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Abstract .  Simple interpolating formula for the square of 
the quarkonium mass and an analytic expression for the 
Regge trajectories e(t) in a whole region of both light and 
heavy quarkonia are derived on the basis of the considera- 
tion of two asymptotics for the QCD inspired interquark 
potential. The leading trajectory functions obtained level 
off at - 1  for - t  ~ oo. This asymptotic value of c~(t), 
e ( t ) - ~ - 1 ,  implies that the cross section of the 
form ( 1 -  x) 1-2~t), which is predicted by the triple 
Regge model, behaves like (1 - x) 3. Is this to be attributed 
to the behaviour of the vector meson exchange or is it 
some hard scattering contribution swamping the Regge 
contributions? The intercepts and slopes of the leading 
Regge trajectories %(0, o:~(t), c~,(t) and ~r(t) are cal- 
culated. 

1 Introduct ion 

It is well-known experimental fact that hadrons populate 
linear Regge trajectories; that is, the square of the mass of 
a state with orbital angular momentum 1 is proportional 
to l: MZ(1)= ~l+ const, with the same slope, /~-~ 
1.2 GeV 2, for all trajectories. There exists a conviction, 
that the Regge trajectories e (t) of light-flavour mesons are 
linear in a whole region, that is, not only in the bound- 
state region (t > 0) but in the scattering region (t < 0) too. 
However in the experiment [1] far more complicated 
behaviour of the p-meson trajectory, %(0, was dis- 
covered. 

Presented in [1] experimental data on inclusive 7r ~ and 
q production in 100 GeV/c rc-+p collisions cover the kin- 
ematic region 0 _< - t  < 4 (GeV/c) 2 and x > 0.7 and have 
compared in detail with the predictions of triple Regge 
theory [2]. So far as these reactions are theoretically 
clean with p (re ~ production) o r  A 2 (t/ production) 
exchange there were extracted the Regge trajectories, ~(t), 
in the t range of 0 to - 4  (GeV/c) 2. A sample of high 
- t ,  - t  _< 4 (GeV/c) 2, has been fitted by the ppP term, 

given by [22 

d 2 o  - 
dx dt = Go (t) (1 - x) 1 - 2%(t), ( 1 )  

where the pomeron intercept, c~e(0) = 1, Go(t ) is the resi- 
due function. There was shown that the p trajectory flat- 
tens off at about -0.6.  The uncertainty in this asymptote 
can be estimated by fitting in the region 0.81 _< x < 0.98 
which changes it up by 0.1 to % = -0.5.  This value %, 
% = - 0 . 5 ,  implies that the cross section behaves like 
(1 - x) 2. 

The constituent interchange model (CIM) [3] predicts 
a leveling off of ~p at - 1  or a (1 - x )  3 cross section 
behaviour. However the exact value of ~(t) in [1] is 
sensitive to the definition of x, where have used x as the 
lab energy divided by the maximum possible energy at the 
given t value. Changing the definition so that the denom- 
inator is just the beam energy would decrease the fitted 

by about 0.2 at - t  = 4 (GeV/c) 2. This means, that the 
p-trajectory flattens off at -0 .8  or lower, that is, the 
trajectory level off so that the Regge exchanges are the 
hard-scattering terms [1]. 

The purpose of this paper is to derive an analytic 
expression for the quarkonium Regge trajectories, ~(t), in 
the whole region, - oo < t < oo. Usually, the Regge tra- 
jectories of different hadrons are derived (in the frame- 
work of the potential models) for the bound state region, 
that is, at t = E z > 0. But for many purposes, for example, 
in the recombination [4] and fragmentation [5, 6] models 
and other Regge models it is necessary to know the Regge 
trajectories in the scattering region, that is, at t < 0, and, 
in particular, the intercepts e(0) and slopes e' of Regge 
trajectories. For example, the parameters of the leading 
p trajectory is well reproduced in the framework of quark 
potential models [7] 

c~o(0 ) = 0.49, @ = 0.88 (GeV/c) -2 (2) 

As it was noted in [7] the intercepts (and slopes) of the 
Regge trajectories of light-quark hadrons are the funda- 
mental constants of hadron dynamics perhaps more 
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important to reproduce within a potential model than the 
mass of such or such a state. 

