Current status of the Standard Model Effective Field Theory (SMEFT)

Eduard Boos SINP MSU

Grant RSCF 22-12-00152

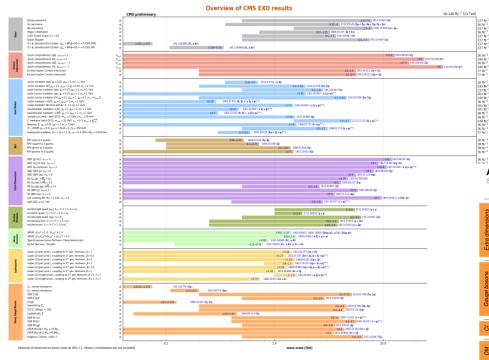
What is a scale of New physics?

Before the LHC start we knew a scale ~1 TeV from

No lose theorem!

From the unitariry of VV->VV (V: W,Z) amplitudes:

$$\left|\operatorname{Re}(a_{l})\right| \leq \frac{1}{2}$$

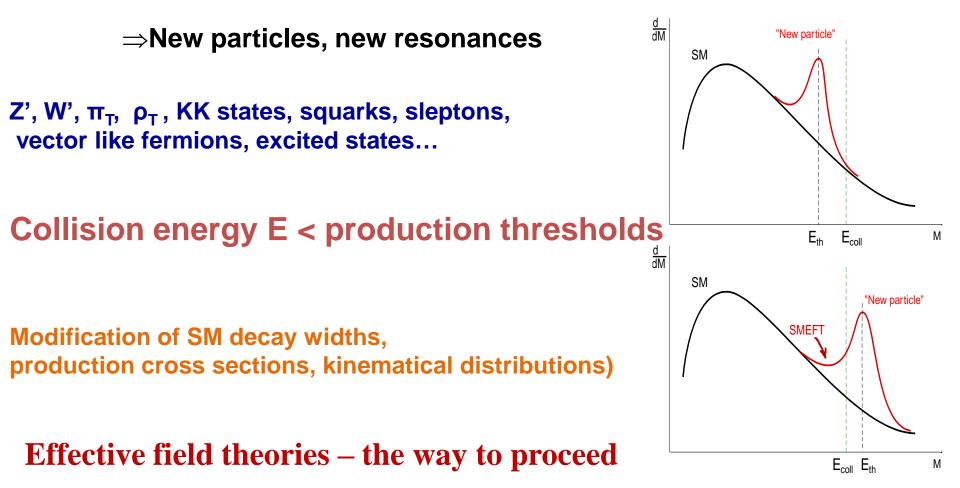

Either light Higgs
or $M_H \lesssim 710 \ {\rm GeV}$ New Physics at $\sqrt{s} \lesssim 1.2 \ {\rm TeV}$

The Higgs boson was found !

We do not have solid arguments for a new scale We do not know if a new scale (if exists) would be accessible at the LHC/FCC energies

Many limits already in TeV energy range

137 fb⁻¹ 36 fb⁻¹ 137 fb⁻¹ 36 fb⁻¹ 137 fb⁻¹ 137 fb⁻¹ 137 fb⁻¹ 137 fb⁻¹


	LAS Exotics S tus: May 2019 Model	earch ℓ,γ	es* - Jets†		ն CL ∫Հժե[fb	Upper Exclusion		$\int \mathcal{L} dt = (3$	ATL 3.2 – 139) fb ⁻¹	AS Preliminar $\sqrt{s} = 8, 13 \text{ TeV}$ Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q\\ \text{ADD non-resonant}\gamma\gamma\\ \text{ADD oBH}\\ \text{ADD BH high } \sum p_T\\ \text{ADD BH high } \sum p_T\\ \text{ADD BH multijet}\\ \text{RSI } G_{KK} \rightarrow \gamma\gamma\\ \text{Buik RS } G_{KK} \rightarrow WW/ZZ\\ \text{Buik RS } g_{KK} \rightarrow WW \rightarrow qqqq\\ \text{Buik RS } g_{KK} \rightarrow tr\\ \text{2UED } / \text{RP} \end{array}$	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ - \\ 2 \ \gamma \\ \hline \\ - \\ 2 \ \gamma \\ \hline \\ multi-channe \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4 j 2 j $\ge 2 j$ $\ge 3 j$ - 2 J $\ge 1 b, \ge 1 J/2$ $\ge 2 b, \ge 3 j$		36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	М ₀ M ₅ M ₆ M ₆ M ₆ M ₆ M ₆ M ₆ Gas mass Gas ma	4.1 TeV 2.3 TeV 1.6 TeV 3.8 TeV 1.8 TeV	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV	$\begin{array}{l} n=2 \\ n=3 \ \text{HLZ NLO} \\ n=6 \\ n=6, M_D=3 \ \text{TeV}, \text{rot BH} \\ n=0, M_D=3 \ \text{TeV}, \text{rot BH} \\ k/\overline{M} n_{\beta}=0.1 \\ k/\overline{M} n_{\beta}=1.0 \\ k/\overline{M} n_{\beta}=1.0 \\ \Gamma/m=15^{16} \\ \Pire(1.1), \mathbb{R}(A^{(1.1)} \to tr)=1 \end{array}$	1711.03301 1707.04147 1703.09127 1606.0265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \rightarrow \ell\ell \\ \text{SSM } Z' \rightarrow \tau\tau \\ \text{Laptophobic } Z' \rightarrow bb \\ \text{Laptophobic } Z' \rightarrow tt \\ \text{SSM } W' \rightarrow tr \\ \text{SSM } W' \rightarrow tr \\ \text{HVT } V' \rightarrow WZ \rightarrow qqqq \mbdel \\ \text{HVT } V' \rightarrow WH/2H \mbdel B \\ \text{LRSM } W_R \rightarrow tb \\ \text{LRSM } W_R \rightarrow \mu N_R \end{array}$	1 e, μ 1 τ		– – Yes Yes –	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	2' mass 2' mass 2' mass 2' mass W' mass V' mass V' mass W _g mass W _g mass U _g mass	5.1 T 2.42 TeV 2.1 TeV 3.0 TeV 3.0 TeV 3.6 TeV 2.63 TeV 2.63 TeV 3.25 TeV 3.7 TeV 3.5 TeV 3.25 TeV	1 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
CI	Cl qqqq Cl ffqq Cl tttt	_ 2 e,μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	– – Yes	37.0 36.1 36.1	Λ Λ Λ	2.57 TeV		21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{42} = 4\pi$	1703.09127 1707.02424 1811.02305
MQ	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac D $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM)	OM) 0 e,μ 0 e,μ	$\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \\ 1 \ b, 0\text{-}1 \ J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	M _{mod} M _{mod} M _e M _p	1.55 TeV 1.67 TeV 700 GeV 3.4 TeV		$\begin{array}{l} g_{q}{=}0.25, g_{\chi}{=}1.0, m(\chi) = 1 \mathrm{GeV} \\ g_{\pi}{=}1.0, m(\chi) = 1 \mathrm{GeV} \\ m(\chi) < 150 \mathrm{GeV} \\ y = 0.4, \lambda = 0.2, m(\chi) = 10 \mathrm{GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
70	Scalar LQ 1 st gen Scalar LQ 2 ^{sd} gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 µ 2 r 0-1 e,µ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass LQ mass LQ ^a mass LQ ^a mass	1.4 TeV 1.56 TeV 1.03 TeV 970 GeV		$\beta = 1$ $\beta = 1$ $\beta(LQ_3^v \rightarrow b\tau) = 1$ $\beta(LQ_3^d \rightarrow t\tau) = 0$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ\; TT \rightarrow Ht/Zt/Wb + X \\ VLQ\; BB \rightarrow Wt/Zb + X \\ VLQ\; T_{5/3}\; T_{5/3} T_{5/3} \rightarrow Wt + X \\ VLQ\; Y \rightarrow Wb + X \\ VLQ\; Y \rightarrow Wb + X \\ VLQ\; QQ \rightarrow WqWq \end{array} $	1 e, µ	el	Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass B mass T _{A13} mass Y mass B mass Q mass	1.37 TeV 1.34 TeV 1.64 TeV 1.64 TeV 1.85 TeV 1.21 TeV 690 GeV		$\begin{array}{l} & \mathrm{SU}(2) \ \mathrm{doublet} \\ & \mathrm{SU}(2) \ \mathrm{doublet} \\ & \mathcal{B}(T_{3(2)} \rightarrow Wt) = 1, \ c_R(T_{5(2)} Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ & \kappa_B = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton l^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2j 1j 1b,1j -		139 36.7 36.1 20.3 20.3	q' mass q' mass b' mass /' mass r' mass	5.3 1 2.6 TeV 3.0 TeV 1.6 TeV	3.7 TeV eV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles	1 e,μ 2 μ 2,3,4 e,μ (S 3 e,μ,τ - -	-	Yes 	79.8 36.1 20.3 36.1 36.1 34.4	N ⁶ mass 56 N _P mass H** mass H** mass 400 GeV multi-charged particle mass morpole mass	0 GeV 3.2 TeV 870 GeV 1.22 TeV 2.37 TeV		$\begin{split} m(W_{\rm R}) &= 4.1 \text{ TeV}, g_L = g_{\rm R} \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(\mathcal{H}_{L^{\pm}}^{\pm \pm} \rightarrow \ell \tau) = 1 \\ \text{DY production}, \mathcal{g} = 5e \\ \text{DY production}, \mathcal{g} = 1g_D, \text{spin } 1/2 \end{split}$	ATLAS-CONF-2018-021 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130

Only a selection of the available mass limits on new states or phe

†Small-radius (large-radius) jets are denoted by the letter j (J).

Two possibilities to search for BSM

Collision energy E > production thresholds

The main idea – integrating out heavy degrees of freedom

 $\phi_{\rm H}$ – heavy degrees of freedom , ${\rm M}\phi_{\rm H} \ge \Lambda$

 ϕ_L – light degrees of freedom , $M\phi_L$ << Λ

EFT

UV full theory

integrating out = integrating over

 $Z_{UV}[J_L, J_H] = \int [D\phi_L][D\phi_H] \exp \left[i \int d^4x \left[L_{UV}(\phi_L, \phi_H) + J_L \phi_L + J_H \phi_H\right]\right]$

 $Z_{EFT}[J_L] = Z_{UV}[J_L, 0] = \int [D\phi_L] \exp \left[i \int d^4x \left[L_{EFT}(\phi_L) + J_L \phi_L \right] \right]$

$L_{EFT}(\phi_L)$ is a point like Lagrangian

Obvious for integrating out heavy bosons (like in integrating out W, Z in Fermi 4-fermion theory)

$$L = \frac{G_F}{\sqrt{2}} \bar{\mu} \gamma_\sigma (1 - \gamma_5) \nu_\mu \bar{e} \gamma_\sigma (1 - \gamma_5) \nu_e + h.e.$$

tree-generated [TG] operators

Arzt, C, M. B. Einhorn, and J. WudkaNucl. Phys. B 433, 41–66 (1995)

Less obvious for integrating out heavy fermions The decoupling theorem

T. Appelquist, J. Carazzone, Phys. Rev. D11, 2856 (1975)

For any 1PI Feynman graph with external vector mesons only but containing internal fermions, when all external momenta (i.e. p²) are small relative to M², then apart from coupling constant and field strength renormalization the graph will be suppressed by some power of m relative to a graph with the same number of external vector mesons but no internal fermions.

loop-generated [LG] operators

Einhorn, Martin, Wudka (2013), Nucl. Phys. B 876, 556–574

SM Effective Field Theory (SMEFT)

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i,d>4} \frac{c_i^{(d)}(\mu)}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

c_i ^(d) - dimensionless coefficients
 O_i ^(d) - operators constructed from SM fields preserving
 SM gauge invariance, and (optionally) other symmetries

S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979)

W. Buchmuller and D. Wyler, Nucl. Phys. B268, 621 (1986)

There is only one dim-5 operator which violates lepton number conservation (Weinberg operator). Corresponding Wilson coefficient is strongly suppressed

 $\begin{pmatrix} \overline{L_{L\alpha}^c} \widetilde{H}^* \end{pmatrix} \begin{pmatrix} \widetilde{H}^{\dagger} L_{L\beta} \end{pmatrix} + \text{h.c.} \qquad \mathsf{C}^{(5)} / \Lambda \leq 10^{-15} \text{ GeV}^{-1} \text{ from neutrino mass differences}$ $L_L = (\nu_L, \ell_L)^T \quad \widetilde{H} = i\sigma_2 H^*$

Assumptions

- Lorenz and Poincare invariance, point like Lagrangian
- gauge group is the SM gauge group $SU(3)_c \ge SU(2)_L \ge U(1)_Y$ and the linear realization of the mechanism of electroweak symmetry breaking
- the only remaining degrees of freedom are the SM fields
- the scale of New physics $\Lambda >> v_{SM}$
- -various assumptions on flavor structure (MVF, $U(3)^5...$)

Several issues

Operator basis ?

