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Abstract The bound state of two massive constituent glu-
ons is studied in the potential approach. The relativistic
quasi-classical wave equation with the QCD-inspired scalar
potential is solved by the quasi-classical method in the com-
plex plane. Glueball masses are calculated with the help of
the universal mass formula. The hadron Regge trajectories
are given by the complex non-linear function in the whole
region of the invariant variable t . The Chew–Frautschi plot
of the leading glueball trajectory, αP (t), has the properties
of a t-channel Pomeron, which is dual to the glueball states
in the s channel. The imaginary part of the Pomeron is also
calculated.

1 Introduction

Quantum Chromo Dynamics allows the existence of purely
gluonic bound states, glueballs. These are particles whose
valence degrees of freedom are gluons where the gauge field
plays a more important dynamical role than in the standard
hadrons. Study of glueballs is a good test of our understand-
ing of the non-perturbative (NP) aspects of QCD, but no firm
experimental discovery of such gluonic states has been ob-
tained yet. A comprehensive review devoted to the glueballs
was given in [1–3].

An important theoretical achievement in this field has
been the computation of the glueball masses in lattice QCD
[4]. Lattice QCD has been able to compute the low-lying
glueball spectrum with a good accuracy. This predictions for
glueballs are now fairly stable, at least when virtual quarks
are neglected. Several candidates for the low mass glueballs
with quantum numbers JPC = 0++, 2++, 0−+ and 1−− are
under discussion. It is difficult to single out which states of
the hadronic spectrum are glueballs because we lack the nec-
essary knowledge to determine their decay properties.
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Many theoretical approaches contain basic model as-
sumptions which are difficult to prove starting from the
QCD Lagrangian. Complete understanding of glueballs in-
cludes such theoretical treatments as lattice QCD, con-
stituent models, AdS/QCD methods, and QCD sum rules
[1, 3, 5]. Glueballs have been studied by using effective
approach like Coulomb gauge QCD and potential model
[6–12]. The potential model is very successful to describe
bound states of quarks. It is also a possible approach to
study glueballs [5, 9]. Recent results in the physics of glue-
balls with the aim set on phenomenology and the possibility
of finding them in conventional hadronic experiments have
been reviewed in [5].

A possible way to handle glueballs is to consider mas-
sive quasi-gluons interacting via QCD-inspired dynamics.
The gluons are massless to all orders in perturbation theory,
but NP effects like confinement, and their self-interactions,
can be described by a constituent gluon mass. Another def-
inition of the gluon mass was considered in [13, 14], where
a realistic QCD motivated gluon propagator was obtained
from approximate solution of the Dyson–Schwinger equa-
tion. The dynamical mass of gluon is defined by the position
of the pole of the dressed gluon propagator.

One of open topics in hadron physics is the Pomeron.
What is the Pomeron? We know the Pomeron as the highest-
lying Regge (Pomeranchuk) trajectory (P trajectory) [15].
In the Regge pole theory, the leading Regge trajectories
give the main contribution to the scattering amplitude. In
the many high-energy reactions with small four-momentum
transfer, the soft P exchange gives the dominant contribu-
tion in cross sections [16]. Next question is: what is the re-
lation between glueballs and the Pomeron?

The relation between glueballs and the Pomeron has been
investigated by many authors. Usually, the P trajectory is
considered to be a linear function. However, recent small −t

ZEUS and H1 data for exclusive ρ and φ photoproduction
[17–22] point out that the P trajectory is rather non-linear.
The data have been explained by adding in a flavor-blind
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hard Pomeron contribution, whose magnitude is calculated
from the data for exclusive J/Ψ photoproduction [23–25].
The ZEUS, H1 as well as CDF data on pp̄ elastic scatter-
ing data have also been analyzed by using the non-linear P

trajectory [26–30].
In this work we consider two-gluon glueballs as the ex-

cited states of purely gluonic bound states of massive glu-
ons. We accept the potential model, which is so successful
in describing bound states of quarks; it is also a possible ap-
proach to study glueballs [9, 31]. To describe the two-body
system we use the relativistic quasi-classical (QC) wave
equation with the QCD-inspired scalar potential, in which
the strong coupling is coordinate dependent, i.e., αs = αs(r).
We obtain two exact solutions of the relativistic QC wave
equation for two components of the potential, the short-
distance Coulombic term and long-distance linear one, sep-
arately. Using the interpolation procedure, we join these two
solutions and obtain an interpolating mass formula, for the
bound system. Using this universal mass formula, which is
good to describe the mass spectra of both light and heavy
quarkonia, we calculate glueball masses and reconstruct the
saturating P trajectory.

This work is not a comprehensive investigation of the
glueball spectroscopy. We concentrate ourself on the lead-
ing Sz = 2 gluonium states and take a picture where the
t-channel Pomeron is dual to glueballs in the s channel. We
obtain an analytic expression for the P trajectory, αP (t), in
the whole region of the Mandelstam invariant variable t .
The trajectory is a complex non-linear function, the real
part of which corresponds to the soft Pomeron in agreement
with the recent HERA data and is the saturating trajectory.
The imaginary component of the P trajectory is also calcu-
lated.

2 Glueballs and the Pomeron

Glueballs in full QCD are very complicated systems. Many
investigations of glueball physics support the use of an ef-
fective gluon mass to describe the glueball dynamics of
QCD. The lightest glueballs with positive charge conjuga-
tion C = + can be successfully modeled by a two-gluon
system (gluonium) in the framework of the potential ap-
proach [5].

There has been a long-standing speculation that glueballs
might be the physical particles on the P trajectory [3, 5–
8]. Gluonium leading states and their connection with the
Pomeron have been studied in our ref. [29, 30]. We mod-
eled glueballs to be bound states of two constituent mas-
sive gluons interacting by the Cornell potential and have
shown good agreement both with the lattice calculations
in the bound state region and the scattering data for the
Pomeron.

