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ABSTRACT

The perturbative asymptotic of the Regge trajectories, aft), at —t — oo is
deduced on the basis of a known solution of relativistic wave equation with the
Coulomb-like potential. We obtain the perturbative asymptotic at —¢{ — oo of the
leading S = 1 quarkonium Regge trajectories of the form ap(t) = 0, and leading

S =1/2 nucleon Regge trajectories of the form an(t) = —-1/2.
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1. In recent experiments at HERA [1] has been observed a sample of events with
a large rapidity gaps, which are conveniently described in the language of complex
angular momentum. These results have renewed interest to Regge theory, especially
in that aspect which synthesizes hard collisions phenomena with the classical physics
of large rapidity-gaps (see [2,3] and references therein). As it was argued in [4]
conventional Regge approach to high-energy collisions is most probably correct. It
describes accurately all pp and pp elastic scattering from ISR to Tevatron energies
[5], successfully predicted the vp total cross section [6] and, through optical theorem,
the total and inclusive cross sections as well.

Fundamental objects of the Regge theory are the t-channel Regge trajectories,
a(t), which determine the behaviour of the scattering amplitude in the s channel.
The main features of soft hadronic processes can be understood in terms of the
exchange of particles, which lie on linear Regge trajectories. Moreover, as it was
shown in [7], exclusive processes whose cross sections are determined by Regge pole
trajectory exchange, a(t), at small momentum transfers, ¢, are controlled by these
same exchanges at very large spacelike ¢ too. Hereby trajectory must to be nonlinear
and one of the most crucial distinction between small |¢| behaviour of a(t) and large
|t| behaviour of a(t) involves the asymptotic form of Regge trajectories at —t — co.

In this letter we dealt with the perturbative asymptotic of Regge trajectories,
a(t), at —t — oo on the basis of a known solution of relativistic wave equation with
Coulomb-like potential. We use a generally agreed fact that in perturbative QCD
the essential interaction at small distances is instantaneous Coulomb gluon-exchange
(quark-parton Coulomb scattering). We obtain the perturbative asymptotic of the
leading S = 1 quarkonium Regge trajectories of the form au;(t) = 0 at —t — oo.
For the leading nucleon (in general case baryon) Regge trajectory we obtain the
asymptotic of the form an(t) = —1/2, —t — oo. This results obtained for af(t)
at large spacelike t coincide with the predictions of ref. [8] obtained in the Born
approximation of perturbative QCD.

2. An important aspect of Regge theory is the mechanism by which Regge



trajectories in ¢ channel determine the behaviour of the scattering amplitude in the
t channel. This makes it possible to determine the properties of the trajectories
from an analysis of the data on the scattering of the particles. Presented in [9,10]
experimental data on inclusive 7° and 5 production in 100 and 200 GeV/c n*p
collisions have compared in detail with the prediction of triple Regge model. So far
as these reactions are theoretically clean with p (7° production) or A, (5 production)
exchange, there were extracted the Regge trajectories, a(t), in the ¢ range of —1 to
—8 GeV?. There was shown that the p trajectory flattens off at about —0.7 or —0.5.
The full inclusive value, a(—t — oo) = —0.92. At all values of —t = 0 — 8 CeV?,
agreement with the triple Regge model is good.

Asymptotic behaviour of the Regge trajectories at —¢t — oo has been discussed
by many authors [7,11-14]. Important information on perturbative asymptotic of
trajectories one can obtain by comparing predictions for the scattering amplitude,
T'(s,t), of the "quark counting rule” {12,15] and the Regge pole approach at s — oo,
—t fixed. If one assume a smooth interpolation between these two predictions [14]

one obtain the condition
a(t) = const, —t — o0, (1)

which seems do not contradict experimental data [9,10]. There have been a consid-
erable efforts to extend the constituent interchange model (CIM) (see [12]) from the
fixed-angle region into the fixed t-region. These efforts have resulted in prediction

for the large —t behaviour of p trajectory

a,(t) = -1. (2)

The same asymptotic behaviour of all leading S = 1 quarkonium Regge trajectories
has been obtained in our ref. [16] on the basis of the analysis of a relativistic
quasipotential equation with the Cornell potential, and in ref. [17] on the basis
of solution of Klein-Gordon equation containing Lorentz vector and Lorentz scalar

potentials. Main results of these investigations is that the asymptotic behaviour



of the Regge trajectories at large —t is determined by one-gluon exchange at small
distances. The Regge trajectory has been determined to be function {(£?) where E?
is the square of quarkonium mass and [ is the relative orbital angular momentum of
the quarks.