Squired terms $(1/\Lambda^2)^2$?

NLO corrections ?

Unitarity and validity of computation for particular observables ?

Operator basis

Operator basis, all operators allowed by the symmetries and then reduced using equations of motion (field redefinition), integration by parts identities, and Fierz transformations

At dimension-6 there are 59 (Warsaw basis) independent CP conserving operators for one generation of fermions excluding baryon and lepton number violating operators

(There are about 80 operators in the original Buchmuller-Wyler basis)

B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, JHEP 10 (2010) 085

Number gauge-invariant operators is 84 for 1 generation of fermions, 76 baryon- and lepton-number conserving operators, 59 CP conserving operators B. Henning, X. Lu, T. Melia, and H. Murayama 1512.03433, JHEP 09, 019 (2019)

2499 dimension-6 operators for three generations (1350 of which CP-even and 1149 CP-odd) Global SMEFT fit will have to explore a huge parameter space with potentially a large number of flat directions.

R. Alonso, E. E. Jenkins, A. V. Manohar, and M. Trott, JHEP 04 (2014) 159

One can split all the operators on symmetry preserve (B and L number, FCNC) and symmetry violating sectors (much suppressed Wilson coefficients).

Simple example

Model: $L = \frac{1}{2} (\partial_{\mu} \varphi)^2 - \frac{1}{4} \lambda \varphi^4$

Equation of motion: $\partial_{\mu} \partial^{\mu} \phi + \lambda \phi^3 = 0$

Operators at D=6 : ϕ^6 ; $(\partial^2 \phi)^2$; $\phi^2 (\partial \phi)^2$

How many independent operators?

Simple example

Model: $L = \frac{1}{2} (\partial_{\mu} \varphi)^2 - \frac{1}{4} \lambda \varphi^4$

Equation of motion: $\partial_{\mu} \partial^{\mu} \phi + \lambda \phi^3 = 0$

Operators at D=6 : ϕ^6 ; $(\partial^2 \phi)^2$; $\phi^2 (\partial \phi)^2$

How many independent operators?

1.
$$(\partial^2 \phi)^2 - \lambda^2 \phi^6 = (\partial^2 \phi - \lambda \phi^3) (\partial^2 \phi + \lambda \phi^3) = 0$$

 $2. \ 0 = \partial^{\mu}(\phi \ \phi^2 \ \partial_{\mu} \phi) = \phi^2 \ (\partial_{\mu} \phi)^2 + \phi \ \partial^{\mu} \ (\phi^2 \ \partial_{\mu} \phi) = 3 \ \phi^2 \ (\partial \phi)^2 + \phi^3 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^2 \ (\partial \phi)^2 \ - \lambda \ \phi^6 \ \partial^2 \phi = 3 \ \phi^6 \ \partial^2 \phi$

Both operators $(\partial^2 \phi)^2$ and $\phi^2 (\partial \phi)^2$ are equivalent to the operator $\lambda \phi^6$

'Warsaw' basis

B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, JHEP 10 (2010) 085

15 4-boson operators; **19** 2-boson&2-fermion operators

$1: X^{3}$		$2: H^{6}$		$3: H^4 D^2$			$5:\psi^2H^3+{\rm h.c.}$	
Q_G .	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H ($H^{\dagger}H)^{3}$	$Q_{H\square}$	$(H^{\dagger}H$	$)\Box(H^{\dagger}H)$	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$
$Q_{\widetilde{G}}$.	$f^{ABC}\tilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$			Q_{HD}	$(H^{\dagger}D_{\mu}H$	$\left(H^{\dagger}D_{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$
Q_W e	$E^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$						Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$
$Q_{\widetilde{W}}$ e	$E^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$							
	$4: X^2 H^2$	6	$\delta:\psi^2 XH$	+ h.c.			$7:\psi^2H^2$	D
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} \epsilon$	$\sigma^{I}HW$	$\tau I \\ \mu \nu$	$Q_{Hl}^{(1)}$	$(H^{\dagger}i\overleftarrow{I}$	$\vec{D}_{\mu}H)(\bar{l}_p\gamma^{\mu}l_r)$
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu i})$	$(e_r)HB_{\mu}$	ν	$Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}$	$(\bar{l}_{p}\sigma^{I}\gamma^{\mu}l_{r})$
Q_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$(A^A u_r) \widetilde{H} $	$\sigma^A_{\mu u}$	Q_{He}	$(H^{\dagger}i\overleftarrow{I}$	$\overrightarrow{O}_{\mu}H)(\overline{e}_{p}\gamma^{\mu}e_{r})$
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u$	$(u_r)\sigma^I \widetilde{H} W$	$V^{I}_{\mu u}$	$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftarrow{I}$	$\overrightarrow{D}_{\mu}H)(\overline{q}_p\gamma^{\mu}q_r)$
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu})$	$(u_r)\widetilde{H} B_\mu$	ν	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{q}_{p}\sigma^{I}\gamma^{\mu}q_{r})$
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$(A^A d_r) H C$	$F_{\mu u}^{A}$	Q_{Hu}	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{\partial}_{\mu}H)(\overline{u}_{p}\gamma^{\mu}u_{r})$
Q_{HWB}	$H^{\dagger}\sigma^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} a)$	$l_r)\sigma^I H W$	$\Gamma^{I}_{\mu u}$	Q_{Hd}	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{\mathcal{O}}_{\mu}H)(\overline{d}_p\gamma^{\mu}d_r)$
$Q_{H\widetilde{W}B}$	$H^{\dagger}\sigma^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu \iota})$	$(d_r)HB_{\mu}$	ιν (Q_{Hud} + h.c.	$i(\widetilde{H}^{\dagger}L$	$(\bar{u}_p \gamma^\mu d_r)$

25 4-fermion operators

	$8:(\bar{L}L)(\bar{L}L)$		$8:(\bar{R}R)(\bar{R}R)$		$8:(\bar{L}L)(\bar{R}R)$
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \sigma^I q_r) (\bar{q}_s \gamma^\mu \sigma^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \sigma^I l_r) (\bar{q}_s \gamma^\mu \sigma^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$

$8:(\bar{L}I)$	$R(\bar{R}L) + h.c.$	8	$(\bar{L}R)(\bar{L}R) + h.c.$
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_{tj})$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \epsilon_{jk} (\bar{q}_s^k d_t)$
		$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$
		$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t)$
		$Q_{lequ}^{(3)}$	$(\bar{l}^j_p \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}^k_s \sigma^{\mu\nu} u_t)$

SMEFT in the TOP sector

28 operators are involved directly to the top sector

2-Quark Operators (9)

$$\begin{split} ^{\ddagger}O_{u\varphi}^{(ij)} &= \bar{q}_{i}u_{j}\tilde{\varphi}\left(\varphi^{\dagger}\varphi\right),\\ O_{\varphi q}^{1(ij)} &= (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{i}\gamma^{\mu}q_{j}),\\ O_{\varphi q}^{3(ij)} &= (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{j}),\\ O_{\varphi u}^{(ij)} &= (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{i}\gamma^{\mu}u_{j}),\\ ^{\ddagger}O_{\varphi u d}^{(ij)} &= (\tilde{\varphi}^{\dagger}iD_{\mu}\varphi)(\bar{u}_{i}\gamma^{\mu}d_{j}),\\ ^{\ddagger}O_{uW}^{(ij)} &= (\bar{q}_{i}\sigma^{\mu\nu}\tau^{I}u_{j})\,\tilde{\varphi}W_{\mu\nu}^{I},\\ ^{\ddagger}O_{dW}^{(ij)} &= (\bar{q}_{i}\sigma^{\mu\nu}\tau^{I}d_{j})\,\varphi W_{\mu\nu}^{I},\\ ^{\ddagger}O_{uB}^{(ij)} &= (\bar{q}_{i}\sigma^{\mu\nu}T^{A}u_{j})\,\tilde{\varphi}B_{\mu\nu},\\ ^{\ddagger}O_{uG}^{(ij)} &= (\bar{q}_{i}\sigma^{\mu\nu}T^{A}u_{j})\,\tilde{\varphi}G_{\mu\nu}^{A}, \end{split}$$

4-Quark Operators (11)

$$\begin{split} &O_{qq}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j) (\bar{q}_k \gamma_{\mu} q_l), \\ &O_{qq}^{3(ijkl)} = (\bar{q}_i \gamma^{\mu} \tau^I q_j) (\bar{q}_k \gamma_{\mu} \tau^I q_l), \\ &O_{qu}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j) (\bar{u}_k \gamma_{\mu} u_l), \\ &O_{qu}^{8(ijkl)} = (\bar{q}_i \gamma^{\mu} T^A q_j) (\bar{u}_k \gamma_{\mu} T^A u_l), \\ &O_{qd}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} T^A q_j) (\bar{d}_k \gamma_{\mu} d_l), \\ &O_{qd}^{8(ijkl)} = (\bar{q}_i \gamma^{\mu} T^A q_j) (\bar{d}_k \gamma_{\mu} u_l), \\ &O_{uu}^{(ijkl)} = (\bar{u}_i \gamma^{\mu} u_j) (\bar{u}_k \gamma_{\mu} u_l), \\ &O_{ud}^{1(ijkl)} = (\bar{u}_i \gamma^{\mu} u_j) (\bar{d}_k \gamma_{\mu} d_l), \\ &O_{ud}^{8(ijkl)} = (\bar{u}_i \gamma^{\mu} T^A u_j) (\bar{d}_k \gamma_{\mu} d_l), \\ &\delta_{ud}^{8(ijkl)} = (\bar{q}_i u_j) \varepsilon (\bar{q}_k d_l), \\ & ^{\ddagger} O_{quqd}^{8(ijkl)} = (\bar{q}_i T^A u_j) \varepsilon (\bar{q}_k T^A d_l), \end{split}$$

