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Abstract – Glueballs are considered to be bound states of constituent gluons. The relativistic
wave equation for two massive gluons interacting by the funnel-type potential is analyzed. Using
two exact asymptotic solutions of the equation, we derive an interpolating mass formula and
calculate glueball masses in agreement with the lattice data. We obtain the complex non-linear
Pomeron trajectory, αP (t), in the whole region of t. The real part of the trajectory corresponds
to the soft pomeron, parameters of which are found from the fit of recent HERA data.
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Introduction. – Quantum Chromodynamics allows
for an effective description of hadrons as bound states
of constituent particles. The classification of baryons
and mesons with the quark hypothesis is a first histor-
ical example. There should exist a way to connect the
constituent approaches to QCD. This long-standing prob-
lem is far from being completely solved.
A good test of our understanding of the non-

perturbative (NP) aspects of QCD is to study particles
where the gauge field plays a more important dynamical
role than in the standard hadrons. QCD allows the
existence of purely gluonic bound states, glueballs [1–3],
but no firm experimental discovery of such states has
been obtained yet. Glueballs are particles whose valence
degrees of freedom are gluons. An important theoretical
achievement in this field has been the computation of the
glueball spectrum in lattice QCD [4].
The glueball spectrum has also been computed by using

an effective approach like the potential model [5–7]. The
potential model is very successful to describe the bound
states of quarks. It is also a possible approach to study
glueballs [7,8]. Recent results in the physics of glueballs
have been reviewed in [3].
At the present, one of open topics in hadron physics

is the relation between glueballs and the pomeron. The
pomeron is the Pomeranchuk trajectory (P trajectory) [9].
In the many high-energy reactions with small momentum
transfer the soft pomeron exchange, gives the dominant
contribution [10].

(a)Present address: State University of Transport - Kirov Street,

34, Gomel, 246653, Belarus; E-mail: msergeen@usa.com

Recent small-(−t) ZEUS and H1 data for exclusive
ρ and φ photoproduction [11,12] point out that the
P trajectory is rather non-linear. The data have been
explained by adding in a hard pomeron contribution,
whose magnitude is calculated from the data for exclusive
J/Ψ photoproduction [13,14]. The ZEUS, H1 as well as
CDF data on pp̄ elastic scattering data have also been
analyzed by using the non-linear P trajectory [15]. But
non-linearity of the P trajectory is still an open question.
The amount of non-linearity is unknown.
There has been a long-standing speculation that

the physical particles on the P trajectory might be
glueballs [1,3]. In this work we take a picture where the
t-channel pomeron is dual to glueballs, i.e., purely
gluonic bound states in the s-channel. We use the poten-
tial approach, which is the natural framework for studying
the Regge trajectories and their properties [16,17]. The
potential model, which is so successful to describe bound
states of quarks, is also a possible approach to study
glueballs [7,18]. We derive an interpolating mass formula
for glueball masses and analytic expression for the P
trajectory, αP (t), in the whole region of variable t.
Calculation results are compared with the lattice data.

Glueballs. – Glueballs are purely gluonic bound states
allowed by QCD. At present, there is the understanding
of the deep relation between the properties of the glue-
ball states and the structure of the QCD vacuum. The
basic idea is that the vacuum is filled with JPC = 0++

transverse electric glueballs which form a negative-energy
condensate [19].
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Two gluons in a color singlet state have always posi-
tive charge conjugation (C =+). The lightest glueballs,
which have C =+, can be successfully modeled by a two-
gluon system in which the constituent gluons are massless
helicity-1 particles [20]. The proper inclusion of the helicity
degrees of freedom dramatically improves the compatibil-
ity between lattice QCD and potential models [20].
The modern development in glueball spectroscopy from

various perspectives has been discussed in [3]. At present,
several candidates for the low-mass glueballs with quan-
tum numbers JPC = 0++, 2++, 0−+ and 1−− are under
discussion.
Glueball masses have been calculated by many authors.