There is another interesting application of the Regge 
trajectories in the scattering region. Usually, the calcu- 
lations of c, b and t quark production cross sections are 
performed on the basis of the parton model in the frame- 
work of perturbative QCD [8]. However for this aim the 
recombination [4] and fragmentation [9-11] models can 
be used. In these models the recombination and frag- 
mentation functions and many other physical quantities 
are parametrised by means of the intercepts c~(0) of Regge 
trajectories. However up to now no information on the 
intercepts of Regge trajectories of heavy-flavour mesons 
has been obtained. 

The question in this paper is whether approximate 
analytic formula for the Regge trajectories of both light 
and heavy quark-antiquark systems with reasonable de- 
gree of confidence can be derived in the framework of the 
phenomenological potential model. In order to obtain the 
Regge trajectories in a whole region it is necessary to 
known an analytic expression for the square of the total 
energy of quarkonium state, E 2, as a function of radial, n', 
and orbital, 1 quantum numbers. Then, if we invert E Z(l) 
and express the angular momentum l (E  2) as a function of 
the E z we obtain the Regge trajectory. In this work we use 
only the fact, which has good established theoretically, 
that the interkquark potential has two asymptotics: 
1) V ( r ) o c  - 1 / r  at r--, 0 (coulomb-like behaviour moti- 
vated by the one-gluon exchange at small distances) and 
2) V(r) oc r at r ~ oe (linear confining behaviour which 
follows from lattice-gauge-theory computations). We ob- 
tain two analytic expressions for the square of the quar- 
konium mass corresponding these two asymptotics of the 
interquark potential. Then using the two-point Pad6 ap- 
proximant we deduce an interpolating formula for the 
square of the quarkonium mass and (by product) an 
analytic expression for the Regge trajectories too. We 
show that the leading S = t Regge trajectories of all quar- 
konia flatten off at - 1 .  Finally, to demonstrate the 
plausibility of the obtained mass formula, we show that 
our simple interpolating formula incorporating the spin- 
spin and spin-orbit interactions is able to reproduce the 
general features of the empirical quarkonium spectra. 

2 The interquark potential. Heavy quarkonia 

In a short time after successful classification of light-quark 
(u ,d , s )  states in the framework of SU(3), or SU(6), and 
linear Regge trajectories with quasi-universal slope, 
c~' ~_ 0.9 (GeV/c)- 2, the heavy-quark (c, b) states has been 
discovered. The remarkable observation that the c( and 
bb states could be obtained as the energy levels of a non- 
relativistic Hamiltonian with a universal flavour-indepen- 
dent confining potential has led to a number of refined 
and accurate calculations [12-15]. The well known ques- 
tion arises if the physics for light quarks and the physics 
for heavy ones constitute two different realms of hadron 
spectroscopy or if they have some common links. 

Because of the intrinsically nonperturbative nature of 
the bound-state problem in non-Abelian gauge theories, it 
is, up to now, not possible to derive the forces acting 

between the quarks from first principles. Therefore, the 
corresponding interquark potential has to be determined 
phenomenologically. An understanding of the static po- 
tential between heavy quarks as well as spin-dependent 
corrections of order 1/rn 2 is of fundamental importance 
because it provides an intimate connections between the 
underlying theory of QCD and direct phenomenological 
consequences showing up in hadron spectroscopy. The 
information which goes beyond perturbation theory is, 
however, rather scarce. 

It is shown [7, 14] that i) there is some unity (and not 
two different realms) in the world of meson spectroscopy, 
and ii) the universal flavour-independent confining poten- 
tial is fixed is an extremely simple manner in terms of very 
small number of parameters, all. of which have a direct 
physical interpretation. For small distances between the 
quarks, one expects from one-gluon exchange 
a Coulomb-like contribution to the potential, that is, [15] 

4 a s 
V(r) ~- - - - - ,  r ~ O. (3) 

3 r  

For large distances, in order to be able to describe confine- 
ment, the potential has to rise to infinity. From lattice- 
gauge-theory computations [16] follow that this rise is an 
approximately linear, that is, 

V(r)  ~ tcr, r--+ co,  (4) 

where ~c ~ 0.15 GeV 2 being the string tension. 
However in an intermediate region the potential is 

more poorly understood. In this region, many well known 
potentials give reasonable results for hadron mass [7, 12, 
13, 17], but these results do not depend very strong on the 
form of potential. The most reasonable possibility to con- 
struct an interquark potential which satisfies both of the 
above constraints is to simply add these two contribu- 
tions. This leads to the so-called funnel-shaped (or Cor- 
nell) potential [12]: 