Aguilar Saavedra et al.,1802.07237

2-Quark-2-Lepton Operators (8)

$$\begin{split} O_{lq}^{1(ijkl)} &= (\bar{l}_i \gamma^{\mu} l_j) (\bar{q}_k \gamma^{\mu} q_l), \\ O_{lq}^{3(ijkl)} &= (\bar{l}_i \gamma^{\mu} \tau^I l_j) (\bar{q}_k \gamma^{\mu} \tau^I q_l), \\ O_{lu}^{(ijkl)} &= (\bar{l}_i \gamma^{\mu} l_j) (\bar{u}_k \gamma^{\mu} u_l), \\ O_{eq}^{(ijkl)} &= (\bar{e}_i \gamma^{\mu} e_j) (\bar{q}_k \gamma^{\mu} q_l), \\ O_{eu}^{(ijkl)} &= (\bar{e}_i \gamma^{\mu} e_j) (\bar{u}_k \gamma^{\mu} u_l), \\ ^{\dagger}O_{lequ}^{1(ijkl)} &= (\bar{l}_i e_j) \varepsilon (\bar{q}_k u_l), \\ ^{\ddagger}O_{lequ}^{3(ijkl)} &= (\bar{l}_i \sigma^{\mu\nu} e_j) \varepsilon (\bar{q}_k \sigma_{\mu\nu} u_l), \\ ^{\ddagger}O_{lequ}^{(ijkl)} &= (\bar{l}_i e_j) (\bar{d}_k q_l), \end{split}$$

Notations $\mathcal{L} = \sum_{a} \left(\frac{C_a}{\Lambda^2} {}^{\ddagger} O_a + \text{h.c.} \right) + \sum_{b} \frac{C_b}{\Lambda^2} O_b$

In addition 5 baryon- and lepton-number-violating operators:

$${}^{\ddagger}O_{duq}^{(ijkl)} = (\overline{d^{c}}_{i\alpha}u_{j\beta})(\overline{q^{c}}_{k\gamma}\varepsilon l_{l}) \ \epsilon^{\alpha\beta\gamma},$$

$${}^{\ddagger}O_{qqu}^{(ijkl)} = (\overline{q^{c}}_{i\alpha}\varepsilon q_{j\beta})(\overline{u^{c}}_{k\gamma}e_{l}) \ \epsilon^{\alpha\beta\gamma},$$

$$\begin{split} ^{\ddagger}O_{qqq}^{1(ijkl)} &= (\overline{q^{c}}_{i\alpha}\varepsilon q_{j\beta})(\overline{q^{c}}_{k\gamma}\varepsilon l_{l}) \ \epsilon^{\alpha\beta\gamma}, \\ ^{\ddagger}O_{qqq}^{3(ijkl)} &= (\overline{q^{c}}_{i\alpha}\tau^{I}\varepsilon q_{j\beta})(\overline{q^{c}}_{k\gamma}\tau^{I}\varepsilon l_{l}) \ \epsilon^{\alpha\beta\gamma}, \\ ^{\ddagger}O_{duu}^{(ijkl)} &= (\overline{d^{c}}_{i\alpha}u_{j\beta})(\overline{u^{c}}_{k\gamma}e_{l}) \ \epsilon^{\alpha\beta\gamma}, \end{split}$$

Squired terms $(1/\Lambda^2)^2$

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \sum_{j} \frac{C_{j}^{(8)}}{\Lambda^{4}} O_{j}^{(8)} + \dots$$

$$\sigma = \sigma^{\text{SM}} + \sum_{i} \left(\frac{c_{i}^{(6)}}{\Lambda^{2}} \sigma_{i}^{(6 \times \text{SM})} + \text{h.c.} \right) + \sum_{ij} \frac{c_{i}^{(6)} c_{j}^{(6)*}}{\Lambda^{4}} \sigma_{ij}^{(6 \times 6)} + \sum_{j} \left(\frac{c_{j}^{(8)}}{\Lambda^{4}} \sigma_{j}^{(8 \times \text{SM})} + \text{h.c.} \right) + \dots$$

1. Without an operator basis at dimension eight for the higher-dimensional contribution, it is not possible to calculate the fulll term of $1/\Lambda^4$, and it should thus be treated as an uncertainty.

2. In some cases, the interference between SM amplitudes and EFT ones could be suppressed (for instance, for certain helicities) or even vanishingly small (for instance, in the case of FCNCs). The dominant contribution could then arise at the quadratic level.

3. Repeat this procedure twice, with and without including the quadratic EFT contributions. The comparison between those two sets of results can explicitly establish where quadratic dimension-six EFT contributions are subleading compared to linear ones.

But the problem is even more involved since the SMEFT contributions come from production, from decay, and from the width in Breit-Wiegner denominator

SMEFT at NLO

$$\sigma(\mu_0) = \sigma_{SM} + \sum_i \frac{1 \text{TeV}^2}{\Lambda^2} C_i(\mu_0) \sigma_i(\mu_0) + \sum_{i,j} \frac{1 \text{TeV}^4}{\Lambda^4} C_i(\mu_0) C_j(\mu_0) \sigma_{ij}(\mu_0)$$

EFT with Dim 6, 8 ... operators formally are not renormalizable. But the renormalization can be performed consistently in each order in $1/\Lambda^2$. Due the gauge invariance and other symmetries the counter-terms have the same structure as the original operators. Because of NLO QCD and EW corrections the operators are mixed.

M. Ghezzi, R. Gomez-Ambrosio, G. Passarino and S. Uccirati, 1505.03706 C. Hartmann and M. Trott, 1507.03568

59×59 anomalous dimension mixing matrix for the Wilson coefficients

E. E. Jenkins, A. V. Manohar and M. Trott, 1308.2627, 1310.4838

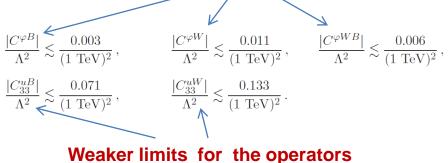
Directions of studies

- 1. Limits on Wilson coefficients of the operators contributing to certain process/processes
- 2. Global analysis (concrete operator may contribute to different processes, several operator may contribute to the same process)
- 3. Limits on a concrete set of operators following from a certain UV model

NLO corrections to h $\rightarrow \gamma \gamma$ decay in SMEFT

Dedes, Paraskevas, Rosiek, Suxho, Trifyllis, 1805.00302

$$\mathcal{R}_{h \to \gamma \gamma} = \frac{\Gamma(\text{SMEFT}, h \to \gamma \gamma)}{\Gamma(\text{SM}, h \to \gamma \gamma)} \equiv 1 + \delta \mathcal{R}_{h \to \gamma \gamma}$$


$$\Gamma(\mathrm{SM}, h \to \gamma \gamma) = \frac{G_F \, \alpha_{\mathrm{EM}}^2 \, M_h^3}{128\sqrt{2}\pi^3} \, |I_{\gamma\gamma}|^2 \qquad I_{\gamma\gamma} \equiv I_{\gamma\gamma}(r_f, r_W) = \sum_f Q_f^2 N_{c,f} A_{1/2}(r_f) - A_1(r_W)$$

$$A_{1/2}(r_f) = 2r_f [1 + (1 - r_f)f(r_f)], \qquad f(r) = \begin{cases} \arccos^2(\frac{1}{\sqrt{r}}), & r \ge 1, \\ -\frac{1}{4} \left[\log(\frac{1 + \sqrt{1 - r}}{1 - \sqrt{1 - r}}) - i\pi\right]^2, & r_f \equiv \frac{4m_f^2}{M_h^2}, \quad r_W \equiv \frac{4M_W^2}{M_h^2} \end{cases}$$

$$\begin{split} \delta \mathcal{R}_{h \to \gamma \gamma} &= \sum_{i=1}^{6} \delta \mathcal{R}_{h \to \gamma \gamma}^{(i)} \simeq 0.06 \left(\frac{C_{1221}^{\ell \ell} - C_{11}^{\varphi \ell (3)} - C_{22}^{\varphi \ell (3)}}{\Lambda^2} \right) + 0.12 \left(\frac{C^{\varphi \Box} - \frac{1}{4} C^{\varphi D}}{\Lambda^2} \right) \\ &- 0.01 \left(\frac{C_{22}^{e \varphi} + 4 C_{33}^{e \varphi} + 5 C_{22}^{u \varphi} + 2 C_{33}^{d \varphi} - 3 C_{33}^{u \varphi}}{\Lambda^2} \right) \\ &- \left[48.04 - 1.07 \log \frac{\mu^2}{M_W^2} \right] \frac{C^{\varphi B}}{\Lambda^2} - \left[14.29 - 0.12 \log \frac{\mu^2}{M_W^2} \right] \frac{C^{\varphi W}}{\Lambda^2} \\ &+ \left[26.62 - 0.52 \log \frac{\mu^2}{M_W^2} \right] \frac{C^{\varphi W B}}{\Lambda^2} \\ &+ \left[0.16 - 0.22 \log \frac{\mu^2}{M_W^2} \right] \frac{C_{33}^{u \varphi}}{\Lambda^2} + \left[1.13 - 0.45 \log \frac{\mu^2}{M_W^2} \right] \frac{C_{33}^{u W}}{\Lambda^2} \\ &- \left[0.03 + 0.01 \log \frac{\mu^2}{M_W^2} \right] \frac{C_{22}^{u B}}{\Lambda^2} - \left[0.01 + 0.00 \log \frac{\mu^2}{M_W^2} \right] \frac{C_{22}^{u W}}{\Lambda^2} \\ &+ \left[0.03 + 0.01 \log \frac{\mu^2}{M_W^2} \right] \frac{C_{33}^{d B}}{\Lambda^2} - \left[0.02 + 0.01 \log \frac{\mu^2}{M_W^2} \right] \frac{C_{33}^{d W}}{\Lambda^2} \\ &+ \left[0.02 + 0.00 \log \frac{\mu^2}{M_W^2} \right] \frac{C_{33}^{e B}}{\Lambda^2} - \left[0.01 + 0.00 \log \frac{\mu^2}{M_W^2} \right] \frac{C_{33}^{d W}}{\Lambda^2} + \dots , \end{split}$$

 $\mu = M_W$

Largest corrections and strongest limits for the operators appeared at tree level

appeared at loop level

NLO corrections to $h \rightarrow bb$ decay in SMEFT

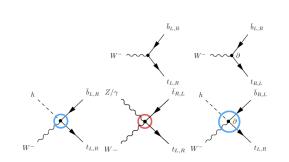
Cullen, Pecjak, Scott 1904.06358

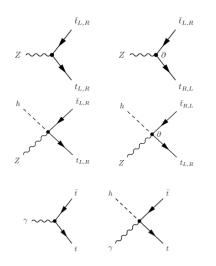
$$\Gamma(h \to b\bar{b}) \equiv \Gamma = \Gamma^{(0)} + \Gamma^{(1)}$$

$$\begin{split} V^{\rm SM}(H) &= \lambda (H^{\dagger}H - v^2/2)^2 \qquad \langle H^{\dagger}H \rangle \equiv \frac{1}{2} v_T^2 = \frac{v^2}{2} \left(1 + \frac{3C_H \hat{v}_T^2}{4\lambda} \right) \quad Q_H = (H^{\dagger}H)^3 \\ \mu \frac{d}{d\mu} C_i(\mu) &= \sum_j \gamma_{ij} C_j \qquad \tilde{C}_i(\mu) \equiv \Lambda_{\rm NP}^2 C_i(\mu) \qquad \hat{v}_T \equiv \frac{2M_W \hat{s}_w}{e} \\ \Gamma^{(4,0)} &= \frac{N_c m_H m_b^2}{8\pi \hat{v}_T^2} \,, \\ \Gamma^{(6,0)} &= 2\Gamma^{(4,0)} \left[C_{H\square} - \frac{C_{HD}}{4} \left(1 - \frac{\hat{c}_w^2}{\hat{s}_w^2} \right) + \frac{\hat{c}_w}{\hat{s}_w} C_{HWB} - \frac{\hat{v}_T}{m_b} \frac{C_{bH}}{\sqrt{2}} \right] \hat{v}_T^2 \end{split}$$