A new method called the Vacuum Correlator Model
(VCM) has been used in [21]. In this model all non-
perturbative and perturbative dynamics of quarks and
gluons is universally described by lowest cumulants, i.e.,
gauge invariant correlators of the type 〈Fµν(x1) . . .Fλσ(xν)〉.
More discussions on the subject can be found in [3].
Authors of [7] compared different models for glueballs.

They concluded that a semi-relativistic Hamiltonian is an
essential ingredient to handle glue states. All the analyzed
models used an SL-basis to include the spin of gluons.
These arguments support the use of an effective gluon
mass to describe the glueball dynamics of QCD.

Reggeons and the pomeron. – There exists a
conviction that the Regge trajectories are linear in the
whole region, that is, not only in the bound-state region
(t=E2 > 0) but in the scattering region (t < 0) too.
However, one of the most crucial distinctions between
small-(−t) behavior and large-(−t) behavior of trajectories
α(t) involves the asymptotic form of Regge trajectories at
−t→∞.
The asymptotic behavior of the Regge trajectories at
−t→∞ has been discussed by many authors [22–24]. The
constituent interchange model (CIM) [22] results in the
prediction for the large-(−t) behavior of ρ trajectory

αρ(t) =−1, t→−∞, (1)

that means the ρ trajectory is non-linear. General prop-
erties of the trajectories have been considered in classical
papers [25,26].
There is a renewed interest in the studies of the dynam-

ics of the Regge trajectories [27]. The conception of linear
Regge trajectories is not consistent with experimental data
and expectations of perturbative QCD (pQCD) at large
−t≫ΛQCD [22]. In the experiment far more complicated
behavior of the ρ-meson trajectory, αρ(t), was discovered;
the ρ trajectory flattens off at about −0.6 or below.
Regge trajectories with the same asymptotic behav-

ior for all leading S = 1 meson and quarkonium Regge
trajectories were obtained in our refs. [28,29]. The calcu-
lated effective ρ Regge trajectory matching the experimen-
tal data on the spectrum of the ρ trajectory as well as
those on the charge-exchange reaction π−p→ π0n at t < 0.
The trajectory deviates considerably from a linear in the

space-like region and is asymptotically linear in the time-
like region, matching nicely between the two.
The pomeron is the highest-lying Regge trajectory. In

the many high-energy reactions with small momentum
transfer the pomeron exchange, gives the dominant contri-
bution [10,30]. The classic soft pomeron is constructed
from multi-peripheral hadronic exchanges. It is usually
believed that the soft P trajectory is a linear function,

αP (t) = αP (0)+α
′

P (0)t, (2)

where the intercept αP (0) = 1 and the slope α
′

P (0) =
0.25GeV−2. These fundamental parameters are the most
important in high-energy hadron physics. Usually, they are
determined from experiment in hadron-hadron collisions.
To explain the rising hadronic cross-sections at high

energies, the classic soft pomeron was replaced by a
soft supercritical pomeron with an intercept αP (0)≃ 1.08.
What is the pomeron by definition?
The pomeron is the vacuum exchange contribution

to scattering at high energies at leading order in 1/Nc
expansion. In gauge theories with string-theoretical dual
descriptions, the pomeron emerges unambiguously. In the
QCD framework the pomeron can be understood as the
exchange of at least two gluons in a color singlet state [31].
The pQCD approach to the pomeron, the Balitskǐi -Fadin-
Kuraev-Lipatov (BFKL) pomeron, has been discussed
in [32,33]. The pomeron can also be associated with a
reggeized massive graviton [34].
The approximate linearity (2) is true only in a small-