4 as 
V(r )  . . . .  + ,~r + V o. (5) 

3 r  

A closer inspections reveals that all phenomenologically 
acceptable "QCD-inspired" potentials are only variations 
around the funnel potential [17]. Its parameters are dir- 
ectly related to basic physical quantities: the universal 
Regge slope ~' -~ 0.9 (GeV/c) 2 of light flavours and one- 
gluon-exchange coupling strength as for heavy ones. As 
for constant Vo, usually, it is added to the confining 
contribution. This constant has to be regarded as an 
additional arbitrary parameter in the potential, its arbit- 
rariness being induced by the arbitrariness in the choice of 
the renormalization point. 

An approximate framework for the description of 
bound states within a relativistic quantum field theory is 
the Bethe-Salpeter formalism. However it is hard to ob- 
tain information from this approach. An alternative is the 
treatment of bound states with the help of Schr6dinger 
type eigenvalue equations [14, 15]. The employment of 
a nonrelativistic Schr6dinger equation (with some effec- 
tive potential) for the description of mass spectra not only 
heavy quarkonia but also light mesons remains up to now 
surprisingly successful [12-15,17]. However, at least 



bound states consisting of light constituents should be 
dealt within a relativistic framework. 

In order to obtain a mass formula for quarkonia note 
firstly that such a formula more convenient to derive not 
for the quarkonium mass, E, but for the square of the 
quarkonium mass, E 2. It is known that heavy QQ systems 
one can consider nonrelativistically_. For low states of 
heavy quarkonia (for example, tt-or bb) the main contribu- 
tion to the boundary energy comes from one-gluon ex- 
change (the potential (3)) and in the first approximation 
one can neglect the confining term. In this case Schr6din- 
ger equation has exact analytical (hydrogen-like) solution 
[18] and for energy eigenvalues we have approximately: 

E~ - 4(n' + l + 1) 2 + Vo, (6) 

where ~ = ~ , ,  m is the quark mass and the constant Vo 
have added to the potential (3); n ' =  0, 1, 2 . . . .  and 
I - - 0 ,  1,2 . . . .  are the radial and orbital quantum num- 
bers, respectively. The total energy of heavy quarkonium 
one can write in the form: E = 2m + E', where E '  is 
boundary energy. For the square of the energy in non- 
relativistic approximation we have E 2 ~  - 4m2+ 4mE'. 
Therefore, with the help of (6) we obtain for E2: 

~2 2 ~s g//t 
E"z - (n' + l + 1) 2 + 4m(m + Vo). (7) 

The formula (7) is good to describe the lower states of 
heavy quarkonia, especially the bottomonium. 

3 Light mesons 

Now let us consider an extreme relativistic limit for higher 
excited states (l, n' > 1). In this case bound states consist- 
ing of light constituents should be dealt with in a relativis- 
tic framework and main difficulty comes from unknowing 
Lorentz structure of the potential. For bound states con- 
sisting of quarks and antiquarks there is very strong 
evidence that the static potential receives predominantly 
a vector and scalar contributions [17]. A standard Ansatz 
is to assume that the qq interaction has effective vector, 
V(r), and scalar, S(r), contributions only, i.e. that the static 
potential W(r) may be decomposed according to the spin 
of exchange boson [9]: 

L = S(qZ)UUVV+ V(q2)U?uU~'TuV. 

Two results are of fundamental importance as far as 
light-flavoured meson spectroscopy is concerned. The 
combination of relativistic kinematics and linear potential 
produces c~) linear Regge trajectories [7, 14] which acquire 
some curvature at low energies as the quark masses are 
increased, and fi) these trajectories have only even daugh- 
ters. 

To describe bound states consisting of light constitu- 
ents let us consider a static Klein-Gordon equation of 
motion in which the potential has a Lorentz vector V(r) 
and Lorentz scalar S(r) parts [19, 20]: 

I V  + �88 - V(r)) 2 - (m + S ( r ) )q  0(r)  = 0, (8) 
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where the functions V(r) and S(r) we have chosen in the 
form: 

V(r) c~s (1 - c) + ~cr(1 d), S(r) ~s . . . . . .  c + ~crd. (9) r r 
Here in (9) c and d are the parameters. 