2.1 Glueballs

Glueballs were suggested theoretically in [32–34] and then
have been extensively studied in the framework of different
approaches [3, 5, 31, 35]. These objects have not been an
easy subject to study due to the lack of phenomenological
support. Much debate has been associated with their prop-
erties. The main achievement of these debates is the under-
standing of the deep relation between the properties of the
glueball states and the structure of the QCD vacuum. The ba-
sic idea is that the vacuum is filled with JPC = 0++ trans-
verse electric glueballs which form a negative energy con-
densate [36].

Glueballs are bosons made only from the gluonic field;
these are quarkless hadrons. They can be classed as mesons,
because they are hadrons and carry zero baryon number.
Glueballs must be flavor singlets, i.e., have vanishing isospin
(I = 0) and strangeness. Like all particle states, they are
specified by the quantum numbers which label representa-
tions of the Poincaré symmetry, i.e., JPC and by the mass.
They have the same quantum numbers as isospin 0 mesons
and their decays in conventional hadrons violate the Okubo–
Zweig–Iizuka rule.

Typically, every quark model meson comes in SU(3) fla-
vor nonets—an octet and a flavor singlet. A glueball shows
up as an extra (supernumerary) particle outside the nonet. In
spite of such seemingly simple counting, the assignment of
any given state as a glueball remains tentative even today.
In a strongly coupled theory there is nothing to stop them
mixing with the ‘quark-based’ states. These quarkless states
are extremely difficult to identify in particle accelerators, be-
cause they mix with ordinary meson states. Spectrum of pure
SU(3) Yang–Mills states has been extracted using comput-
erized lattice calculations [4].

Pure gauge QCD has been investigated by lattice QCD
for many years. This led to a well established glueball spec-
trum below 4 GeV [4]. Lattice QCD has been able to com-
pute the low-lying glueball spectrum with a good accuracy.
The data show five isoscalar resonances—f0(600), f0(980),
f0(1370), f0(1500) and f0(1710). Of these the f0(600) is
usually identified with the σ of chiral models. The decays
and production of f0(1710) give strong evidence that it is
also a quarkless meson.

At the present time, the three states 2++, 0++, and 0−+
are chosen as possible experimental glueball candidates [37,
38], because they are computed with relatively small errors
in lattice calculations [39, 40]. Some experimental glueball
candidates are currently known, such as f0(980), f0(1500),
and f0(1710), but no definitive conclusions can be drawn
concerning the nature of these states. We have got no model-
independent theoretical knowledge of these hadrons. Major
new experimental effort forthcoming at Jefferson Lab.

The modern development in glueball spectroscopy from
various perspectives has been discussed in [1, 5, 29, 30].
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All these investigations support the use of an effective gluon
mass to describe the glueball dynamics of QCD. If a va-
lence gluon is a priori massive, then it is a spin-1 particle.
Such two gluons with total spin S = 2 in glueballs reproduce
properly the lattice QCD spectrum for C = + states [4] and
may have five 2S + 1 spin states: Sz = +2,+1,0,−1,−2.
Highest glueball trajectory with Sz = +2 is expected to be
the Pomeron. There is work arguing that a valence gluon is a
massless particle, which gains a constituent mass μg , either
constant, or state dependent [9–14].

There are other definitions of the gluon mass [1–3],
which we do not discuss here. All these arguments support
the use of an effective gluon mass to describe the dynamics
of QCD. It is therefore possible to envisage an approach to
bound states made of constituent massive gluons. We con-
sider here the simplest case of two-gluon glueballs, since
they have always a positive conjugation charge.

2.2 The Pomeron

An open topic in hadron physics is the relation between
glueballs and the Pomeron. In gauge theories with string-
theoretical dual descriptions, the Pomeron emerges unam-
biguously. In the QCD framework the Pomeron can be un-
derstood as the exchange of at least two gluons in a color
singlet state [41, 42]. The pQCD approach to the Pomeron,
the Balitskiǐ–Fadin–Kuraev–Lipatov (BFKL) Pomeron, has
been discussed in [43, 44]. The Pomeron can also be associ-
ated with a reggeized massive graviton [45].

The Pomeron is the vacuum exchange contribution to
scattering at high energies at leading order in 1/Nc expan-
sion. It is the highest-lying Regge trajectory. In the many
high-energy reactions with small four-momentum transfer
the P exchange gives the dominant contribution [16]. The
classic soft Pomeron is constructed from multi-peripheral
hadronic exchanges. It is usually believed that the soft P

trajectory is a linear function,

αP (t) = αP (0) + α′
P (0)t, (1)

where the intercept αP (0) = 1 and the slope α′
P (0) =

0.25 (GeV/c)−2. These fundamental parameters are very
important in high-energy hadron physics. Usually, they are
determined from experiment in hadron-hadron collisions.

To explain the rising hadronic cross sections at high en-
ergies, the classic soft Pomeron was replaced by a soft su-
percritical Pomeron with an intercept αP (0) � 1.08. The ap-
proximate linearity (1) is true only in a small −t region. The
ZEUS, H1 as well as CDF data on pp̄ elastic scattering data
have also been analyzed by using the non-linear P trajec-
tory [26]. Important theoretical results have been obtained
in [46–48]. The results imply that the effective P trajectory
flattens for −t > 1 (GeV/c)2 that is evidence for the on-
set of the perturbative 2-gluon Pomeron. These results may

shed some light on the self-consistency of recent measure-
ments of hard-diffractive jet production cross sections in the
UA8, CDF and HERA experiments.