(−t) region. The ZEUS, H1 as well as CDF data on pp̄
elastic scattering data have also been analyzed by using
the non-linear P trajectory [15]. Important theoretical
results have been obtained in [35–37]. The results imply
that the effective P trajectory flattens for −t > 1GeV2

that is evidence for the onset of the perturbative 2-gluon
pomeron. These results may shed some light on the self-
consistency of recent measurements of hard-diffractive jet
production cross-sections in the UA8, CDF and HERA
experiments.
A further analysis [36] of inelastic diffraction data at

the ISR and SPS-Collider confirms the relatively flat
s-independent P trajectory in the high-(−t) domain, 1<
−t < 2GeV2, reported by the UA8 Collaboration. This
suggests a universal fixed P trajectory at high −t. It was
shown that a triple-Regge pomeron-exchange parametriza-
tion fit to the data requires an s-dependent (effective) P
trajectory intercept, αP (0), which decreases with increas-
ing s, as expected from unitarization (multi-pomeron-
exchange) calculations, αP (0) = 1.10 at the lowest ISR
energy, 1.03 at the SPS-Collider and perhaps smaller at
the Tevatron. In [37] a new γ∗p/pp̄ factorization test in
diffraction, valid below Q2 about 6GeV2 has been inves-
tigated. The apparent factorization breakdowns are likely
due to the different effective P trajectories in ep and pp
interactions.
The issue of soft and hard pomerons has been discussed

extensively in the literature [32,33,38]. Both the IR (soft)
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pomeron and the UV (BFKL) pomeron are dealt in a
unified single step. On the basis of gauge/string dual-
ity, the authors describe simultaneously both the BFKL
regime and the classic Regge regime. The problem was
reduced to finding the spectrum of a single j-plane
Schrödinger operator. The results agreed with expecta-
tions for the BFKL pomeron at negative t, and with the
expected glueball spectrum at positive t, but provide a
framework in which they are unified.
A model for the pomeron has been put forward by

Landshoff and Nachtmann where it is evidenced the
importance of the QCD NP vacuum [9]. The current data
is compatible with a smooth transition from a soft to a
hard pomeron contribution which can account for the rise
of σtot with s. If soft and BFKL pomeron have a common
origin, the discontinuity across the cut in the αP (t) plane
must have a strong t-dependence that points out on
non-linearity of the P trajectory [39].
There are currently no any realistic theoretical estima-

tions of the P trajectory. The behavior of the trajectory
αP (t) in the whole region is unknown. Below, in this work
we reproduce the P trajectory in the whole region and
calculate its parameters αP (0) and α

′

P (0).

The pomeron trajectory. – Let us consider the
picture in which the physical particles on the P trajectory
are glueballs, i.e., purely gluonic bound states of massive
gluons [1,3]. The P trajectory can be obtained by similar
way as the reggeon ones [28,29]. We consider clueballs as
relativistic two-gluon bound systems. The question arises:
what is the potential of gg interaction?
The potential is a non-relativistic concept. Nevertheless,

the potential is successfully used in many relativistic
models. We do not know the QCD potential in the whole
region. It is generally agreed that, in pQCD, as in QED
the essential interaction at small distances is instantaneous
Coulomb exchange; in QCD, it is qq, qg, or gg Coulomb
scattering [39]. For large distances, from lattice-gauge-
theory computations [40] follows that the potential is
an approximately linear, VL(r)≃ σr, at r→∞, where
σ≃ 0.15GeV2 is the string tension.
In the model of [21] all dependence on gluonic fields

Āµ is contained in the adjoined Wilson loop 〈Wadj(C)〉,
where the closed contour C runs over trajectories zµ(σ)
and z̄µ(σ) of both gluons. Gluons are linked by an adjoint
string. The adjoint string tension σa = 9σ/4 is expressed
in terms of the well-known fundamental string tension
σ for mesons through the Casimir scaling hypothesis.
Using typical values for the parameters, σ= 0.15GeV2

and αs = 0.4 for the strong coupling, this model encodes
the essential features of glueballs. More discussions on the
subject can be found in [3].
In the adjoined and fundamental representations, the

final form of interaction of two gluons is [21]