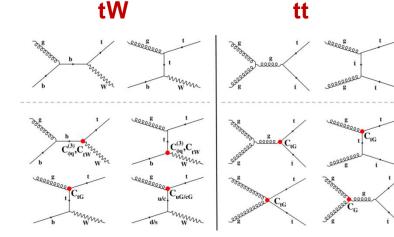
Size of relevant NLO corrections to different terms in LO decay width

	\mathbf{SM}	\tilde{C}_{HWB}	$\tilde{C}_{H\square}$	\tilde{C}_{bH}	\tilde{C}_{HD}
NLO QCD-QED					
NLO large- m_t	-3.1%	-4.6%	3.2%	3.5%	-9.0%
NLO remainder	-2.2%	-1.9%	-1.2 %	0.6%	-2.0%
NLO correction	12.9%	11.3%	20.2%	22.3%	7.1%


SMEFT operators lead to additional vertexes (i=j=3)


$$\begin{aligned} \mathcal{L}_{gtt} &= -g_s \bar{t} \, \frac{\lambda^a}{2} \gamma^\mu t \; G^a_\mu - g_s \bar{t} \, \lambda^a \frac{i \sigma^{\mu\nu} q_\nu}{m_t} \left(d^g_V + i d^g_A \gamma_5 \right) t \; G^a_\mu \\ & ^{\ddagger} O^{(ij)}_{uG} = \left(\bar{q}_i \sigma^{\mu\nu} T^A u_j \right) \tilde{\varphi} G^A_{\mu\nu} \end{aligned}$$

$$\begin{split} \mathfrak{L} &= \frac{g}{\sqrt{2}} \bar{\mathbf{b}} \gamma^{\mu} \left(f_{\mathbf{V}}^{\mathbf{L}} P_{\mathbf{L}} + f_{\mathbf{V}}^{\mathbf{R}} P_{\mathbf{R}} \right) \mathbf{t} W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{\mathbf{b}} \frac{\sigma^{\mu\nu} \partial_{\nu} W_{\mu}^{-}}{M_{\mathbf{W}}} \left(f_{\mathbf{T}}^{\mathbf{L}} P_{\mathbf{L}} + f_{\mathbf{T}}^{\mathbf{R}} P_{\mathbf{R}} \right) \mathbf{t} + \mathbf{h.c.} \\ &^{\dagger} O_{u\varphi}^{(ij)} = \bar{q}_{i} u_{j} \tilde{\varphi} \left(\varphi^{\dagger} \varphi \right), \\ &^{\dagger} O_{\varphi u d}^{(ij)} = \left(\tilde{\varphi}^{\dagger} i D_{\mu} \varphi \right) \left(\bar{u}_{i} \gamma^{\mu} d_{j} \right), \\ &^{\dagger} O_{uW}^{(ij)} = \left(\bar{q}_{i} \sigma^{\mu\nu} \tau^{I} u_{j} \right) \tilde{\varphi} W_{\mu\nu}^{I} \\ &^{\dagger} O_{dW}^{(ij)} = \left(\bar{q}_{i} \sigma^{\mu\nu} \tau^{I} d_{j} \right) \varphi W_{\mu\nu}^{I} \end{split}$$


$$\mathcal{L}_{Ztt} = -\frac{g}{2c_W} \bar{t} \gamma^{\mu} \left(X_{tt}^L P_L + X_{tt}^R P_R - 2s_W^2 Q_t \right) t Z_{\mu} - \frac{g}{2c_W} \bar{t} \frac{i\sigma^{\mu\nu}q_{\nu}}{M_Z} \left(d_V^Z + id_A^Z \gamma_5 \right) t Z_{\mu} , \mathcal{L}_{\gamma tt} = -eQ_t \bar{t} \gamma^{\mu} t A_{\mu} - e\bar{t} \frac{i\sigma^{\mu\nu}q_{\nu}}{m_t} \left(d_V^{\gamma} + id_A^{\gamma} \gamma_5 \right) t A_{\mu}$$

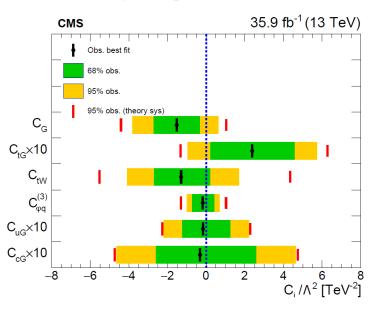
$$\begin{array}{l} O^{1(ij)}_{\varphi q} = (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{q}_{i} \gamma^{\mu} q_{j}), & ^{\ddagger} O^{(ij)}_{uW} = (\bar{q}_{i} \sigma^{\mu\nu} \tau^{I} u_{j}) \, \tilde{\varphi} W^{I}_{\mu\nu}, \\ O^{3(ij)}_{\varphi q} = (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{j}), & ^{\ddagger} O^{(ij)}_{uB} = (\bar{q}_{i} \sigma^{\mu\nu} u_{j}) \quad \tilde{\varphi} B_{\mu\nu}, \\ O^{(ij)}_{\varphi u} = (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{u}_{i} \gamma^{\mu} u_{j}), & ^{\ddagger} O^{(ij)}_{uB} = (\bar{q}_{i} \sigma^{\mu\nu} u_{j}) \quad \tilde{\varphi} B_{\mu\nu}, \end{array}$$

Top quark pair (tt) and single top quark in association with a W boson (tW)

$$\begin{split} O_{\phi q}^{(3)} &= (\phi^{+}\tau^{i}D_{\mu}\phi)(\overline{q}\gamma^{\mu}\tau^{i}q), \qquad \qquad L_{eff} = \frac{C_{\phi q}^{(3)}}{\sqrt{2}\Lambda^{2}}gv^{2}\overline{b}\gamma^{\mu}P_{L}tW_{\mu}^{-} + h.c., \\ O_{tW} &= (\overline{q}\sigma^{\mu\nu}\tau^{i}t)\tilde{\phi}W_{\mu\nu}^{i}, \qquad \qquad L_{eff} = -2\frac{C_{tW}}{\Lambda^{2}}v\overline{b}\sigma^{\mu\nu}P_{R}t\partial_{\nu}W_{\mu}^{-} + h.c., \\ O_{tG} &= (\overline{q}\sigma^{\mu\nu}\lambda^{a}t)\tilde{\phi}G_{\mu\nu}^{a}, \qquad \qquad L_{eff} = \frac{C_{tG}}{\sqrt{2}\Lambda^{2}}v(\overline{t}\sigma^{\mu\nu}\lambda^{a}t)G_{\mu\nu}^{a} + h.c., \\ O_{G} &= f_{abc}G_{\mu}^{a\nu}G_{\nu}^{b\rho}G_{\rho}^{c\mu}, \qquad \qquad L_{eff} = \frac{C_{G}}{\Lambda^{2}}f_{abc}G_{\mu}^{a\nu}G_{\nu}^{b\rho}G_{\rho}^{c\mu}, \\ O_{u(c)G} &= (\overline{q}\sigma^{\mu\nu}\lambda^{a}t)\tilde{\phi}G_{\mu\nu}^{a}, \qquad \qquad L_{eff} = \frac{C_{u(c)G}}{\sqrt{2}\Lambda^{2}}v(\overline{u}(\overline{c})\sigma^{\mu\nu}\lambda^{a}t)G_{\mu\nu}^{a} + h.c., \end{split}$$

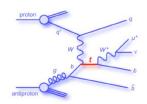
CMS 1903.11144

Czakon, Mitov 2014 (NNLO) $\sigma_{SM}^{t\bar{t}} = 832^{+20}_{-29} (scales) \pm 35 (PDF + \alpha_S) \text{ pb}$


Kidonakis, 1506.04072 (NNLO)

$$\sigma_{\rm SM}^{\rm tW} = 71.7 \pm 1.8 \, ({\rm scales}) \pm 3.4 \, ({\rm PDF} + \alpha_S) \, {\rm pb}$$

Durieux, Maltoni, Zhang, 1412.7166; Franzosi , Zhang, 1503.08841; Zhang, 1601.06163; CMS 1903.11144


	Contribution	C _G	$C_{\phi q}^{(3)}$	C _{tW}	C_{tG}	$C_{\rm uG}$	C_{cG}
	$\sigma_i^{(1)-LO}$	31.9 pb			137 pb		_
tī	$\dot{K}^{(1)}$				1.48^{-1}		
	$\sigma_i^{(2)-\text{LO}}$	102.3 pb		_	16.4 pb		_
	$K^{(2)}$	_			1.44		
	$\sigma_i^{(1)-\text{LO}}$	_	6.7 pb	-4.5 pb	3.3 pb	0	0
	$K^{(1)}$	_	1.32	1.27	1.27	0	0
	$\sigma_i^{(2)-\text{LO}}$		0.2 pb	1 pb	1.2 pb	16.2 pb	4.6 pb
	$K^{(2)}$	—	1.31	1.18	1.06	1.27	1.27

For the first time, both tt and tW production are used simultaneously in a model independent search for effective couplings in SMEFT approach (constraints presented, obtained by considering one operator at a time)

Anomalous Wtb couplings

Operators contributing to tWb interactions

Boos, Dubinin, Sachwitz, Schreiber 0001048; Aguilar-Saavedra 0811.3842

$$O_{\phi q}^{(3,3+3)} = \frac{i}{2} \left[\phi^{\dagger} (\tau^{I} D_{\mu} - \overleftarrow{D}_{\mu} \tau^{I}) \phi \right] (\bar{q}_{L3} \gamma^{\mu} \tau^{I} q_{L3}), \qquad O_{\phi \phi}^{33} = i (\tilde{\phi}^{\dagger} D_{\mu} \phi) (\bar{t}_{R} \gamma^{\mu} b_{R}), \\
 O_{dW}^{33} = (\bar{q}_{L3} \sigma^{\mu\nu} \tau^{I} b_{R}) \phi W_{\mu\nu}^{I}, \qquad O_{uW}^{33} = (\bar{q}_{L3} \sigma^{\mu\nu} \tau^{I} t_{R}) \tilde{\phi} W_{\mu\nu}^{I},$$