The issue of soft and hard Pomerons has been discussed
extensively in the literature [15, 43, 44, 49, 50]. Both the
IR (soft) Pomeron and the UV (BFKL) Pomeron are dealt
in a unified single step. On the basis of gauge/string duality,
the authors describe simultaneously both the BFKL regime
and the classic Regge regime [43, 44, 49, 50]. The prob-
lem was reduced to finding the spectrum of a single j -plane
Schrödinger operator. The results agreed with expectations
for the BFKL Pomeron at negative t , and with the expected
glueball spectrum at positive t , but provide a framework in
which they are unified.

A model for the Pomeron has been put forward by Land-
shoff and Nachtmann where the importance of the QCD NP
vacuum is evident [15]. The current data are compatible with
a smooth transition from a soft to a hard Pomeron contribu-
tion which can account for the rise of σtot with s. If soft
and BFKL Pomeron have a common origin, the discontinu-
ity across the cut in the αP (t) plane must have a strong t

dependence which points out non-linearity of the P trajec-
tory [51].

On the theoretical front, Tang [52, 53] used perturbative
QCD (pQCD) to show that Regge trajectories are non-linear
by studying high-energy elastic scattering with mesonic ex-
change in the case of both fixed and running coupling con-
stants. On the experimental side, Brandt et al. [54] affirmed
the existence of non-linear P trajectories from the data
analysis of the UA8 and ISR experiments at CERN. They
published a parametrization of P trajectories containing a
quadratic term,

αP (t) = 1.10 + 0.25t + α′′
P (0)t2, (2)

where α′′
P (0) is a constant, which are found from the

Pomeron data fit.
Burakovsky et al. [55–57] presented a phenomenologi-

cal string model for logarithmic and square root Regge tra-
jectories. They applied a phenomenological approach based
on non-linear Regge trajectories to glueball states. The pa-
rameters, i.e., intercept and threshold, or trajectory termina-
tion point beyond which no bound states should exist, were
determined from Pomeron (scattering) data. They predicted
masses of glueballs on the tensor trajectory. The approach
was applied to available quenched lattice data and found
a discrepancy between the lattice-based thresholds and the
Pomeron threshold that was extracted from data.

Linear trajectories are, in fact, disfavored by various ex-
perimental data. For more details see discussions in [55–57].
The square root form of the trajectory with the parameters
fitted to scattering data alone gives the same mass predic-
tions as the fit to both the scattering data and the tensor
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glueball mass, but with larger errors. Using the fit, the au-
thors obtained the following predictions for excited glueball
masses: M(2++) = 2.38 ± 0.12 GeV, M(4++) = 4.21 ±
0.21 GeV, and M(6++) = 5.41 ± 0.28 GeV with the same
central value obtained from purely scattering Pomeron data.

The funnel-shaped Cornell potential is fixed in an ex-
tremely simple manner in terms of very small number of
parameters. In pQCD, as in QED the essential interaction at
small distances is instantaneous Coulombic one-gluon ex-
change (OGE); in QCD, it is qq , qg, or gg Coulomb scatter-
ing [51]. Therefore, one expects from OGE a Coulomb-like
contribution to the potential, i.e., VS(r) ∝ −αs/r at r → 0.

For large distances, in order to be able to describe con-
finement, the potential has to rise to infinity. From lattice-
gauge-theory computations [58, 59] follows that this rise is
an approximately linear, i.e., VL(r) � σr+const for large r ,
where σ � 0.15 GeV2 is the string tension. These two con-
tributions by simple summation lead to the famous funnel-
type (Cornell) quark–antiquark potential [58–62],

V (r) = VS(r) + VL(r) = −4

3

αs

r
+ σr; (3)

its parameters are directly related to basic physical quanti-
ties noted above. All phenomenologically acceptable QCD-
inspired potentials are only variations around this potential.

As for gluonium, the situation is very similar. The poten-
tial of gg interaction has a similar form, but different param-
eters. A new method called the Vacuum Correlator Model
(VCM) has been used in [10–12]. In this model all NP and
perturbative dynamics of quarks and gluons is universally
described by lowest cumulants, i.e., gauge-invariant corre-
lators of the type 〈Fμν(x1) · · ·Fλσ (xν)〉. In the adjoined and
fundamental representations, the final form of interaction of
two massive gluons is the funnel-type potential of the form
(3) [10–12]:

V (r) = −αa

r
+ σar + C0, (4)

where αa ≡ αadj = 3αfund
s , σa ≡ σ adj = (9/4)σ fund; here

αfund
s is the light quarks strong coupling, σ fund ≡ σ �

0.15 GeV2 is the string tension. The potential (4) was used
in [29, 30] to calculate glueball masses and the P trajectory.

It is hard to find an analytic solution of the wave equa-
tion for the potential (4). However, joining two exact solu-
tions obtained separately for the short-distance Coulombic,
VS(r), and long-distance linear part, VL(r), of the poten-
tial, with the help of the two-point Padé approximant we
obtained the interpolating mass formula (� = c = 1) [29, 30,
63, 64],

E2
n = 8σ̃

(
N + nr + 1

2
− α̃

)
+ 4m2

(
− α̃2

N2
+ 1

)
, (5)

N = nr + J + 1, (6)

whose parameters depend on the system (qq̄ or gg): α̃ =
(4/3)αfund

s (qq̄), 3αfund
s (gg) and σ̃ = σ fund (qq̄), (9/4)σ fund

(gg). The simple mass formula (5) describes equally well
the mass spectra of all qq̄ and QQ̄ mesons ranging from the
ud̄ (dd̄ , uū, ss̄) states up to the heaviest known bb̄ systems
[63, 64]. This same formula has been used to calculate the
glueball masses as well [29, 30].

