint trace.



What’s about physical applications.

When T > Tc the correlation function between CE and CM fields
is rather week:

<< Ei (x)Φ(x , y)Bk(y)Φ(y , x) >>≈ 0

and therefore, the expression for the Wilson loops is factorized:

<W a
Σ(Cn) >= L

(n)
adj(T ) <W3 >

with L
(n)
adj ≈ Lnadj for T ≤ 1 GeV. One can integrate out the z4 part

of the path integral (Dz)ωon = (Dz4)ωonD
3z , with the result:

G (n)(s) = G
(n)
4 (s)G3(s)

G n
4 (s) =

∫
(Dz4)ωone

−KL
(n)
adj =

1

2
√

4πs
e−

n2

4T2s L
(n)
adj



What’s about physical applications.

The resulting gluon contribution is

Pgl =
2(N2

c − 1)√
4π

∫ ∞
0

ds

s3/2
G3(s)

∑
n=0,1,2,...

e−
n2

4T2s Lnadj ,

G3(s) =

∫
(D3z)xxe

−K3d < t̂r aW
a
3 >

The inclusion of colour-magnetic interaction leads to the
generation of a non-perturbative Debye mass MD for gluons and
quarks. For gluons Madj ∼

√
σH(T ), one can take it into account

by an approximate expression for 3d Green function :

G3(s) =
1

(4πs)3/2

√
(M2

adj)s

sinh(M2
adj)s



What’s about physical applications.
In the non-interacting case i.e. σH = 0 and Ladj = 1 one obtains
the ideal gas pressure:

Pgl = P0 =
(N2

c − 1)

45
π2T 4

For quarks one can write the expression in the same form, but

with the quark mass term e−m
2
qs :

Pf =
∑

q=u,d,s

Pq

Pq =
4Nc√

4π

∫ ∞
0

ds

s3/2
e−m

2
qsS3(s)

∑
n=1,2,...

(−)n+1e−
n2

4T2s Lnf

S3(s) =
1

(4πs)3/2

√
(M2

f )s

sinh(M2
f )s

,M2
adj =

9

4
M2

f , L
f
n = (Ladjn )4/9

And again in the case of massless non-interacting fermions one
obtains:

Pf = NcNf
7T 4

180



What’s about physical applications.

The full pressure reads as:

Ptot = Pf + Pgl

To include the effects of the baryon chemical potential we should
do the substitution:

Lnf → Lnf cosh(µn/T )

And the expression for the pressure reads as:

Pf =
∑

q=u,d,s

Pq

Pq =
4Nc√

4π

∫ ∞
0

ds

s3/2
e−m

2
qsS3(s)

∑
n=1,2,...

(−)n+1e−
n2

4T2s Lnf cosh(
µn

T
)

S3(s) =
1

(4πs)3/2

√
(M2

f )s

sinh(M2
f )s

,M2
adj =

9

4
M2

f , L
f
n = (Ladjn )4/9



Comparing with the lattice data .

Figure: The pressure in comparison with the lattice data.



Comparing with the lattice data .

Figure: The anomaly in QGP as a function of T/Tc . The grey band is
the lattice data of Borsanyi et al.



Comparing with the lattice data .

Figure: The speed of sound in QGP as a function of T/Tc . The grey
band is the lattice data of Borsanyi et al. and the striped band is the
lattice data from Bazavov et al.



Some remarks

CMC is an essential ingredient for QGP thermodynamics
description.

Even at high enough temperatures strong interaction is
still strong!

Some problems with Polyakov Line calculations.



Another way to test our assumptions!

Let’s calculate some observables in QGP. For example
currents!

In our technique we can calculate the axial current in
thermodynamic equilibrium in uniform magnetic field in presence
of chemical potential.So called chiral separation effect. In massless
case the expression for the axial current reads as:

j5z =
e2µ

2π2
Bz

µ - chemical potential, Bz -magnetic field.



Another way to test our assumptions!

For obtaining the expression for the axial current we need to
consider the lowest Landau level(LLL). In this case there is a
relation:

j5z = ±(ψ†LψL + ψ†RψR) = j0

and thus if we calculate charge density in the equilibrium on the
LLL we obtain the axial current!



Another way to test our assumptions!

The value of the axial current:

< j5z >T ,V = ∓NcT
eqBz

2π

∂

∂µ
(χ(µ) + χ(−µ))

where:

χ(µ) =

∫
dpz
2π

ln(1 + exp(
µ̃− Eσn⊥(B)

T
))

µ̃ = µ− V1(∞,T )/2

L = exp(−V1(∞,T )/2) (1)

Thus we have all ingredients to obtain the value for CSE.



Another way to test our assumptions!

Figure: CSE coefficient in comparison with the lattice data.
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