Kane, Ladinski, Yaun

$$\mathfrak{L} = \frac{g}{\sqrt{2}}\bar{\mathfrak{b}}\gamma^{\mu}\left(f_{\mathrm{V}}^{\mathrm{L}}P_{\mathrm{L}} + f_{\mathrm{V}}^{\mathrm{R}}P_{\mathrm{R}}\right)\mathsf{t}\mathsf{W}_{\mu}^{-} - \frac{g}{\sqrt{2}}\bar{\mathfrak{b}}\frac{\sigma^{\mu\nu}\partial_{\nu}\mathsf{W}_{\mu}^{-}}{M_{\mathrm{W}}}\left(f_{\mathrm{T}}^{\mathrm{L}}P_{\mathrm{L}} + f_{\mathrm{T}}^{\mathrm{R}}P_{\mathrm{R}}\right)\mathsf{t} + \mathsf{h.c.}$$

where $f_{LV} = V_{tb} + C_{\phi q}^{(3,3+3)*} \frac{v^2}{\Lambda^2}$, $f_{RV} = \frac{1}{2} C_{\phi \phi}^{33*} \frac{v^2}{\Lambda^2}$, $f_{LT} = \sqrt{2} C_{dW}^{33*} \frac{v^2}{\Lambda^2}$, $f_{RT} = \sqrt{2} C_{uW}^{33} \frac{v^2}{\Lambda^2}$

CM:
$$f_{LV} = Vtb$$
, $f_{RV} = 0$, $f_{LT} = 0$, $f_{RT} = 0$

Natural size $|1-f_L^V|, f_R^V \sim v^2/\Lambda^2$

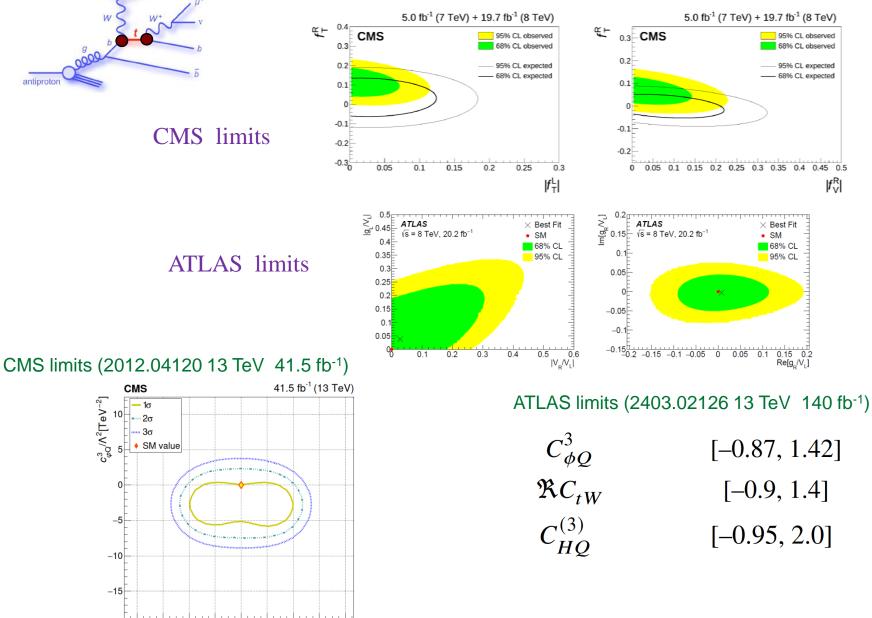
Natural size f_L^T , $f_R^T \sim v^2/\Lambda^2$

Anomalous Wtb couplings

proton

antiprotor

 $c_{\phi Q}^3/\Lambda^2 [TeV^{-2}]$

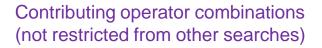

-8 -6 -2 0 2

-4

6 8

 $c_{\rm bW}/\Lambda^2$ [TeV⁻²]

4

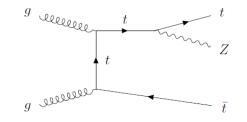


ttZ in SMEFT

Bylund, Maltoni, Tsinikos, Vryonidou, Zhang, 1601.08193

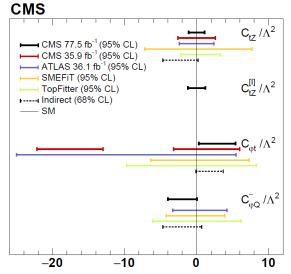
13TeV	\mathcal{O}_{tG}	${\cal O}_{\phi Q}^{(3)}$	$\mathcal{O}_{\phi t}$	\mathcal{O}_{tW}
$\sigma^{(1)}_{i,LO}$	$286.7^{+38.2\%}_{-25.5\%}$	$78.3^{+40.4\%}_{-26.6\%}$	$51.6^{+40.1\%}_{-26.4\%}$	$-0.20(3)^{+88.0\%}_{-230.0\%}$
$\sigma^{(1)}_{i,NLO}$	$310.5^{+5.4\%}_{-9.7\%}$	$90.6^{+7.1\%}_{-11.0\%}$	$57.5^{+5.8\%}_{-10.3\%}$	$-1.7(2)^{+31.3\%}_{-49.1\%}$
K-factor	1.08	1.16	1.11	8.5
$\sigma^{(2)}_{i,LO}$	$258.5^{+49.7\%}_{-30.4\%}$	$2.8(1)^{+39.7\%}_{-26.9\%}$	$2.9(1)^{+39.7\%}_{-26.7\%}$	$20.9^{+44.3\%}_{-28.3\%}$
$\sigma^{(2)}_{i,NLO}$	$244.5^{+4.2\%}_{-8.1\%}$	$3.8(3)^{+13.2\%}_{-14.4\%}$	$3.9(3)^{+13.8\%}_{-14.6\%}$	$24.2^{+6.2\%}_{-11.2\%}$
$\sigma^{(1)}_{i,LO}/\sigma_{SM,LO}$	$0.376^{+0.3\%}_{-0.3\%}$	$0.103^{+1.9\%}_{-1.8\%}$	$0.0677^{+1.7\%}_{-1.6\%}$	$-0.00026(4)^{+89.5\%}_{-167.2\%}$
$\sigma^{(1)}_{i,NLO}/\sigma_{SM,NLO}$	$0.353^{+1.3\%}_{-2.4\%}$	$0.103^{+0.7\%}_{-0.8\%}$	$0.0654^{+1.1\%}_{-2.1\%}$	$-0.0020(2)^{+22.9\%}_{-38.0\%}$
$\sigma_{i,LO}^{(2)}/\sigma_{i,LO}^{(1)}$	$0.902^{+8.4\%}_{-6.7\%}$	$0.036(1)^{+0.2\%}_{-1.1\%}$	$0.056(2)^{+0.6\%}_{-0.3\%}$	$-104(16)^{+60.8\%}_{-815.2\%}$
$\sigma_{i,NLO}^{(2)}/\sigma_{i,NLO}^{(1)}$	$0.787^{+3.3\%}_{-12.8\%}$	$0.042(4)^{+5.6\%}_{-3.9\%}$	$0.067(6)^{+7.6\%}_{-4.8\%}$	$-14(1)^{+29.0\%}_{-29.1\%}$

Contributions in [fb]



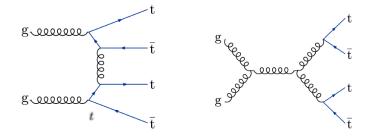
$$c_{tZ} = \operatorname{Re} \left(-\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right)$$

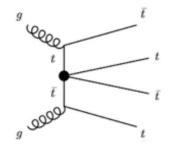
$$c_{tZ}^{[I]} = \operatorname{Im} \left(-\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right)$$


$$c_{\phi t} = C_{\phi t} = C_{\phi u}^{(33)}$$

$$c_{\phi q}^{-} = C_{\phi Q} = C_{\phi q}^{1(33)} - C_{\phi q}^{3(33)},$$

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{(\Lambda/1\text{TeV})^2} \sigma_i^{(1)} + \sum_{i \le j} \frac{C_i C_j}{(\Lambda/1\text{TeV})^4} \sigma_{ij}^{(2)}$$


CMS, 1907.11270



tttt in SMEFT

Relevant set of 4 top operators

$$\begin{split} \mathcal{O}_{tt}^{1} &= (\overline{t}_{R}\gamma^{\mu}t_{R})\left(\overline{t}_{R}\gamma_{\mu}t_{R}\right), \\ \mathcal{O}_{QQ}^{1} &= \left(\overline{Q}_{L}\gamma^{\mu}Q_{L}\right)\left(\overline{Q}_{L}\gamma_{\mu}Q_{L}\right), \\ \mathcal{O}_{Qt}^{1} &= \left(\overline{Q}_{L}\gamma^{\mu}Q_{L}\right)\left(\overline{t}_{R}\gamma_{\mu}t_{R}\right), \\ \mathcal{O}_{Qt}^{8} &= \left(\overline{Q}_{L}\gamma^{\mu}T^{A}Q_{L}\right)\left(\overline{t}_{R}\gamma_{\mu}T^{A}t_{R}\right) \end{split}$$

Alwall et al.,1405.0301 NLO cross section $\sigma_{t\bar{t}t\bar{t}}^{SM} = 9.2 \, \text{fb}$

CMS, 1906.02805

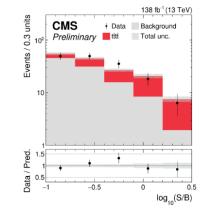
$$\sigma_{t\bar{t}t\bar{t}\bar{t}} = \sigma_{t\bar{t}t\bar{t}}^{SM} + \frac{1}{\Lambda^2} \sum_{k} C_k \sigma_k^{(1)} + \frac{1}{\Lambda^4} \sum_{j \le k} C_j C_k \sigma_{j,k}^{(2)}$$

$$\frac{O_{perator} \sigma_{k}^{(1)}}{O_{tt}^{0} O_{tt}^{0} O_{Qt}^{1} O_{Qt}^{1} O_{Qt}^{0}} + \frac{\sigma_{j,k}^{(2)}}{O_{tt}^{0} O_{Qt}^{0} O_{Qt}^{0} O_{Qt}^{0}} + \frac{\sigma_{qt}^{(2)}}{O_{qt}^{0} O_{Qt}^{0} O_{Qt}^{0} O_{Qt}^{0}} + \frac{\sigma_{qt}^{(2)}}{O_{qt}^{0} O_{Qt}^{0} O_{Qt}^{0} O_{Qt}^{0} O_{Qt}^{0}} + \frac{\sigma_{qt}^{(2)}}{O_{qt}^{0} O_{Qt}^{0} O_{Qt}^{0} O_{Qt}^{0} O_{Qt}^{0}} + \frac{\sigma_{qt}^{(2)}}{O_{qt}^{0} O_{Qt}^{0} O_{Qt}^{0$$

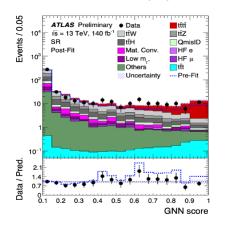
95% CL intervals for Wilson coefficients

Operator	Expected C_k / Λ^2 (TeV ⁻²)	Observed (TeV^{-2})
\mathcal{O}_{tt}^1	[-2.0, 1.8]	[-2.1, 2.0]
$\mathcal{O}_{\mathrm{QQ}}^{1}$	[-2.0, 1.8]	[-2.2, 2.0]
$\mathcal{O}^1_{\mathrm{Qt}}$	[-3.3, 3.2]	[-3.5, 3.5]
$\mathcal{O}_{\mathrm{Qt}}^8$	[-7.3, 6.1]	[-7.9, 6.6]