Regge trajectories are usually assumed to be linear in
t , but there are both phenomenological and theoretical ar-
guments supporting the idea of non-linear trajectories [55–
57]. Inverting (5), we obtained the cubic equation for the
angular momentum J and, therefore, the analytic depen-
dence J (M2

n) for Regge trajectories including the P trajec-
tory, αP (t), in the whole region of the invariant variable t

[29, 30, 63, 64].
The obtained “saturating” Regge trajectories were ap-

plied with success to the photoproduction of vector mesons
that provide an excellent simultaneous description of the
high and low −t behavior of the γp → pp, ω, φ cross
sections, given an appropriate choice of the relevant cou-
pling constants (JML-model) [66–69]. As was explained in
[70, 71] the hard-scattering mechanism is incorporated in
an effective way by using the “saturated” Regge trajecto-
ries that are independent of t at large momentum transfers
[29, 30, 63, 64].

Saturating trajectories have a close phenomenological
connection to the quark–antiquark interaction which gov-
erns the mesonic structure [29, 30, 63, 64]. They provide
an effective way to implement gluon exchange between the
quarks forming the exchanged meson [72, 73] and lead to
the asymptotic quark counting rules [74] that, model inde-
pendently, determine the energy behavior of the cross sec-
tion at large −t . This approach was successfully adopted to
explain the large momentum transfer hadron-hadron interac-
tions, as well as several photon-induced reactions [71]. The
pion saturating trajectory (αsat

π (t) = −1 when t → −∞) is
in a form that reproduces the γp → nπ+ reaction around
θ∗
ω = 90 [71].

A fair agreement with the experiments is achieved when
saturating Regge trajectories [29, 30, 63, 64] are used for
the propagators of the various exchanged mesons. This is
an economical way to deal with hard-scattering mechanisms
since the saturation of the Regge trajectories (approaching
−1 when −t → ∞) is closely related to the OGE interaction
between quarks [63, 64]. The ω meson production channel
is particularly instructive in this respect since pion exchange
dominates the cross section [68, 69]. This same techniques
and the mass formula (5) have been used in [29, 30] to recon-
struct the saturating P trajectory, αP (t), in the whole region
of t .

In our previous calculations, the strong coupling αs in
the Cornell potential above and in the mass formula (5) is
a constant value (free parameter). As we know, the strong
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coupling in QCD is the function of q2 = t , i.e., αs = αs(q
2)

is the running strong coupling. Below, we introduce the de-
pendence αs(r), and obtain similar mass formula and Regge
trajectories with the use of the QCD-inspired potential.

3 The QCD-inspired potential

The strong coupling in QCD is a function of the squared
four-momentum transfer, t : αs(q

2 = t), or αs(r) in the co-
ordinate space. A more accurate calculation of hadronic
masses and their trajectories requires the accounting for the
dependence αs(r) in the potential of interaction.

To find the dependence αs(r), let us consider the concept
of dynamically generated gluon mass, which arises from an
analysis of the gluon Dyson–Schwinger (DS) equations [13,
14]. The infinite set of couple DS equations cannot be re-
solved analytically. One must resort to a truncation scheme.
Cornwall found a gauge-invariant procedure to deal with
these equations [13, 14].

An approximate resolution of the DS equations was ob-
tained in the Feynman gauge. In Euclidean space, this solu-
tion is given by Dμν = −igμνD(q2), where

α0D
(
q2) = αs(q

2)

q2 + μ2(q2)
, (7)

and

αs
(
q2) ≡ g2(q2)

4π
= 1

b0 ln{[q2 + 4μ2(q2)]/Λ2} (8)

with the momentum-dependent dynamical mass given by

μ2(q2) = μ2
g

[
ln[(q2 + 4μ2

g)/Λ
2]

ln(4μ2
g/Λ

2)

]− 12
11

. (9)

Here in (7)–(9) b0 = (33 − 2nf)/(12π), nf is number of fla-
vors, μg = μ(0), Λ is the QCD dimensional parameter; typ-
ical values are μg = 500±200 MeV and Λ = 300 MeV [13,
14].

This solution contains a dynamically generated gluon
mass (9) and is another NP approach which has led to a
very appealing physical picture establishing that the QCD
running coupling freezes in the NP regime. Expression (8)
is considered to be the QCD running coupling in momentum
representation; it is frozen in the NP regime (q2 → 0),

α0 ≡ αs(0) = 1

2b0 ln(2μg/Λ)
, (10)

because of the presence of the dynamical gluon mass the
strong effective charge, g(q2), extracted from these solu-
tions freezes at a finite value, giving rise to an infrared fixed
point for QCD [13, 14]. The gluon mass generation is a

purely NP effect associated with the existence of infrared
finite solutions for the gluon propagator.

Solution (7) is valid only for μg > Λ/2. An important
feature of the propagator (7) is that it incorporates the correct
ultraviolet behavior, i.e., asymptotically obeys the renormal-
ization group equation. This means that the gluon propaga-
tor (7) asymptotically at large q2 takes the usual form, i.e.,
D(q2) ∝ 1/q2, because m2(q2) → 0 at q2 → ∞ and is valid
for the entire range of momentum. The gluon is massless at
the level of the fundamental QCD Lagrangian, and remains
massless to all order in pQCD. The NP QCD dynamics gen-
erates an effective, momentum-dependent mass, without af-
fecting the local SU(3)c invariance, which remains intact
[13, 14].

According to Low and Nussinov the Pomeron is modeled
as the exchange of two gluons [41, 42]. In [75] we modeled
the P exchange by two NP gluons as suggested by Land-
shoff and Nachtmann [76]. We dealt with the Cornwall prop-
agator in the context of the Landshoff–Nachtmann model
and extracted the “pure” NP propagator. We have shown that
the last one in combination with the multi-Pomeron asymp-
totic of the Quark–Gluon String Model (QGSM) [77–82],
results in a good description of soft and hard distributions of
secondary hadrons in a wide energy range.