Let us consider (8) for higher excited states. For  large 
angular momenta, 1 > 1, one may expect that the bound 
states will feel only the confining part of the potential. We 
thus assume it is justified to ignore the Coulomb term. In 
this limit to calculate the eigenvalues E ) the WKB ap- 
proximation can be used. For  radial part of (8) we have: 

[dr22 1( r )2 Q 0{2 )2 +~ E +  Klr - r n - - - + g 2 r  
r r 

(t + ) ) 2 ]  a(r) = o, (lO) 
r 2 J 

where R1 : ~s(1 - c), Kt = ~c(1 - d), c~ a = ~sC, K2 = Kd, 
and the replacement l(l + 1) ~ (l + �89 has been made in 
accordance with the WKB method. 

The WKB quantization condition appropriate to (10) 
gives: )2(- 

+----~Clrr -- rn----+K2rr r ~ d r  

= ~z(n' + �89 (11) 

where n' = 0, 1, 2 , . . . ,  rl and r 2 are the classical turning 
points. At l > 1 the first turning point, r l ,  is determined 
mainly by the term ~ r -2  and the second one, r2, by the 
quadratic term ~ r 2. Therefore, in this approximation we 
have for integral (11) [21]: 

~z E2/4 -- m 2 -- (~1K1 -- 4~2tq)/2 

- 

2 2 - 7 +  t +  (121 

and for the quarkonium squared mass, E, 2, at 1 > 1 this 
gives 

E~2= 8~c[a(2n' + l + ~ ) -  b~sl + 4m2, (13) 

where a = x/d 2 - (1 - d)2/4, b = cd - (1 - c)(1 - d)/4. 
Note, that the value a is real if i < d < - 1. 

The Regge trajectories given by (13) is very similar to 
that of a harmonic oscillator-type hamiltonian and good 
to describe the light-flavor mesons with ~c _ 0.15 GeV z, 
a ~ - l , b ~ _ l .  

4 An interpolating mass formula 

Thus we have two analytic expressions (7) and (13). The 
first of them (7) is good to describe the lower-state masses 
of heavy quarkonia and another (13), on the contrary, the 
masses of light-flavour mesons. Besides, the energy spec- 
trum in (7) lies in the region E, < 2m and the energy 
spectrum of the second one (13) lies in the region E,, > 2m. 
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It is known that  an angular  m o m e n t u m  in the Regge 
phenomeno logy  is considered as an analytic function in 
the complex plane. We choose the leading Regge trajecto- 
ries associated to S = 1 q~ states, with total angular  mo-  
men tum J = l + 1 and n' = 0, and consider the square of  
the m o m e n t u m  as the function of  cont inuous  variable 
z = / + l :  

pZ(z) = E 2 - 4m(m + Vo). (14) 

N o w  let us suppose that  (7) gives the asymptot ic  for the 
function p2(z) at small z, that  is, 

~2 2 
0~ s m 

pZ(z)-- Z2 , Z ~ 0 .  (15) 

Then (13) gives another  asymptotic,  but  for large z: 

pZ(z) ~- 8Kaz, z ~ 0o. (16) 

The question arises: what  is the possibility to  construct  an 
approximate  formula  for the p2(z) which satisfies bo th  of  
these constraints? 

For  this let us consider the two-point  Pad6 approxi-  
man t  [22] 

ZK 
i :o  aiz~ (17) [ K / N ] y ( z )  - 

E j = o  b f "  

Table 1. The leading state masses of light and heavy quarkonia 

state rnthoo ~ (GeV/c 2) rn~p (GeV/c 2) parameters in (18) 

Light mesons 
13S1 0.764 0.768 e, = 0.91 + 0.03 
13Pz 1.328 1.318 K = 0.13 + 0.01 GeV 2 
13D3 1.687 1.691 m = 0.33 GeV-fixed 
13F4 1.978 
13G5 2.231 - 
23S1 1.680 1.700 
3aS1 2.228 - 

sg states 
13S1 1.019 1.019 cq = 0.84 _+ 0.19 
13pz 1.525 1.525 ~c = 0.13 + 0.02 GeV 2 
13D3 1.854 1.854 m = 0.48 + 0.17 GeV 
13F4 2.126 
13G5 2.365 
23S1 1.843 - 
33S1 2.360 - 