4 tops in SM


2212.03259

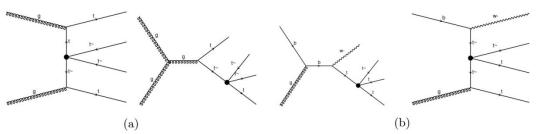
\sqrt{s} (TeV)	$\sigma^{ m NLO}_{tar{t}tar{t}ar{t}}$ (fb)	$\sigma_{t ar{t} t t ar{t}}^{ m NLO+NLL}$ (fb)	$\sigma^{ m NLO+NLL'}_{tar{t}tar{t}}$ (fb)	$\mathrm{K}_{\mathrm{NLL'}}$
13	$11.00(2)^{+25.2\%}_{-24.5\%}~{ m fb}$	$11.46(2)^{+21.3\%}_{-17.7\%}$ fb	$12.73(2)^{+4.1\%}_{-11.8\%}~{ m fb}$	1.16
13.6	$13.14(2)^{+25.1\%}_{-24.4\%}$ fb	$13.81(2)^{+20.7\%}_{-20.1\%}$ fb	$15.16(2)^{+2.5\%}_{-11.9\%}~{ m fb}$	1.15
\sqrt{s} (TeV)	$\sigma_{t\bar{t}t\bar{t}}^{ m NLO(QCD+EW)}$ (fb)	$\sigma_{t \bar{t} t t \bar{t}}^{ m NLO(QCD+EW)+NLL}~({ m fb})$	$\sigma_{t\bar{t}t\bar{t}ar{t}}^{ m NLO(QCD+EW)+NLL'}$ (fb)	$\mathrm{K}_{\mathrm{NLL}'}$
13	$11.64(2)^{+23.2\%}_{-22.8\%}$ fb	$12.10(2)^{+19.5\%}_{-16.3\%}~{ m fb}$	$13.37(2)^{+3.6\%}_{-11.4\%}$ fb	1.15
13.6	$13.80(2)^{+22.6\%}_{-22.9\%}$ fb	$14.47(2)^{+18.5\%}_{-19.1\%}$ fb	$15.82(2)^{+1.5\%}_{-11.6\%}~{ m fb}$	1.15


CMS PAS TOP-22-013

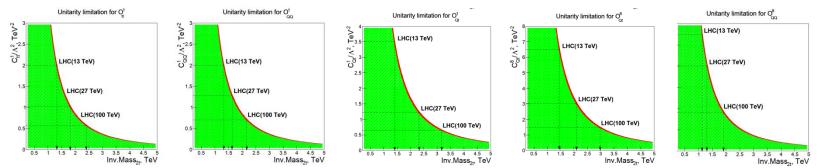
$$\sigma(pp \rightarrow t\bar{t}t\bar{t}) = 17.9^{+3.7}_{-3.5} \text{ (stat)}^{+2.4}_{-2.1} \text{ (syst) fb}$$

$$\sim 5.5 \text{ G}$$

5.5 (4.9) σ observed (expected)


6.1 (4.3) σ observed (expected)

 $\sigma_{t\bar{t}t\bar{t}\bar{t}} = 22.5^{+6.6}_{-5.6}$ ATLAS 2303.15061 ~ 6.1 σ 4 top discovery


4tops and 3tops

E.B., L.Dudko 2107.07629; A.Aleshko, E.B., V.Bunichev, L.Dudko 2309.12514

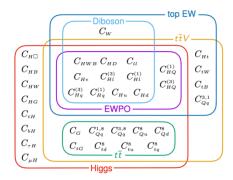
$$\begin{split} O_{tt}^1 &= (\bar{t}_R \gamma^\mu t_R) (\bar{t}_R \gamma_\mu t_R), \\ O_{QQ}^1 &= (\bar{Q}_L \gamma^\mu Q_L) (\bar{Q}_L \gamma_\mu Q_L), \\ O_{Qt}^1 &= (\bar{Q}_L \gamma^\mu Q_L) (\bar{t}_R \gamma_\mu t_R), \\ O_{Qt}^8 &= (\bar{Q}_L \gamma^\mu T^A Q_L) (\bar{t}_R \gamma_\mu T^A t_R), \\ O_{QQ}^8 &= (\bar{Q}_L \gamma^\mu T^A Q_L) (\bar{Q}_L \gamma_\mu T^A Q_L), \end{split}$$

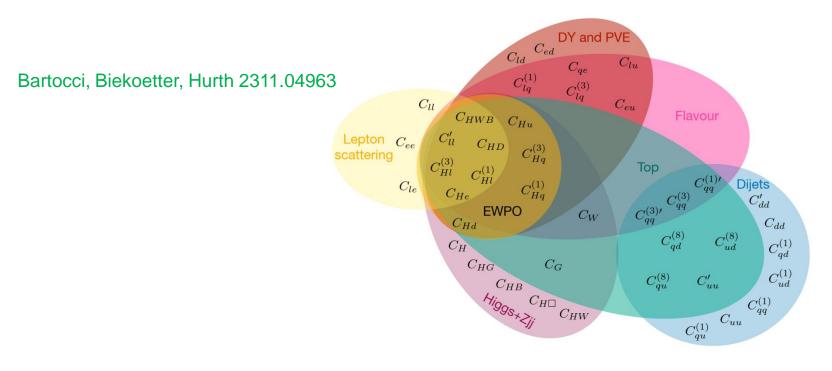
Partial wave unitarity bounds $|\mathbf{a}_0| = \mathbf{C}_i / \Lambda^2 \cdot \mathbf{k}_i \cdot \mathbf{M}_{tt} < \frac{1}{2}$

13 TeV, 138 fb⁻¹

model	C_{tt}^1	C^1_{QQ}	C^1_{Qt}	C_{Qt}^8	C^8_{QQ}
4t,nocut,1D	[-1.1,1.1]	[-2.2, 2.1]	[-2.0, 2.0]	[-5.7, 4.6]	[-5.0, 4.8]
$_{\rm 4t,cut,1D}$	[-1.2, 1.2]	[-2.4, 2.3]	[-2.2, 2.2]	[-6.8, 5.0]	[-6.0, 5.7]
$_{3t,nocut,1D}$	[-3.7,3.7]	[-2.5, 2.9]	[-2.6, 2.7]	[-5.3, 5.6]	[-5.1, 6.1]
$_{\rm 3t,cut,1D}$	[-4.3, 4.2]	[-2.9, 3.2]	[-3.1, 3.2]	[-6.9, 7.3]	[-6.4, 7.7]
3+4t,nocut,1D	[-1.1,1.0]	[-2.0, 2.0]	[-1.8, 1.8]	[-4.7, 4.2]	[-4.2, 4.5]
3+4t, cut, 1D	[-1.2, 1.2]	[-2.2, 2.2]	[-2.1, 2.1]	[-5.8, 4.8]	[-5.2, 5.4]
$_{4t,nocut,5D}$	[-0.95, 0.90]	[-1.8, 1.7]	[-1.6, 1.6]	[-4.8, 3.6]	[-4.2, 4.0]
$_{4t,cut,5D}$	[-1.0, 1.0]	[-2.0, 1.9]	[-1.8, 1.9]	[-5.7, 4.1]	[-4.6, 4.4]
$_{3t,nocut,5D}$	[-3.1, 3.0]	[-2.0, 2.4]	[-2.1, 2.2]	[-4.3, 4.6]	[-4.2, 5.1]
$_{3t,cut,5D}$	[-3.5, 3.4]	[-2.3, 2.7]	[-2.5, 2.7]	[-5.6, 6.1]	[-5.1, 6.5]
3+4t,nocut,5D	[-0.95, 0.90]	[-1.6, 1.6]	[-1.5, 1.5]	[-4.0, 3.3]	[-3.5, 3.7]
$^{3+4t,cut,5D}$	[-1.0, 1.0]	[-1.8, 1.8]	[-1.7, 1.7]	[-4.8, 3.8]	[-4.1, 4.3]

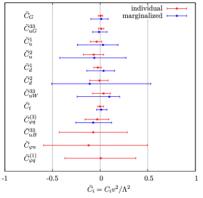
Expected 1D limits with unitary cuts


Energy, model	C_{tt}^1	C^1_{QQ}	C^1_{Qt}	C_{Qt}^8	C^8_{QQ}
13 TeV, 4t	[-1.2, 1.2]	[-2.4, 2.3]	[-2.2, 2.2]	[-6.8, 5.0]	[-6.0, 5.7]
13 TeV, 3t	[-4.3, 4.2]	[-2.9, 3.2]	[-3.1, 3.2]	[-6.9, 7.3]	[-6.4, 7.7]
13 TeV, 3+4t	[-1.2, 1.2]	[-2.2, 2.2]	[-2.1, 2.1]	[-5.8, 4.8]	[-5.2, 5.4]
14 TeV, 4t	[-1.1, 1.0]	[-2.1, 2.0]	[-1.9, 1.9]	[-5.8, 4.2]	[-5.2, 4.9]
14 TeV, 3t	[-2.5, 2.5]	[-1.6, 2.0]	[-1.8, 1.9]	[-3.9, 4.4]	[-3.7, 5.1]
14 TeV, 3+4t	[-1.1, 1.0]	[-1.5, 1.7]	[-1.5, 1.6]	[-3.8, 3.6]	[-3.5, 4.3]
27 TeV, 4t	[-0.90, 0.83]	[-1.7, 1.6]	[-1.6, 1.6]	[-4.9, 3.6]	[-4.4, 4.2]
27 TeV, 3t	[-2.0, 2.0]	[-1.3, 1.5]	[-1.4, 1.6]	[-3.3, 3.9]	[-2.7, 4.1]
27 TeV, 3+4t	[-0.88, 0.83]	[-1.2, 1.3]	[-1.3, 1.3]	[-3.2, 3.2]	[-2.6, 3.5]
100 TeV, 4t	[-0.68, 0.66]	[-1.3, 1.3]	[-1.2, 1.2]	[-3.8, 3.0]	[-3.7, 3.6]
100 TeV, 3t	[-1.3, 1.4]	[-0.89, 1.0]	[-1.0, 1.1]	[-2.1, 2.6]	[-1.8, 2.7]
$100~{\rm TeV},3{+}4{\rm t}$	[-0.67, 0.64]	[-0.85, 0.94]	[-0.93, 0.94]	[-2.1, 2.3]	[-1.8, 2.5]

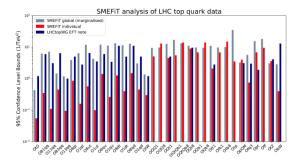

Similar results for 4tops Degrande et.al 2402.06528

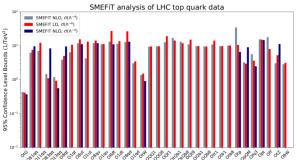
Bounds on SMEFT Wilson coefficients at leading order and next-to-leading order

Constraints from


- electroweak precision observables (EWPO) (Z-pole)
- lepton scattering (WW)
- Higgs, top, flavour, dijet, Drell-Yan, Diboson
- measurements from parity violation experiments (PEV)

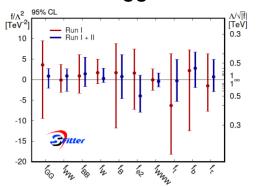
TopFitter

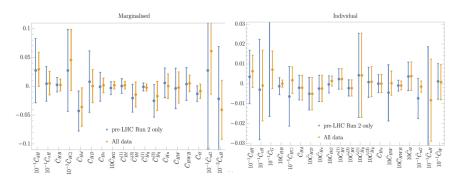

Buckley, Englert, Ferrando, Miller, Moore, Russell, White, 1512.03360 Top pair, single-top production, ttZ/ γ from the LHC run I and II and Tevatron



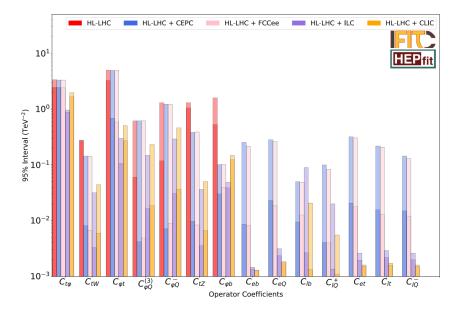
SMEFIT

Hartland, *Maltoni, Nocera, Rojo,* Slade, Vryonidou, Zhang, 1901.05965

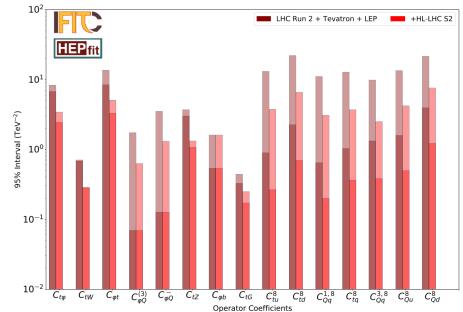

Global fits to the SMEFT from the top sector.