Some consequences of the Cornwall solution for the
gluon propagator associated to the static interaction were in-
vestigated in [83]. The OGE static potential derived from the
DS equations (DS potential) was calculated numerically and
compared to phenomenological potentials whose shape has
been inspired by lattice computations. Application of this
DS potential and comparison with some others to the de-
scription of quarkonia was considered.

The strong coupling αs in the Cornell potential (3), (4),
is a free parameter. This potential can be modified by intro-
ducing the αs(r) dependence, which is unknown. However,
using the mnemonic rule, q2 → 1/r2, from (8) one can write
an ansatz, for the strong running coupling in the coordinate
space as follows:

αs(r) = 1

b0 ln[1/(Λr)2 + (2μg/Λ)2] . (11)

The running coupling (11) conserves the basic properties of
the one (8) in the momentum representation: αs(r → 0) = 0
(q2 → ∞) and αs(r → ∞) = α0 (q2 → 0). We see that the
running coupling (11) is frozen in the NP regime (r → ∞)
and is in agreement with the asymptotical freedom proper-
ties [αs(r → 0) → 0].

Thus, with the help of (11), we reach the following po-
tential of interaction:

V (r) = − α̃(r)

r
+ σ̃ r, (12)

where α̃(r) = kαs(r), k = 4/3 (qq̄ systems) or k = 3 (gg

system) and σ̃ as in (5). The spin-dependent corrections to
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the potential (12) can also be derived from lattice QCD, but
we do not consider them here.

In hadron physics, the nature of the potential is very im-
portant. There are normalizable solutions for scalarlike po-
tentials, but not for vectorlike [84, 85]. No any problems
arise and no any difficulties encountered with the numeri-
cal solution if the confining potential is purely scalarlike.
The effective interaction has to be Lorentz-scalar in order to
confine quarks and gluons [84, 85].

4 Solution of the QC wave equation

It is hard to find an analytic solution of known relativistic
wave equations for the potential (12) that does not allow us
to get an analytic dependence E2(nr , l). This aim can be
achieved with the use of the QC wave equation [86, 87],
which for two bound particles of equal masses in the c.m.
rest frame is

4
[
p̂2 + (m0 + V )2]ψ̃(r) = E2ψ̃(r), (13)

where

p̂2 =
(

−i
∂

∂r

)2

+ M̂2

r2
, (14)

M̂2 =
(

−i
∂

∂θ

)2

+ 1

sin2 θ

(
−i

∂

∂ϕ

)2

. (15)

Equality (13) is the second-order differential equation of
the Schrödinger type in canonical form. An important fea-
ture of this equation is that, for two and more turning-point
problems, it can be solved exactly by the conventional WKB
method [86–89].

Appropriate solution method of the QC wave equation,
which is the same for relativistic and non-relativistic sys-
tems, was developed in [87, 90]. In our method, each of the
one-dimensional equations obtained after separation of the
QC wave equation is solved by the same QC method. The
QC wave equation (13) is separated that gives, for the po-
tential (12),
[

d2

dr2
+ E2

4
− m2(r) − M2

r2

]
R̃(r) = 0, (16)

M̂2Ỹ (θ, ϕ) = M2Ỹ (θ, ϕ), (17)

where in (16) we have introduced notation,

m(r) = m0 − α̃(r)

r
+ σr, (18)

which can be considered as the coordinate-dependent parti-
cle mass, and m0 is its constituent mass.

The angular QC equation (17) determines the squared an-
gular momentum eigenvalues, M2, which are used in the

radial equation (16). Solution of (17) has been obtained in
[87–89] by the QC method in the complex plane that gives
M2 = (l + 1

2 )2. This result means that the radial QC wave
equation has always the centrifugal term (l + 1

2 )2/r2 for all
spherically symmetrical potentials V (r). These eigenvalues
for M2 are universal for all central potentials and not any
Langer-type corrections are required [87–89].

The radial QC equation (16) has four turning points and
cannot be solved analytically by standard methods. Let us
use the QC method to solve the equation. The QC quanti-
zation condition appropriate to (16) in the complex plane is
[29, 30, 86]

I =
∮

C

√
E2

4
− m2(r) − M2

r2
dr = 4π

(
nr + 1

2

)
. (19)

To calculate the phase-space integral (19) in the complex
plane we chose a contour C enclosing the cuts (therefore,
turning points and zeros of the w.f.) at r < 0 and r > 0 be-
tween the turning points r1, r2 and r3, r4, respectively. Out-
side the contour C, the problem has two singularities, i.e. at
r = 0 and ∞. Using the standard method of stereographic
projection, we should exclude the singularities outside the
contour C. Excluding these infinities we have, for the inte-
gral (19), I = I0 + I∞, where I0 = −2π(l + 1

2 ) is contri-
bution of the centrifugal term. The integral I∞ is calculated
with the help of the replacement of variable, i.e., z = 1/r ,
which gives I∞ = 2π(E2/8σ + α̃0), where α̃0 = kα0 and α0

is the strong coupling in the NP regime (10). Here we took
into account the asymptotic properties of the running cou-
pling (11) and its derivative: αs(r) = 0, α′

s(r) = 0 at r → 0.
The calculations result in the squared total energy eigenval-
ues,

E2
n = 8σ̃ (2nr + J + 3/2 − α̃0). (20)

Putting in (20) α̃0 = 0 we come to well known result for the
linear potential, E2

n = 8σ̃ (2nr + J + 3/2).
This QC method reproduces the exact energy eigenval-

ues for all known solvable problems in quantum mechanics
[87]. In our QC method not only the total energy, but also
momentum of a particle-wave in bound state is the constant
of motion. Solution of the QC wave equation in the whole
region is written in elementary functions as [90],