cg states 
13S1 3.097 3.097 cq = 0.73 + 0.03 
lap2 3.556 3.556 x = 0.12 _ 0.02 GeV 2 
13D3 3.739 - m = 1.73 __ 0.03 GeV 
13F,~ 3.880 - 
13G5 4.008 - 
23S1 3.686 3.686 
33S1 3.983 - 
43S1 4.229 - 
53S1 4.453 - 

bb states 
13S1 9.460 9.460 cq = 0.45 + 0.01 
13pz 9.914 9.913 tc = 0.30 __ 0.01 GeV 2 
13D3 10.095 - m = 4.89 _+ 0.01 GeV 
13F4 10.235 - 
13G5 10.362 - 
23S1 10.036 10.023 
33S1 10.333 10.355 
4aS1 10.585 10.580 

To obtain the asymptotics  (15), (16) let us choose K = 3, 
N = 2 in (17). N o w  it is easily to see that  the Pad6 
approximant  (17) satisfy to two asymptotics  (15), (16) if: 
a o = - ~ m  z, a l = 0 ,  a 2 = 0 ,  a3=8~ca,  b o = 0 ,  b l = 0 ,  
be = 1. Therefore, with the help of relation (14) we obtain  
the following interpolat ing formula  for EZ: 

~2 2 
~s  m 

E 2 = 8~c[a(2n' + l + 3) _ bS~] + 4m 2. (18) 
(n' + 1 + 1) 2 

Formula  (18) reproduces both  the mass spectra of  light 
and heavy quarkonia  well ifc --- 1, d -~ 1 (a -~ 1, b --- 1) (see 
Table 1). 

This means that  the potential  is a Lorentz  scalar 
(V(r)  ~- O, see (8)) in an extreme relativistic limit for higher 
excited states. Consequent ly  one can write (18) in the 
following simplest form: 

~ m  2 
E, z = 8 t c ( 2 n ' + l + ~ - g s )  ( n ' + l +  1) 2 +4m2" (19) 

Fo rmula  (19) reflects in some sense the structure of two 
asymptotics (3) and (4) of  the potential  in E a representa- 
tion: the term - ~ Z ~ m 2 / ( n ' + l +  1) 2 corresponds to the 
one-gluon approximat ion  (function (3)), and the second 
one, 8x(2n' + l + ~ - ~s), corresponds to the confining 
potential  (function (4)). 

5 The Regge trajectories 

The interpolating mass formula (19) has several interest- 
ing consequences. First of all it allows one to reproduce an 
analytic expression for the qua rkon ium Regge trajecto- 
ries. For  this let us t ransform (19) into an equat ion for the 
angular  m o m e n t u m  l: 

l a + c l ( E 2 ) l  2 + c2(EZ) l  + c3(E 2) = 0, (20) 

where 

cl(E 2) = 4n' + 7/2 - ~s + 2(E2), 

c2(E 2) = (n' -t- 1) 2 + 2(n' + 1)[2n' + 3/2 -- gs + )t(E2)], 

c3(E 2) = ( n ' +  1) 2 [ 2 n ' +  3/2 - cTs + 2(E2)] - c~ma/(8x), 

2(E 2) = (4m z _ E 2)/(8~). 

Replacing E z by new variable t consider the cubic equa- 
t ion (20) in the whole region - oo < t < oo. The invest- 
igation of  solutions of  this equat ion show that  at Q(t)  > 0 
there is one real solution of  the form: 

o~(t) : 3X//--q(t)/2 + x / - ~ )  + 3%//--q(t)/2 -- x / Q ( t )  

-- c1(t) /3,  Q(t)  > 0, (21) 

where 

Q(t)  = p3( t ) /27  + qZ(t) /4,  

p(O = - c~ ( t ) / 3  + c2(t), 

q(t) = 2c3( t ) /27 -- c l ( t ) c z ( t ) / 3  + c3(t). 
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Fig. 2. The leading ~ and ~'Regge trajectories calculated according 
to (19). The symbols denote the empirical masses of the 3S~ and 3P2 
excited states of c6 and bb systems 

From other side at Q(t) < 0 there are three real solutions. 
Only first of this solutions, 

~(t) = 2 ~ c o s [ - # ( t ) / 3 ]  - c1(t)/3, Q(t) < 0, (22) 

where fl(t) = a r c c o s [ -  q(t)/(2x/-p3(t) /27)],  smoothly 
go over at Q(t)= 0 into solution (21). Therefore two 
functions (21), (22) produce the Regge trajectory in the 
whole region - oo < t < oo. 