Vgg(r) =−
αa
r
+σar−C0, (3)

where αa ≡ α
adj = 3αfunds , σa ≡ σ

adj= 9
4σ
fund; αfunds is

the strong coupling, σfund ≡ σ≃ 0.15GeV2 is the string
tension, and C0 is the arbitrary parameter.
In hadron physics, the nature of the potential is very

important. There are normalizable solutions for scalar-
like potentials, but not for vectorlike [41]. The effective
interaction has to be scalar in order to confine particles
(quarks and gluons) [41].
To reproduce the P trajectory we need to obtain an

analytic expression for the squared gluonium mass, E2.
For this, we solve the relativistic semi-classical wave
equation, which for two interacting gluons of equal masses
μ1 = μ2 = μ0 is [42,43]

−

(

∂2

∂r2
+
1

r2
∂2

∂θ2
+

1

r2 sin2 θ

∂2

∂ϕ2

)

ψ̃(�r ) = p2(E, r)ψ̃(�r ),

(4)
where p2(E, r) =E2/4− [μ0+Vgg(r)]

2.

The correlation of the function ψ̃(�r ) with the wave
function ψ(�r ) in case of the spherical coordinates is given
by the relation ψ̃(�r ) =

√

det gijψ(�r ), which follows from
the identity:

∫

|ψ(�r ) |2 d3�r≡
∫

|ψ(�r ) |2det gijdr dθ dϕ =
1, where gij is the metric tensor (det gij = r

2sin θ for the
spherical coordinates).
Relativistic wave equations are usually solved in terms

of special functions, with the help of specially developed
methods or numerically. However, almost together with
quantum mechanics, the appropriate method to solve the
wave equation has been developed; it is general simple for
all the problems, and its correct application results in the
exact energy eigenvalues for all solvable potentials. This
is the phase-integral method which is also known as the
WKB method [44,45].
It is hard to find the exact analytic solution of eq. (4)

for the potential (3). But we can find exact analytic
solutions for two asymptotic limits of the potential (3),
i.e. for the Coulomb and linear potentials, separately [42].
The most general form of the WKB solution and the
quantization condition can be written in the complex
plane [43].
The WKB quantization condition appropriate to (4)

with the Coulomb potential is

I =

∮

C

√

E2

4
−μ20+

2αaμ0
r
−
Λ2

r2
= 2π

(

nr +
1

2

)

, (5)

where Λ2 = (l+1/2)2+α2a and a contour C encloses the
classical turning points r1 and r2. Using the method of
stereographic projection, we should exclude the singulari-
ties outside the contour C, i.e. at r= 0 and ∞. Excluding
these infinities we have, for the integral (5),

I = 2π(αaμ0/
√

−E2/4+μ20−Λ), (6)

and for the energy eigenvalues this gives [46],

E2n = 4μ
2
0

[

1−
α2a

(nr +1/2+Λ)
2

]

. (7)
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Eigenvalues (7) are exact, for the Coulomb potential.
Analogously, we obtain, for the linear potential [43],

E2n = 8σa

(

2nr + l−αa+
3

2

)

. (8)

For small distances, where the Coulomb-type contribution
dominates, the effective strong coupling, αa, is a small
value and (7) can be rewritten in the simpler form

E2n ≃ 4μ
2
0

[

1−
α2a

(nr + l+1)2

]

. (9)

To find gluonium energy eigenvalues (glueball masses)
we use the same approach as in [28,29], i.e., we derive an
interpolating mass formula for E2n, which satisfies both
of the above constraints (8) and (9). To derive such a
formula, the two-point Padé approximant can be used [46],

[K/N ]f (z) =

∑K
i=0 aiz

i

∑N
j=0 bjz

j
, (10)

with K = 3 and N = 2. We use K = 3 and N = 2 because
this is a simplest choice to satisfy the two asymptotic
limits above.
The result is the interpolating mass formula [28,29],

E2n = 8σa

(

2nr + l+
3

2
−αa

)

−
4α2aμ

2
0

(nr + l+1)2
+4μ20. (11)