R̃(r) = Cn

⎧⎪⎪⎨
⎪⎪⎩

1√
2

exp(|pn|r − φ1), r < r1,

cos(|pn|r − φ1 − π
4 ), r1 ≤ r ≤ r2,

(−1)n√
2

exp(−|pn|r + φ2), r > r2,

(21)

where Cn =
√

2|pn|/[π(n + 1
2 ) + 1] is the normalization

coefficient, pn is the corresponding eigenmomentum, φ1 =
−π(n + 1

2 )/2 and φ2 = π(n + 1
2 )/2 are the values of the
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phase-space integral at the turning points x1 and x2, respec-
tively. In the classically allowed region [x1, x2], the solution
is

R̃nl(r) = Cn cos

(
|pn|r + π

2
n

)
, (22)

i.e., has the form of a standing wave. This solution is
appropriate for two-turning-point problems both in non-
relativistic and relativistic cases with the corresponding
eigenmomenta pn.

For example, in case of the non-relativistic Coulomb
problem, the total energy eigenvalues have the form of ki-
netic energy of a free particle [87, 90],

En = p2
n

2m
, pn = iαm

nr + l + 1
, (23)

where pn = mvn is the non-relativistic momentum eigen-
value with the imaginary discrete velocity, vn = iα/(nr +
l + 1). This means, for example, that the motion of the elec-
tron in a hydrogen atom is free, but restricted by the “walls”
of the potential. This is free finite motion of a particle-wave
in bound state. One should note that the QC eigenfunctions
(22) correspond to the asymptote of the exact solution of the
Schrödinger equation, i.e., the principal term of the asymp-
totic series of the corresponding exact solution [90].

It is an experimental fact that the dependence E2
n is linear

for light mesons. However, at present, the best way to repro-
duce the experimental masses of light hadrons is to rescale
the entire mass spectrum assuming that the masses Mn of
the mesons are expressed by the relation [91]

E2
n = M2

n − C2, (24)

where C is a constant energy (free parameter). Relation (24)
is used to shift the spectra and appears as a means to sim-
ulate the effects of unknown structure approximately. This
constant can be interpreted as a renormalization of the vac-
uum energy [92]. It has been suggested that the confinement
potential has a complex Lorentz structure, and the relation
(24) used to shift the spectra appears as a means to simulate
approximately the effects of this structure. This constant can
be connected with the structure of the QCD vacuum, filled
with JPC = 0++ transverse electric glueballs which form a
negative energy condensate [36].

The oscillator-type expression (20) does not require any
additional free parameter. It contains the needed shift in the
form of the interference term −8α̃0σ̃ of the Coulombic and
linear terms of the potential (12). Formula (20) is good to
describe spectra of light hadrons, but not heavy quarkonia.

The asymptotic expression (20) is defined by the singu-
larities at r = 0 and r → ∞. The leading singularity in the
phase-space integral (19) at r → ∞ is given by the quadratic
term (σ r)2 originating from the linear part of the potential

(12), which gives the dominant contribution in (19) at infin-
ity. But the term ∝ r2 suppresses a very important contri-
bution of the Coulombic interaction at small and moderate
distances r .

It is known that heavy QQ̄ systems can be treated non-
relativistically and, for low states of heavy quarkonia, the
main contribution to the boundary energy comes from OGE
term of the potential (12), i.e., in the first approximation one
can neglect the confining linear term. A reliable considera-
tion of the excited QQ̄ states requires a completely relativis-
tic treatment.

Let us consider the radial equation (16) just for the
Coulombic part VS(r) of the potential (12). The QC quanti-
zation condition in the complex plane is

∮
C

√
E2

4
−

[
m − α̃(r)

r

]2

− M2

r2
dr = 2π

(
nr + 1

2

)
, (25)

and the integral is calculated analogously to the above case.
A contour C encloses the classical turning points r1 and
r2 and cut between them. Using the same solution method
of stereographic projection, we obtain, for the integral (25)
outside the contour C at r = 0 and ∞: I = I0 + I∞, where
I0 = −2π(l + 1

2 ) and I∞ = 2π(α̃0m/
√−E2/4 + m2). This

gives

E2
n = 4m2

[
− α̃2

0

(nr + l + 1)2
+ 1

]
. (26)

Again, here we took into account the asymptotic properties
of the strong running coupling (11) at r → 0 and r → ∞.

Thus, we have two exact analytic expressions (20) and
(26) for two asymptotic components of the potential (12)
(Coulombic and linear). Now, we can use the same approach
as in [29, 30, 63, 64], i.e., derive the interpolating mass for-
mula for E2

n , which satisfies both of the above constraints:
the exact energy eigenvalues (20) and (26). To derive such a
formula we use the two-point Padé approximant [93],

[K/N]f(z) =
∑K

i=0 aiz
i

∑N
j=0 bj zj

, (27)

with K = 3 and N = 2. We take K = 3 and N = 2 because
this is a simplest choice to satisfy the two asymptotic limits
(20) and (26). Simple calculations give the following inter-
polating mass formula:

E2
n = 4m2

[
2σ̃

m2

(
N + nr + 1

2
− α̃0

)
− α̃2

0

N2
+ 1

]
, (28)

where N is the principal quantum number (6). Note that the
two exact asymptotic expressions (20) and (26) for E2

n have
the form of the squared total energy for two free relativistic
particles, i.e., E2

n = 4(p2
n + m2).
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The mass formula (28) is similar to one (5) but differs by
the sense of the strong coupling α̃0. This quantity is given
by the asymptotic value (10) which depends on the physical
values μg and Λ. The universal mass formula (28) is good to
describe the mass spectra of both light and heavy quarkonia.
To demonstrate its efficiency we calculate the leading state
masses of ρ and φ families (see Tables 1, 2, where masses
are in MeV).