The Regge trajectories (21), (22) are linear at t ~ oo 
with the universal slope e' = (8~c)- 1 and flatten off at - 1 
for t ~ - oo (see Figs. 1, 2). The first derivative, ~'(t), is 
positive in the whole region - oo < t < oo. The inter- 
cepts c~(0), and slopes e' of quarkonium Regge trajectories 
calculated are: 

! %(0) - 0.52, % -~ 0.79 GeV-2; 

t ~g(0) ~- 0.43, ~ - 0.43 GeV-2; 

~ ( 0 )  ~- 0.10, ~'~ - 0.04 GeV-2; 

~bb(0) --~ --0.31, ~ --~ 0.003 GeV -2. (23) 

6 Spin corrections 

In order to demonstrate the correctness and plausibility of 
the interpolating mass formula (19) consider its with the 
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account of the spin corrections. The spin-independent 
potential (which may be velocity dependent) essentially 
yield the center of gravity of levels, whereas the spin- 
dependent term, Vso, gives the splitting both of the 3S 1 
and 1So states and of each L > 1 level into the four states 
3LL_I, 3Lz, 3LL+ 1 and aL 1. 

A simple interpolating formula (19) describes equally 
well the center of gravity of energy levels of all qq mesons 
ranging from the ud(dd, u~, sg) states up to the heaviest 
known bb systems (see Table 1). The relativistic structures 
which occur in QCD have similarities to as well as impor- 
tant differences from relativistic corrections in QED. Not  
all spin-dependent forces are short range in QCD. This 
result follows only from QCD and the existence of the 
static limit is independent of any detailed mechanism for 
confinement or of perturbation theory. 

The total spin-dependent potential Vso(r) given by 
[20, 23]: 

l /s1 s2\ _ / ldW 2dVl  

(S 1 "-~ Sz) 'L 1 dV 2 2 (Sl "s2) 
+ + V3(r) 

mlm 2 r dr 3 mlmz 

(3S 1 ' #S 2 " # -- S 1 ~ 
+ V4(r), (24) 

3rnl m2 

where sl,  s2 are the quark spins, L is the relative orbital 
angular momentum, Vi(r) (i = 1, 2, 3, 4) are the unknowing 
functions in general case, W(r) is the static potential. 
Equation (24) is the complete spin-dependent potential in 
QCD through order l/m 2 with Vi(r) as expectation values 
of the appropriate electric and magnetic fields; it is valid 
both in QED and QCD, independent of perturbation 
theory, and will serve as the basis of the examination of 
spin-dependent forces. 

The general form for the spin-dependent forces in 
QCD (24) may be directly applied to meson system involv- 
ing two sufficiently heavy quarks. However, if rni is 
not large, the Dirac structure obtained for heavy-quark 
systems may still be valid but now with various V~(r) 
completely unknown functions of r and mi. However, 
there exists an important relation between the three func- 
tions W(r), V1 (r) and V2(r) which follows from the Lorentz 
invariance of the theory [20] 

W(r) + vl(r)  - V (r) = 0. (25) 

Let us choose the potentials V1, V2 in the form: 

vl(r) - tmr ,  V2(r) . . . .  + (1 - t/)~r, (26) 
Y 

where i/is some parameter. Then for the spin-orbit inter- 
action potential, V~s(r), we obtain: 

(4) 
v d r )  = ( s .  L) + ] (S- L) 1 - 5 ' (27) 

where S = sl + s2. Using for calculation of the expecta- 
tion values ( r - l )  and (r  - 3 )  the Coulomb wave func- 
tions, we obtain for the energy of spin-orbit interaction 
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between two heavy quarks (the results obtained below 
related to bound states of two heavy quarks): 

J( J + l) - l(l + l ) -  S(S + l) 

4 ) 
+ 8 m ~ + l -+- -l g 1 -  3 rl " 

(28) 

In our approach we have neglected by the tensor term 
which proportional to the V4(r) in (24). 