Expression (11) is an Ansatz (as the potential (3)), which
is based on two asymptotic expressions (8) and (9).
Formula (11) and its derivation are rather simple; this
allows us to get an analytic expression for the P trajectory,
αP (t), in the whole region.
Transform (11) into the cubic equation for the angular

momentum l,

l3+ c1(t)l
2+ c2(t)l+ c3(t) = 0, (12)

where c1(t) = 2ñ+λ(t), c2(t) = ñ
2+2ñλ(t), c3(t) =

ñ2λ(t)−α2aμ
2
0/2σa, ñ= nr +1, λ(t) = 2ñ− 1/2−αa+

(4μ20− t)/8σa. Equation (12) has three (complex in the
general case) roots: l1(t), l2(t), and l3(t). The real part of
the first root, Re l1(t), gives the P trajectory,

αP (t) =

{

f1(t)+ f2(t)− c1(t)/3, Q(t)� 0,

2
√

−p(t) cos [β(t)/3]− c1(t)/3, Q(t)< 0,
(13)

where

f1(t) =
3

√

−q(t)+
√

Q(t), f2(t) =
3

√

−q(t)−
√

Q(t),

Q(t) = p3(t)+ q2(t), p(t) =−c21(t)/9+ c2(t)/3,

q(t) = c31(t)/27− c1(t)c2(t)/16+ c3(t)/12,

β(t) = arccos
[

−q(t)/
√

−p3(t)
]

.

Table 1: Glueball masses and parameters of the gg poten-
tial (3).

Method JPC EGln Parameters

I 2++ 1.740 αa = 2.448 - fixed
3−− 2.452 σa = 0.338GeV

2 - fixed
4++ 2.974 μ0 = 0.495GeV - fixed
5−− 3.408
6++ 3.789

II 2++ 1.984 αa = 2.276± 0.041
3−− 2.689 σa = 0.294± 0.003GeV

2

4++ 3.164 μ0 = 0.968± 0.147GeV
5−− 3.549
6++ 3.884

III 2++ 1.695 αa = 2.442± 0.044
3−− 2.393 σa = 0.323± 0.071GeV

2

4++ 3.904 μ0 = 0.478± 0.084GeV
5−− 3.330
6++ 3.703

Expression (13) supports existing experimental data and
reproduces the soft P trajectory in the whole region of t
(see below). The corresponding parameters αa, σa and μ0
are listed in table 1.
We calculate glueball masses and the P trajectory for

three different sets of parameters (methods): I) the
parameters are fixed as in [21]: αa = 3αs = 2.448,
σa = 9σ/4 = 0.338GeV

2, and gluon mass μ0 = 1.5mq =
0.495GeV (see also [47]) for the typical values αs = 0.816,
string tension σ= 0.15GeV2, quark mass mq = 0.330GeV
of light mesons; II) the parameters αa, σa, and μ0 are
found from the fit of HERA data for the P trajectory [12];
III) include into the fit the JPC = 2++ glueball candidate
for mG = 1.710GeV [48] by supposing that the glueball
trajectory is the soft P trajectory. Masses of gluonium
leading states, EGln , have been calculated with the use of
the interpolating mass formula (11). The methods I) and
III) reproduce the trajectory with the properties of the
supercritical soft pomeron. The effective intercept and
slope estimated by these two methods are:

αP (0) = 1.09± 0.02, α
′

P (0) = 0.26± 0.03GeV
−2. (14)

The corresponding effective mass of the 2++ glueball
candidate is mG ≃ 1.74GeV .
Several pomerons are shown in fig. 1. Solid line is

the effective P trajectory (13). The trajectory is asymp-
totically linear at t→∞ with the slope α′P = 1/(8σa)≃
0.38GeV−2. In the scattering region, the trajectory flat-
tens off at −1 for t→−∞. We see that the experimen-
tal data and simple calculations in the framework of
the potential approach support the conception of the
soft supercritical pomeron as observed at the presently
available energies.
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Fig. 1: (Colour on-line) The effective pomeron trajectory. The
solid curve is the trajectory (13) with the parameters found
from the fit of combined HERA ρ (triangles) and φ (circles)
data [12], and 2++ glueball candidate f0(1710) (cross) [48].
Other lines show the classic soft, BFKL, and Donnachie-
Landshoff hard pomerons.