In this calculations the frozen strong coupling (10) de-
pends on the ratio μg/Λ. From the fit results we found
the optimal value for the constituent gluon mass, μg =
416 MeV. The QCD dimensional parameter Λ as others is
found from the best fit to the available particle data [94].
For light quarks, we take the average effective mass, mn =
(mu + md)/2 MeV. The best fit to the data is achieved for
mn = 144 MeV.

The mass formula (28) is appropriate to calculate the
glueball masses as well. In this case we use the potential (12)
with the parameters of gg interaction. Calculation results for
the gluonium leading state masses are shown in Table 3.

Table 1 The ρ-family J = l + 1 leading states

Meson JPC Eex
n Eth

n Parameters in (28)

ρ (1S) 1−− 775 775 Λ = 487 MeV
σ = 0.137 GeV2

mn = 144 MeV
a2 (1P ) 2++ 1318 1319

ρ3 (1D) 3−− 1689 1689

a4 (1F) 4++ 2001 1989

ρ (1G) 5−− 2249

ρ (1H) 6++ 2481

ρ (2S) 1−− 1720 1683

ρ (2P ) 2++ 1986

ρ (2D) 3−− 2247

ρ (2F) 4++ 2480

ρ (3S) 1−− 2245

Table 2 The φ-family J = l + 1 leading states

Meson JPC Eex
n Eth

n Parameters in (28)

φ (1S) 1−− 1020 1019 Λ = 445 MeV
σ = 0.125 GeV2

ms = 414 MeV
f2 (1P ) 2++ 1525 1525

φ3 (1D) 3−− 1854 1854

f4 (1F) 4++ 2018 2119

φ (1G) 5−− 2349

φ (1H) 6++ 2556

φ (2S) 1−− 1820 1820

φ (2P ) 2++ 2011 2103

φ (2D) 3−− 2340

φ (2F) 4++ 2551

φ (3S) 1−− 2327

Equation (28) is an ansatz (as the potential (12)), which is
based on two exact asymptotic expressions (20) and (26). It
allows us to get an analytic expression for Regge trajectories
in the whole region. Transform (28) into the cubic equation
for the angular momentum J (t = E2),

J 3 + a1(t)J
2 + a2(t)J + a3(t) = 0, (29)

where a1(t) = λ(t) + 2ñ, a2(t) = 2ñλ(t) + ñ2, a3(t) =
ñ2λ(t)−α̃2m2/(2σ̃ ), ñ = nr +1, λ(t) = (−t +4m2)/(8σ̃ )+
2nr + 3/2 − α̃. Equation (29) has three (complex in general
case) roots: J1(t), J2(t), and J3(t). The real part of the first
root, ReJ1(t) (Chew–Frautschi plot), gives the analytic ex-
pression for Regge trajectories,

Reα(t) =

⎧⎪⎨
⎪⎩

2
√−p cos(φ/3) − a1/3, Q < 0;

−a1/3 (q = 0), Q = 0;
f1 + f2 − a1/3, Q > 0,

(30)

where φ(t) = arccos(−q/
√−p3), p(t) = −a2

1/9 + a2/3,
q(t) = a3

1/27 − a1a2/6 + a3/2, Q(t) = p3 + q2, f1(t) =
(−q + √

Q)1/3, f2(t) = (−q − √
Q)1/3. Expression (30)

supports the existing experimental data and gives the satu-
rating Regge trajectories including the Pomeron in the whole
region of t .

The imaginary part of the complex Regge trajectories is
given by the expression

Imα(t) = √
3(f1 − f2)/2, Q > 0. (31)

The threshold (trajectory termination point), beyond which
no bound states should exist, is defined from the equation,
Q(t) = p3 + q2 = 0 (see notations above).

The Chew–Frautschi plots of the complex Regge trajec-
tories are shown in Figs. 1, 2 and 3. The general property
of all trajectories given by (30) is that they saturate, i.e.,
Re α(t) → −1 at −t → ∞. The P trajectory corresponds
to the soft supercritical Pomeron and is in agreement with
the HERA data at small −t [17–22]. Our P trajectory and

Table 3 Glueball J = l + 2 leading states

Glueball JPC Eex
n Eth

n Parameters in (28)

f0 (1710) 2++ 1710 1710 Λ = 321 MeV
σa = 0.329 GeV2

μg = 416 MeV
f0 (1P ) 3−− 2405

f0 (1D) 4++ 2921

f0 (1F) 5−− 3350

f0 (2S) 2++ 2898

f0 (2P ) 3−− 3338

f0 (2D) 4++ 3720

f0 (3S) 2++ 3711

f0 (3P ) 3−− 4057

f0 (3D) 4++ 4374



Eur. Phys. J. C (2012) 72:2128 Page 9 of 11

Fig. 1 The Chew–Frautschi plots of the leading ρ, φ and P complex
Regge trajectories calculated with the use (30). Parameters are found
from the fit of combined HERA ρ and φ data (triangles) [17–22], and
2++ glueball candidate f0(1710) (cross) [65]. Solid curve is the P

trajectory, dotted and dashed lines show the leading ρ and φ saturating
Regge trajectories

Fig. 2 The vacuum effective J = l + 2 Regge trajectory. Solid curve
is the P trajectory obtained from (30) with the parameters found from
the fit to combined HERA ρ (triangles) and φ (circles) data [17–22],
and 2++ glueball candidate f0(1710) (cross) [65]. Other lines show
the classic “soft”, BFKL, and Donnachie–Landshoff “hard” Pomerons

its comparison with the known other Pomerons are shown in
Fig. 2.