Sfitter

Biekoetter, Corbett, Plehn,1812.07587 Global fits to the SMEFT from the Higgs sector.


Global SMEFT Fit to Higgs, Diboson and Electroweak Data

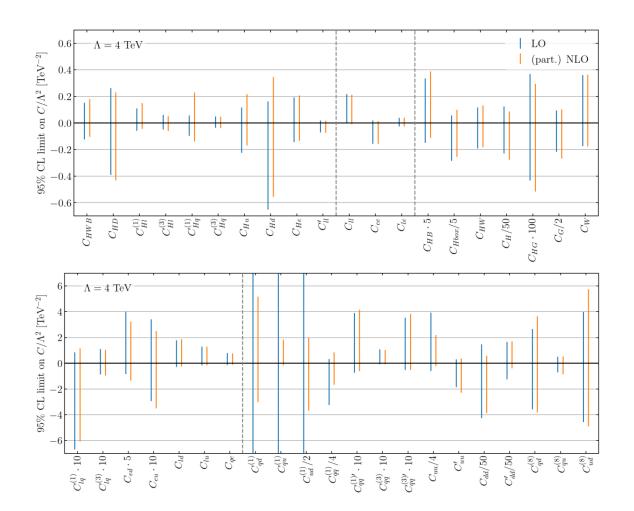
Ellisa, Murphyc, Sanzd, Youe, 1803.03252



The top-quark sector in the global SMEFT fit

Process Observable \sqrt{s} Ref. IL Experiment SM $13 \, \mathrm{TeV}$ $140 \ {\rm fb}^{-1}$ $pp \rightarrow t\bar{t}$ $d\sigma/dm_{t\bar{t}}$ (15+3 bins) CMS [133] [134] $pp \rightarrow t\bar{t}$ $dA_C/dm_{t\bar{t}}$ (4+2 bins) 13 TeV 140 fb^{-1} ATLAS [133] [135] ATLAS $pp \rightarrow t\bar{t}H + tHq$ σ 13 TeV $140 {\rm ~fb^{-1}}$ [136][137] $pp \rightarrow t\bar{t}Z$ $d\sigma/dp_T^Z$ (7 bins) 13 TeV 140 fb^{-1} ATLAS [138] [139] $d\sigma/dp_T^{\gamma}$ (11 bins) 13 TeV 140 fb^{-1} ATLAS [140, 141][142] $pp \rightarrow t\bar{t}\gamma$ 13 TeV77.4 fb⁻¹ CMS [144] $pp \rightarrow tZq$ [143] σ 13 TeV $36 \, {\rm fb}^{-1}$ CMS [145] [145] $pp \rightarrow t\gamma q$ σ $pp \rightarrow t\bar{t}W$ σ 13 TeV 36 fb^{-1} CMS [136, 146][147] 20 fb^{-1} $pp \to t\bar{b} \text{ (s-ch)}$ σ 8 TeV LHC [148, 149][150] 20 fb^{-1} 8 TeV LHC [151] [150] $pp \rightarrow tW$ σ σ 8 TeV 20 fb^{-1} LHC [148, 149][150] $pp \rightarrow tq \text{ (t-ch)}$ $t \rightarrow Wb$ F_0, F_L 8 TeV 20 fb^{-1} LHC [152][153] $p\overline{p} \rightarrow t\overline{b} \text{ (s-ch)}$ 1.96 TeV 9.7 fb^{-1} [154] [155] σ Tevatron $e^-e^+ \rightarrow b\overline{b}$ Rb , Abb RLR $\sim 91 \text{ GeV}$ 202.1 pb⁻¹ LEP/SLD [54]_

Blasa, Duc, Grojean et. al Contribution to Snowmass 2021, 2206.08326v5


a single-parameter fit - solid bars; the global or marginalised bounds – full bars (shaded region in each bar)

Flavor symmetry assumption for dim 6 operators: $\mathbf{U}(3)^5 = \mathbf{U}(3)_{\ell} \times \mathbf{U}(3)_{q} \times \mathbf{U}(3)_{e} \times \mathbf{U}(3)_{u} \times \mathbf{U}(3)_{d}$

2499 operators \rightarrow 47 operators 41 (CP even) + 6 (CP odd)

Comparison of limits at LO and NLO

Bartocci, Biekoetter, Hurth 2311.04963

From UV theory to SMEFT

Number of SMEFT operators is huge.

EFT Lagrangian from the concrete UV model contains much less operators

Example:
$$L_{QED} = \psi^{-}(i \gamma_{\mu} D^{\mu} - m_{e})\psi$$
, $D_{\mu} = \partial_{\mu} - ie A_{\mu}$

 $E_{\gamma} \ll m_e$, Lagrangian Euler-Heisenberg

$$L_{eff} = -1/4 \ F_{\mu\nu}F^{\mu\nu} + a/m_{e}^{-4} \ (F_{\mu\nu}F^{\mu\nu})^{2} + b/m_{e}^{-4} \ (F_{\mu\nu}F^{\nu\alpha} \ F_{\alpha\beta}F^{\beta\mu})$$

Matching: $a = -\alpha^2/36$, $b = 7 \alpha^2/90$ Other operators do not appear

Off-shell matching – effective actions of light degrees of freedom are the same (mostly used in practice)

 $\Gamma_{\rm UV}[\phi] = \Gamma_{\rm SMEFT}[\phi]$

On-shell matching – S-matrix elements (amplitudes) are the same

$$<\!\!\phi_{in}\mid S_{UV}\mid\!\!\phi_{out}\!\!>=<\!\!\phi_{in}\mid S_{SMEFT}\mid\!\!\phi_{out}\!\!>$$

Z'

Dawson, Forslund, Schnubel 2404.01375

$$\begin{aligned} \mathbf{Generic \ Z' \ model} \qquad \mathcal{L}_{Z'} &= -\frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + \frac{1}{2} M_{Z'}^2 Z'_{\mu} Z'^{\mu} - \frac{\epsilon}{2} B_{\mu\nu} Z'^{\mu\nu} + (g_{H,2})^2 Z'_{\mu} Z'^{\mu} |H^{\dagger}H| - Z'_{\mu} \mathcal{J}^{\mu} \\ \mathcal{J}^{\mu} &= (ig_H) \left(H^{\dagger} \overleftrightarrow{D}^{\mu} H \right) + \sum_{f} \left(g_{ij}^{fL} \bar{f}_L^i \gamma^{\mu} f_L^j + g_{ij}^{fR} \bar{f}_R^i \gamma^{\mu} f_R^j \right) \end{aligned}$$

After Integrating out Z'

$$\begin{split} \delta \mathcal{L} &= -\frac{1}{2M_{Z'}^2} \left(\mathcal{J}_{\mu} + \epsilon j_{\mu} \right)^2 \\ &- \frac{1}{2M_{Z'}^4} \left(1 - \epsilon^2 \right) \left[\partial_{\mu} \left(\mathcal{J}_{\nu} + \epsilon j_{\nu} \right) \right]^2 + \frac{1}{M_{Z'}^4} \left(g_{H,2}^2 + \frac{g'^2 \epsilon^2}{4} \right) \left(H^{\dagger} H \right) \left(\mathcal{J}_{\mu} + \epsilon j_{\mu} \right)^2 \\ &j_{\mu} = \frac{ig'}{2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) + g' \sum_f Y_f \bar{f} \gamma^{\mu} f \end{split}$$

Matching with SMEFT operators of dim 6

$$\frac{C_{ll}[ijkl]}{\Lambda^{2}} = -\frac{1}{2M_{Z'}^{2}}(g_{ij}^{lL} + \epsilon g'Y_{l}\delta_{ij})(g_{kl}^{lL} + \epsilon g'Y_{l}\delta_{kl}),$$

$$\frac{C_{lq}^{(1)}[ijkl]}{\Lambda^{2}} = -\frac{1}{M_{Z'}^{2}}(g_{ij}^{lL} + \epsilon g'Y_{l}\delta_{ij})(g_{kl}^{qL} + \epsilon g'Y_{q}\delta_{kl}),$$

$$\frac{C_{qq}^{(1)}[ijkl]}{\Lambda^{2}} = -\frac{1}{2M_{Z'}^{2}}(g_{ij}^{qL} + \epsilon g'Y_{q}\delta_{ij})(g_{kl}^{qL} + \epsilon g'Y_{q}\delta_{kl}).$$

$$\frac{C_{lf}[ijkl]}{\Lambda^{2}} = -\frac{1}{M_{Z'}^{2}}(g_{ij}^{lL} + \epsilon g'Y_{l}\delta_{ij})(g_{kl}^{fR} + \epsilon g'Y_{f}\delta_{kl}),$$

$$\frac{C_{qf}^{(1)}[ijkl]}{\Lambda^{2}} = -\frac{1}{M_{Z'}^{2}}(g_{ij}^{qL} + \epsilon g'Y_{q}\delta_{ij})(g_{kl}^{fR} + \epsilon g'Y_{f}\delta_{kl}),$$

$$\frac{C_{\varphi\Box}}{\Lambda^{2}} = \frac{1}{8M_{Z'}^{2}}(2g_{H} + \epsilon g')^{2},$$

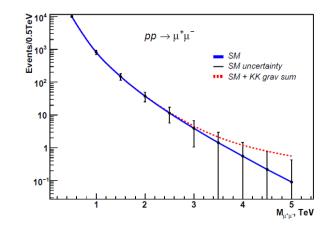
$$\frac{C_{\varphi\Box}}{\Lambda^{2}} = \frac{1}{2M_{Z'}^{2}}(2g_{H} + \epsilon g')^{2}.$$

$$\begin{aligned} \frac{C_{ff}[ijkl]}{\Lambda^2} &= -\frac{1}{2M_{Z'}^2} (g_{ij}^{fR} + \epsilon g'Y_f \delta_{ij}) (g_{kl}^{fR} + \epsilon g'Y_f \delta_{kl}), \\ \frac{C_{ff'}[ijkl]}{\Lambda^2} &= -\frac{1}{M_{Z'}^2} (g_{ij}^{fR} + \epsilon g'Y_f \delta_{ij}) (g_{kl}^{f'R} + \epsilon g'Y_{f'} \delta_{kl}), \\ \frac{C_{ud}^{(1)}[ijkl]}{\Lambda^2} &= -\frac{1}{M_{Z'}^2} (g_{ij}^{uR} + \epsilon g'Y_u \delta_{ij}) (g_{kl}^{dR} + \epsilon g'Y_d \delta_{kl}). \\ \frac{C_{\varphi l}^{(1)}[ij]}{\Lambda^2} &= -\frac{1}{2M_{Z'}^2} (2g_H + \epsilon g') (g_{ij}^{lL} + \epsilon g'Y_l \delta_{ij}), \\ \frac{C_{\varphi q}^{(1)}[ij]}{\Lambda^2} &= -\frac{1}{2M_{Z'}^2} (2g_H + \epsilon g') (g_{ij}^{qL} + \epsilon g'Y_q \delta_{ij}), \\ \frac{C_{\varphi f}^{(1)}[ij]}{\Lambda^2} &= -\frac{1}{2M_{Z'}^2} (2g_H + \epsilon g') (g_{ij}^{fL} + \epsilon g'Y_q \delta_{ij}). \end{aligned}$$

+ More operators of dim 8

In some concrete cases the operators start from D=8. Extra dimensional gravity is an example.