As for the spin-spin interaction, empirically, the differ- 
ences of the squared masses of corresponding spin-singlet 
and spin-triplet partners, which contain at least one light 
quark (u, d, s) are constant. However, because a Coulomb- 
like contribution ~ 1/r this causes some problems. For  
instance, due to the relation A(1/r)= -47z~(3)(r),  the 
spin-spin interaction Vs,(r) = ~(sl 's2)/(mlm2)AW(r) 
derived from a pure Coulomb potential involves a 6 
function, 

Hss 32rccq 
- -  9m 2 (sl-s2)63(r), (29) 

and the Breit-Fermi Hamiltonian unbounded from below. 
These problems are not present in the completely relativis- 
tic form of the bound-state wave function [14, 15]. To 
account the spin-spin interaction we have used the results 
obtained for the singlet-triplet mass-squared differences in 
[15]: 

32 
AM 2 = M 2 ~  - M 2 o  = ~-e~tc (30) 

for light qc i systems (in the instantaneous-limit approxi- 
mation [15]), and 

256 
A M  2 = M 2 ~  - M L o  = ~ ~ c  (31) 

for heavy quarkonia (hydrogen-like trial functions) [15]. 
All these predictions for the mass-squared differences are 
independent of the mass of the particles which constitute 
the bound state. 

Now using the results obtained above we can write an 
interpolating mass formula taking into account (pertur- 
batively) fine and hyperfine splittings of levels. Let us write 
such a formula in the form: 

M2, = (E,, + Ez~ + E~) 2 ~- E~ + 2E, E~ + 2E,,E~s, (32) 

where AS = (sl "Sz>s=1 - (st  "s2)s=0 = 1/4 -- ( - 3 /4 )  - 1 
is the difference of the expectation values for S = 1 and 
S = 0 spin states of quarks. Therefore for the energy of 
spin-spin interaction we have approximately: 

1 

Es, = 4ram AM2(Sl "s2). (34) 

Substituting (28) and (34) in (32) we obtain: 

En 
M. ~ = E. ~ + 2E.~ , ,  + ~ AM~<st  .s~>. (35) 

where E, 2 (and E,) is given by (i9). The formula (35) 
reproduces both the mass spectra of light and heavy 
quarkonia well. The results of the fits, the predicted energy 
levels and the corresponding sets of parameters are sum- 
marized in Tables 2-5, where the symbol* denotes the 
masses of the fitted states. 

The fitting results give for parameter t/, t/_~ 0 (see 
(26-28)), for all quarkonia except lightest ones (see 
Table 2) for which q = 0.065. This means that the function 
Vt(r)-~ 0 in the (25). The additive constant Vo in the 
interquark potential have determined, in fact, by both the 
slope ~c and Coulomb-like coupling constant cq. The aver- 
age relative errors, ( (E i n -  EeXP)/EeXP>, of the fitting 
results are listened in the Tables 2-5. Note also that 
calculated in Table 2 the mass of laSo state is very sensi- 
tive to light quark mass m. Generally (35) is useful (as 
mentioned above) for approximate description of mass 
spectra of heavy quarkonia. 

Table 2. Light mesons 

state mtheor (GeV/c 2) me~p (GeV/c 2) parameters in (35) 

11So 0.139 0.139 
13S1 0.770 0.768* 
13P2 t.334 1.318" 

13po 0.972 0.983 

11P 1 1.225 1.233" 
13D3 1.678 1.691" 
13F~ 1.953 
13Gs 2.191 - 
21S0 1.217 1.300 
23St 1.683 1.700" 

e~ = 0.892 +- 0.023 
= 0.125 +_0.004 GeV 2 

m = 0.231 GeV - fixed 

T a b l e  3 .  sg states 

state mtheo~ (GeV/c 2) m~p (GeV/c 2) parameters in (35) 

where E~s is given by (28). In order to estimate the energy 11S0 0.780 - 13S1 1.019 1.019" 
of spin-spin interaction, Ess, we use (30), (31), namely we 13p2 1.527 1.525" 
suppose that AM 2 ~-2EoAEss (in accordance with for- 
mula AE z =  2EAE). For ground state mass of bound 13p1 1.392 - 
state, Eo, we have taken approximately Eo ~ llPo 1.319 
mt + m2 = 2m, where m is the constituent quark mass. 11p1 1.461 - 
Then for the energy difference, AEs~, we have 13D3 1.845 1.854" 
approximately: 13F4 2.109 