The effective P trajectory has similar properties as all
quark–antiquark trajectories given by (30). It is asymptot-
ically linear at t → ∞ with the slope α′

P = 1/(8σa) �
0.380 (GeV/c)−2, and flattens off at −1 for −t → ∞. As
all Regge trajectories the P trajectory is the monotonically
rising function at the interval (−∞,∞).

Fig. 3 The real and imaginary components of the gluonium J = l + 2
complex Regge trajectory (the Pomeron). Triangles show combined
HERA ρ and φ data [17–22]

Parameters of the function ReαP (t) are found from the
best fit to the combined ZEUS ρ (triangles) and φ (circles)
scattering data [17], and glueball candidate f0(1710) [65]
(cross) with quantum numbers JPC = 2++ (l = 0, Sz = +2)
in bound state region. The intercept and slope of the P tra-
jectory at t = 0 are

α′
P (0) = 1.083, α′

P (0) = 0.280 (GeV/c)2. (32)

The hard BFKL Pomeron has intercept αP (0) � 1.43 [43,
44]. The Pomeron with such properties results in too fast
growth of the total cross sections.

Recent studies of exclusive electro-production of vec-
tor mesons at JLab [66, 67] made it possible for the first
time to play with two independent hard scales: the virtu-
ality Q2 of the photon, which sets the observation scale,
and the momentum transfer t to the hadronic system, which
sets the interaction scale. They reinforce the description of
hard-scattering processes in terms of few effective degrees
of freedom relevant to the Jlab-Hermes energy range [72].

The study of exclusive electro-production of ω mesons,
completed at JLab [66, 67], provides us with an original in-
sight on the space time structure of hard-scattering processes
between the constituents of hadrons. It was shown that the
higher order mechanisms are more economically described
in terms of a few effective degrees of freedom: dressed par-
ton propagators, saturating Regge trajectories and electro-
magnetic form factors of off-shell meson. The success of
this description in several channels is a strong hint that they
are the relevant degrees of freedom in the JLab-Hermes en-
ergy range. In addition, they provide us with a link with
more fundamental approaches of NP QCD: ab initio lattice-
gauge calculations or potential models.
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The two-Pomeron picture (soft plus BFKL Pomeron)
gives a very good fit to the total cross section for elastic J/Ψ

photoproduction and the charm structure function F c
2 over

the whole range of Q2 = −t [95]. The hard BFKL Pomeron
has the intercept αBFKL(0) � 1.43. Next-to-leading order es-
timates give, for the BFKL intercept values 1.26 to 1.30,
which is closer to the soft supercritical Pomeron. However,
the results of the experiments and the found higher order
corrections make it quite unclear what the BFKL Pomeron
is. Another question is: what is the intercept of the BFKL
Pomeron, if the pQCD is non-applicable in this scale, i.e., at
t = 0? On the other hand, the saturated P trajectory (30) has
the properties of the soft supercritical Pomeron at small −t

and saturates at large −t according to the pQCD prediction.

5 Conclusion

We have considered glueballs as bound states of constituent
massive gluons and investigated their properties in the
framework of the potential approach. The constituent gluon
picture could be questioned since potential models have se-
rious difficulties in reproducing all the currently known lat-
tice QCD data. In spite of non-relativistic phenomenological
nature, the potential approach can be used to describe glue-
balls. Fair description of quarkonium states give us a confi-
dence that we are on the right way to describe glueballs.

The physical properties of constituent gluons are still a
matter of controversy. Within the framework of potential
models, gluons are supposed to be massless or massive, i.e.,
with either a helicity-1 or a spin-1 particles. We have dealt
with the simplest two-gluon glueballs, but mass and spin in
different works are very different. If valence gluons are as-
sumed to be helicity-1 particles, then their spin has only two
projections: Sz = ±1. In this work gluons are considered
as massive spin-1 particles with projections Sz = −1,0,+1.
The properties of these pure glue states are not completely
understood.

We have analyzed two exact asymptotic solutions of rel-
ativistic QC wave equation for the QCD-inspired scalar
potential with the coordinate-dependent strong coupling,
αs(r). One needs to stress that the behavior of the potential
and exact form of the coupling αs(r) are not so important
in the intermediate region: in fact, the results depend on the
asymptotic behavior of the potential at r → 0 and r → ∞.
Our QC method in the complex plane to resolve the eigen-
value problem is rather simple and allows to get the analytic
result. Using two asymptotes, corresponding to the short-
distance Coulombic and long-distance linear components of
the potential, we have derived the universal mass formula
(28) and calculated the glueball masses, which are in agree-
ment with the lattice data.

We have considered glueballs as the physical particles on
the P trajectory. To reproduce the trajectory, we have in-
verted the mass formula (28) and derived the analytic ex-
pression (30) for the P trajectory, ReαP (t), and its imagi-
nary part ImαP (t) in the whole region of t . In the scatter-
ing region, at −t 
 ΛQCD, the trajectory flattens off at −1,
i.e., it has asymptote αP (t → −∞) = −1 (saturates). In the
bound state region, at large timelike t , the P trajectory is
linear in accordance with the string model.

It is known that the fixed-number of particles with a
potential description cannot be used for strict relativistic
description. Strict description of the Pomeron presupposes
multiparticle description of the system. For perturbative
regime with the Pomeron scattering, the dominant contribu-
tion comes from the BFKL Pomeron. However, experimen-
tal data and our simple calculations in the framework of the
potential approach support the conception of the soft super-
critical Pomeron as observed at the presently available ener-
gies. The saturating Regge trajectories (30) obtained in this
work effectively include short- and long-distance dynamics
of constituents.

In this paper we have not considered helicities and spin
properties of gluons. This topic has been discussed in detail
elsewhere [5]. The existing data and simple analysis per-
formed in this work confirm the existence of the Pomeron
which is a complex non-linear function with the properties
of soft supercritical Pomeron at small −t and saturates at
large squared momentum transfers.
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