E.B., Bunichev, Volobuev, Smolaykov PRD 79 (2009)


$$L_{eff} = \lambda \ J_{SM} * \Delta * J_{SM}, \quad \lambda = \frac{1}{2}g^2 M^{-d} \left(\sum_{n \neq 0} \frac{(\psi^{(n)}(y_B))^2}{M_n^2} \right)$$

Models with gravity in the bulk

$$J_{SM} \to T_{\mu\nu} = 2 \frac{\delta L_{SM}}{\delta \gamma^{\mu\nu}} - \gamma_{\mu\nu} L_{SM}$$

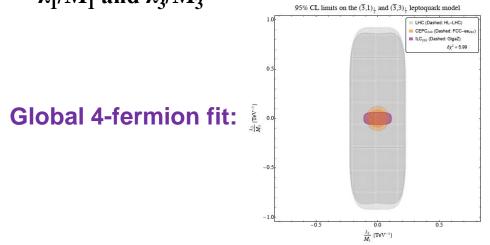
After integrating out heavy KK gravitational modes

$$\begin{split} L_{eff} &= \frac{C}{M^4} T^{\mu\nu} \tilde{\Delta}_{\mu\nu,\rho\sigma} T^{\rho\sigma} \\ \tilde{\Delta}_{\mu\nu,\rho\sigma} &= \eta_{\mu\rho} \eta_{\nu\sigma} + \eta_{\mu\sigma} \eta_{\nu\rho} - \left(\frac{2}{3} - \delta\right) \eta_{\mu\nu} \eta_{\rho\sigma} \\ T^{\Psi}_{\mu\nu} &= \frac{i}{4} \left(\bar{\Psi} \gamma_{\mu} \partial_{\nu} \Psi + \bar{\Psi} \gamma_{\nu} \partial_{\mu} \Psi - \partial_{\nu} \bar{\Psi} \gamma_{\mu} \Psi - \partial_{\mu} \bar{\Psi} \gamma_{\nu} \Psi \right) - \\ &- \eta_{\mu\nu} \left(\frac{i}{2} \bar{\Psi} \gamma^{\rho} \partial_{\rho} \Psi - \frac{i}{2} \partial_{\rho} \bar{\Psi} \gamma^{\rho} \Psi - m_{\Psi} \bar{\Psi} \Psi \right) \\ T^{Z}_{\mu\nu} &= -Z_{\mu\rho} Z_{\nu\sigma} g^{\rho\sigma} + m_{Z}^{2} Z_{\mu} Z_{\nu} + \eta_{\mu\nu} \left(\frac{1}{4} Z_{\rho\sigma} Z^{\rho\sigma} - \frac{m_{Z}^{2}}{2} Z^{\rho} Z_{\rho} \right) \\ T^{W}_{\mu\nu} &= -W^{+}_{\mu\rho} W^{-}_{\nu\sigma} g^{\rho\sigma} - W^{+}_{\nu\rho} W^{-}_{\mu\sigma} g^{\rho\sigma} + m_{W}^{2} \left(W^{+}_{\mu} W^{-}_{\nu} + W^{+}_{\nu} W^{-}_{\mu} \right) - \\ &+ \eta_{\mu\nu} \left(\frac{1}{2} W^{+}_{\rho\sigma} W^{-\rho\sigma} - m_{W}^{2} W^{+}_{\rho} W^{-\rho\sigma} \right) \\ T^{\Phi}_{\mu\nu} &= \partial_{\mu} \Phi \partial_{\nu} \Phi - \eta_{\mu\nu} \left(\frac{1}{2} \partial^{\rho} \Phi \partial_{\rho} \Phi - \frac{m_{\Phi}^{2}}{2} \Phi^{2} \right) \end{split}$$

Dilepton invariant mass at LHC 14TeV (L= 100 fb⁻¹) at C/M⁴ = $3 \cdot 10^{-3}$ TeV⁻⁴

The scalar leptoquarks S₁ and S₃

 $S_1 \sim (\bar{\mathbf{3}}, \mathbf{1})_{\frac{1}{3}}$ and $S_3 \sim (\bar{\mathbf{3}}, \mathbf{3})_{\frac{1}{3}}$


Gherardia, Marzoccab, Venturini 2003.12525

$$\mathcal{L}_{LQ} = |D_{\mu}S_{1}|^{2} + |D_{\mu}S_{3}|^{2} - M_{1}^{2}|S_{1}|^{2} - M_{3}^{2}|S_{3}|^{2} + (\lambda^{1L})_{i\alpha}\bar{q}_{i}^{c}\epsilon\ell_{\alpha} + (\lambda^{1R})_{i\alpha}\bar{u}_{i}^{c}e_{\alpha})S_{1} + (\lambda^{3L})_{i\alpha}\bar{q}_{i}^{c}\epsilon\sigma^{I}\ell_{\alpha}S_{3}^{I} + h.c. +$$

Tree level matching conditions after Integrating out leptoquarks

$$\begin{bmatrix} c_{lq}^{(1)} \end{bmatrix}_{\alpha\beta ij} = \frac{\lambda_{i\alpha}^{1L*}\lambda_{j\beta}^{1L}v^2}{4M_1^2} + \frac{3\lambda_{i\alpha}^{3L*}\lambda_{j\beta}^{3L}v^2}{4M_3^2}, \quad \begin{bmatrix} c_{lq}^{(3)} \end{bmatrix}_{\alpha\beta ij} = -\frac{\lambda_{i\alpha}^{1L*}\lambda_{j\beta}^{1L}v^2}{4M_1^2} + \frac{\lambda_{i\alpha}^{3L*}\lambda_{j\beta}^{3L}v^2}{4M_3^2} \\ \begin{bmatrix} c_{lequ}^{(1)} \end{bmatrix}_{\alpha\beta ij} = \frac{\lambda_{j\beta}^{1R}\lambda_{i\alpha}^{1L*}v^2}{2M_1^2}, \quad \begin{bmatrix} c_{lequ}^{(3)} \end{bmatrix}_{\alpha\beta ij} = -\frac{\lambda_{j\beta}^{1R}\lambda_{i\alpha}^{1L*}v^2}{8M_1^2}, \quad \begin{bmatrix} c_{eu} \end{bmatrix}_{\alpha\beta ij} = \frac{\lambda_{i\alpha}^{1R*}\lambda_{j\beta}^{1R}v^2}{2M_1^2}.$$

In the universal Yukawa these five Wilson coefficients only depend on two ratios: λ_1/M_1 and λ_3/M_3

Blasa, Duc, Grojean et. al Contribution to Snowmass 2021, 2206.08326

Concluding remarks

In the absence (so far) of any manifestation of BSM physics at the LHC, the Standard Model Effective Field Theory (SMEFT) is the consistent theoretical framework to go beyond the SM in model independent way allowing to perform systematically experimental data analyses.

SMEFT is based on the linear realization of the mechanism of electroweak symmetry breaking. We did not consider HEFT based on a non-linear realization of the mechanism of electroweak symmetry breaking being not favored (but not excluded) by current data.

SMEFT allows to compute consistently higher order perturbative corrections. Several NLO computations in SMEFT have been done. NLO corrections not only significantly reduce the scale uncertainties, but also allow more accurate obtain the shapes of differential distributions.

Without SMEFT it is challenging to compare limits predicted in various theoretical studies and/or obtained at various experiments.

Concrete BSM extensions lead to certain operators with possibly predicted ratios between their strengths based on a matching procedure.

Lot of studies are in progress and remain to be done

Reviews

Brivio, Trott Phys.Rept. (2019)

Boos Phys.Usp. (2022)

Falkowski EPJ C (2023)

. . .

Isidori, Wilsch, Wyler Rev.Mod.Phys. (2024)

Thank you !

Back up slides

Subsidiary bosons for BSM evaluations

New Physics (NP) contributions to the SM vertex

$$\Gamma_{\mu} = \Gamma^{\mathbf{SM}}_{\mu} + \Gamma^{\mathbf{NP_1}}_{\mu} + \Gamma^{\mathbf{NP_2}}_{\mu} + \dots$$

Example: anomalous Wtb vertex

$$\mathbf{L}_{\mathbf{Wtb}} = \frac{\mathbf{g}}{\sqrt{2}} \bar{\mathbf{b}} \gamma^{\mu} (\mathbf{f}_{\mathbf{V}}^{\mathbf{L}} \mathbf{P}_{\mathbf{L}} + \mathbf{f}_{\mathbf{V}}^{\mathbf{R}} \mathbf{P}_{\mathbf{R}}) \mathbf{t} \mathbf{W}_{\mu}^{-} + \frac{\mathbf{g}}{\sqrt{2}} \bar{\mathbf{b}} \frac{\sigma^{\mu\nu}}{\mathbf{m}_{\mathbf{W}}} (\mathbf{f}_{\mathbf{T}}^{\mathbf{L}} \mathbf{P}_{\mathbf{L}} + \mathbf{f}_{\mathbf{T}}^{\mathbf{R}} \mathbf{P}_{\mathbf{R}}) \mathbf{t} \mathbf{W}_{\mu\nu}^{-} + h.c.$$

W boson SM
$$\frac{g}{2\sqrt{2}} \mathbf{f}_{\mathbf{V}}^{\mathbf{L}} \gamma^{\mu} (1 - \gamma_5)$$

- W boson subsidiary 1 $\frac{\mathbf{g}}{2\sqrt{2}} \mathbf{f}_{\mathbf{V}}^{\mathbf{R}} \gamma^{\mu} (\mathbf{1} + \gamma_{5})$
- W boson subsidiary 2 $\frac{g}{2m_W\sqrt{2}}\mathbf{f}_{\mathbf{T}}^{\mathbf{L}}\sigma^{\mathbf{J}}$
- $\frac{\mathbf{g}}{2\mathbf{m}_{\mathbf{W}}\sqrt{2}}\mathbf{f}_{\mathbf{T}}^{\mathbf{L}}\sigma^{\mu\nu}\mathbf{q}_{\nu}(\mathbf{1}+\gamma_{5})$

W boson subsidiary 3

 $\frac{\mathbf{g}}{2\mathbf{m}_{\mathbf{W}}\sqrt{2}}\mathbf{f}_{\mathbf{T}}^{\mathbf{R}}\sigma^{\mu\nu}\mathbf{q}_{\nu}(1-\gamma_{5})$

Boos, Bunichev, Dudko, Perfilov Int. J. Mod. Phys. A 32, 1750008 (2016)