13G5 2.34l - 
1 21So 1.606 - 

AE~ = 4m AM~AS, (33) 23S, 1.836 - 

es = 0.82 _+ 0.17 
~c = 0.13 _+ 0.02 GeV 2 
m = 0.43 _+ 0.17 GeV 



Table 4. c6 states 

state m,h~o ~ (GeV/c z) mo~p (GeV/c 2) parameters in (35) 

11So 2.986 2.984 
13S1 3.096 3.097* 
13p2 3.554 3.556* 

13p1 3.504 3.511' 

llpo 3.479 3.415 
11P1 3.529 3.525 
13D3 3.725 
13F4 3.864 
13G5 3.990 - 
21So 3.577 3.592* 
23S1 3.687 3.686* 

~ = 0.73 • 0.03 
x = 0.12 • 0.02GeV ~ 
m = 1.71 • 0.02GeV 

( ~ ) - ~  0'1 ~176 

Table 5. b/~ states 

state m, hoo~ (GeV/c z) m~p (GeV/c 2) parameters in (35) 

11So 9.398 - 
"13SI 9.459 9.460* 
13P2 9.920 9.913' 

13P1 9.896 9.891 

13/~ 9.884 9.870 
11P1 9.908 - 
13D3 10.096 - 
13/74 10.234 - 
13G5 10.359 
21So 9.983 
23S1 10.044 10.023" 
33SI 10.340 10.355" 
43S1 10.590 10.580" 

c~ = 0.45 _+ 0.01 
1~ = 0.30 _+ 0.01 GeV 2 
m = 4.89 _+ 0.01 GeV 

7 Conclusion 

The model  was motivated,  as noted previously, by our  
desire to construct  an analytic expression for the quar-  
konium Regge trajectories which could be combined both 
heavy and light quarkonia.  We have obtained the interpo- 
lating formula for the square of the quarkon ium mass and 
(by product)  analytic expression for the Regge trajectories 
e(t). This simple mass formula and following from it the 
Regge trajectories have, as shown above, several interest- 
ing consequences. 

Our  trajectory functions level off at - 1 for - t ~ o9 
and we see this same universal behaviour  for all leading 
trajectories from 7~ to Z This value c~(t), ~(t) ~- - 1, implies 
that  the cross section (1 - x) 1 2~(0, which is predicted by 
the triple Regge model,  behaves like (1 - x) 3. Is this to be 
attr ibuted to the behaviour  of the vector meson exchange 
or  is it some hard scattering contr ibut ion swamping the 
Regge theory for x > 0.7. It  seems likely that in this 
x region, at least, triple Regge theory is the correct de- 
scription of both of pion [1] and pro ton  [24-1 induced 
reactions. We see similar behaviour  in the ai1 neutral and 
full inclusive data. It is quite possible that  Q C D  can 
explain these observation. 

Quark -quark  and quark-gluon scattering is a fashion- 
able model  for high pz processes near x = 0 [3]. Nat-  
urally, this will also contribute to the high-x region. 
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However,  one must  ment ion the quark- recombina t ion  [4] 
and fragmentat ion [5, 6] models which have been applied 
to meson product ion  from a pro ton  beam at high x [25]. 
These models are normally applied at low p~_ but  clearly 
the data  [1, 24] show that  this region is dominated  by 
triple Regge terms. May  be these models can provide 
a description of high - t  data  [1] where c~(t)has settled 
down to its "universal" value of - 1 with the correspond-  
ing (1 - x) 3 behaviour  of the cross section at large - t .  

We have calculated the intercepts and slopes of the 
leading Regge trajectories, %(0,  ~ ( t ) ,  c~,(t) and c~r(t), 
which are used as free parameters  in many  models 
[4 6 ,9-11] .  

In order to demonstrate  the correctness of  our  basic 
formula (19) we have included (by s tandard fashion) the 
spin-dependent corrections. The obtained mass formula 
(35) include fine arid hyperfine splitting of the energy 
levels. We see that  this interpolating mass formula is able 
to describe with good  accuracy the spectra of all quark-  
ant iquark bound  states. The relative magni tude  of the 
Coulomb-l ike parameter  e~ is in accordance with the ideas 
of  asymptot ic  freedom as is expected for the strong gauge 
coupling constant  of QCD,  that  is, c~,g > es~ > ec~ > ebb- 
Of course a complete analysis would require ingredients 
that we have not  all considered here but  discussed in the 
literature. 
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