The perturbative (Coulomb) part of the potential (3)
gives the asymptotic expression (9), inverting which we
have (t=E2)

l(t) =−1+
αa

√

1− t/(4μ20)
, t→−∞. (15)

If we take into account spins of gluons with the total spin
of two interacting gluons S = 2 (leading states), then the
formula

α(t) = l(t)+S (16)

gives the asymptote for the BFKL pomeron predicted by
pQCD [33].
The pomeron with such properties has been also used to

describe the HERA data on the charm structure function
F c2 [12,49]. It was shown that the two-pomeron picture
(soft-plus-hard-pomeron) gives a very good fit to the
total cross-section for elastic J/Ψ photoproduction and
the charm structure function F c2 over the whole range of
Q2 =−t [50]. However, the results of these experiments
and the found higher-order corrections make it quite
unclear what the hard pomeron is.

Conclusion. – Glueballs are a good test of our under-
standing of the non-perturbative aspects of QCD. Their
existence is allowed by QCD and the glueball spectrum
has been computed in lattice QCD.
We have considered glueballs as bound states of

constituent massive gluons and investigated their prop-
erties in the framework of the potential approach. For
two-gluon system, we have analyzed exact asymptotic
solutions of relativistic wave equation with the funnel-
type potential. Using the asymptotes, we have derived
the interpolating mass formula (11) and calculated the

glueball masses, which are in agreement with the lattice
data.
We have considered glueballs as the physical particles

on the P trajectory. To reproduce the P trajectory, we
have derived the interpolating mass formula (11) for
the squared energy eigenvalues, E2n =E

2(l, nr), of the gg
system. We have calculated gluonium masses and obtained
the analytic expression (13) for the P trajectory, αP (t)
in the whole region. In the scattering region, at −t≫
ΛQCD, the trajectory flattens off at −1 and has asymptote
αP (t→−∞) =−1. In the bound-state region, the P
trajectory is approximately linear in accordance with the
string model.
However, the non-linearity of trajectories is still an open

question. The curvature of the trajectory may come from
several linear trajectories, as Donnachie and Landshoff
showed. Here we have considered one of possible scenario.
We do not have enough experimental data to make final
conclusion. It is well known, that the fixed-number of
particles within the potential approach cannot be used
for a strict relativistic description. A strict description
of the pomeron presupposes a multiparticle system. For
the perturbative regime with the pomeron scattering, the
dominant contribution comes from the BFKL pomeron.
However, experimental data and our rather simple calcu-
lations support the conception of the soft supercritical
pomeron as observed at the presently available energies.
The hard BFKL pomeron has intercept αP (0) = 1.44.
Next-to-leading-order estimates give for the BFKL inter-
cept 1.26 to 1.3, which is closer to the soft supercritical
pomeron.
In this paper we have not considered helicities and

spin properties of gluons. This topic has been discussed
in details somewhere else [20]. The existing data and
the simple analysis performed in this work confirm the
existence of the pomeron whose trajectory is non-linear
and corresponds to the supercritical soft pomeron at small
spacelike t.
In many Regge models [51,52], one-pomeron exchange

gives only the dominant contribution into the cross-
section. With energy growth, multiple-pomeron exchanges
(MPE) and sea quark contributions become important.
The MPE contributions are important just at small-x and
can give explanation of the small-x charm production data
at HERA.
Combined with the eikonal model the MPE contribu-

tions give the correct energy dependence of total and total
inelastic cross-sections [52] and allow to describe hard
distributions of secondary hadrons [51]. From this point
of view, the required hard pomeron discussed in [13] effec-
tively accounts for the MPE contributions.

∗ ∗ ∗

The author thanks V. A. Petrov and V. Mathieu for
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