3. In particle collisions at high energies in processes with extremely large mo-
mentum transfers (—t — oo0) the asymptotic behaviour of the scattering amplitude
is determined by the dynamics of interactions at small distances and small time
interval, i.e. inner structure of hadrons. It has been well tested that hard processes
are governed by short range part of the strong interaction. The differential cross
section at large —t = Q? depend essentially on the number of constituents. Two
quarks in meson (or three quarks in nucleon) represent the basic quark configura-
tion, because it is need consider the hadron state vector in the Fock space. From the
point of view of "quark counting rule” an account of the contribution of the higher
corrections to the differential cross section gives the corrections of the order sT4naa
(15], where n,; is a number of additional ¢g pairs.

It is generally agreed that in perturbative QCD, as in QED, the essential in-
teraction at small distances will be instantaneous Coulomb gluon exchange, that is

quark-quark Coulomb scattering. The dynamics is the Coulomb interaction,

V(ir)=——, r — 0, (3)

a
7
where & being the effective strong coupling constant, & = a, for mesons. The

potential (3) corresponds (at large Q* = |t|) to the scattering amplitude in the Born

approximation with gluon propagator

1
D(¢*) = - (4)
q
at large |¢?| = |t|. Recall that the Coulomb potential (3) in momentum space is

V(t) = T, > (5)

that is the Fourier transform of (5) leads to the potential (3).



Now let us show that the potential (3) leads to the asymptotic behaviour of
Regge trajectories of the type (1). Basic process under dealt with is the elementary
process of qq interaction. If at small Q? we consider a hadron to be consisted from
constituent (or valent) quarks, at large Q? the hadron is considered to be consisted
from a large number of partons (quarks and gluons). Two interacting quarks one
may consider both in the bound state region (s channel) and in the scattering region
(t channel). Wave equation, say, Klein- Gordin describes two interacting quarks both
at t > 0 and at t < 0. At ¢ > 0 we have matter with bound state problem, and at
t < 0 - with the scattering problem.

Short-range interquark interaction is of the vectoral type, and Klein-Gordon

equation with potential (3) for the equal mass case m; = m; = m has a form
52, 1 &\ 2
V+Z(E+;> —m?| (F) = 0. (6)

At large negative E = t in accordance with asymptotic freedom principle quarks
behave itself as quasi-free particles and eq. (6) describes the scattering of the quarks-
partons. But at E? > 0 this equation represents eigenvalue problem for discrete
spectrum. In this (bound state) region solution of (6) is well known and correspond

eigenvalues are given by [18]

2
E? = Am )

L+ [+ 12+ 0127 —af]

where n/, [ are the radial and orbital quantum numbers respectively. In the region
under consideration, i.e. Q* = —t — oo, effective coupling constant & is very small
value and formula (7) (after expansion with respect to &*) one can rewrite in more

simple form

Note that the expression (8) for the square of invariant mass of two particles has
a correct relativistic form, E? = 4(p? 4+ m?), with p* = —a?m?/(n’ + [+ 1)? or

p = wam/(n’ + [ + 1), because the expansion (8) have proceeded by expansion



with respect to parameter &*, describing the quark interaction, and not a kinematic
variable.
4. If we invert the E? given by (8), and express the orbital angular momentum

as the function of the E?, [(E?), we will be have

~ E2
(E*)=—-n' -1+ SUED Qz : E? < 4m’, (9)
V-4
where we emphasize that the effective coupling, &, is the function of Q% = |E?|.

Because [ is the orbital angular momentum we define the Regge trajectory as

a(E?) = I(E?*) + S where {(E?) given by (9) and S is the total spin of interact-

ing quarks
(|t
a(t):S—n'—l-i———?%, —1 — o0, (10)
T am?
For leading S = 1 (n’ = 0) meson trajectories expression (10) gives (a(|t|) =
sas(It])
4
Lo, (|t
ag(t) = —Bth)—:O, -t — 0. (11)
I -

Similarly, in the case of a leading S = 1/2 (n’ = 0) baryon exchange trajectory with

the help of general formula (10) we get at large spacelike ¢

an(t) ~ — 5 —t — o0. (12)

Leading S = 1/2 baryon trajectory interpolate a sequence of baryon states with
total spin S = 1/2 that reflects the quark-diquark structure of baryon when two
quarks consisting diquark have the total spin s = 0; these two quarks interact each
other by means of additional color-magnetic spin force.

These results on perturbative asymptotic of Regge trajectories are in agreement
with prediction of ref. [8] which have been obtained in the Born approximation of
perturbative QCQ. In [8] has been note that a mesonic charge-exchange Reggeon at
large spacelike ¢ can be simply identified with ¢,g, exchange in ¢ channel. Thus to

lowest order one expects in QCD

b1
OR(t)=§+§—1:0, —t — o0; (13)



This means that Regge trajectory asymptotically decreases to ap(t) = 0 at large
—t. Similarly, in the case of baryon trajectory one expects

I 1 1 1
aN(t)—§+§+§—l—1:—§,

—t — oc. (14)

One can lead analogous arguments in the case of the Pomeron trajectory too.
Really, if one assumes the two-gluon Pomeron model [19] with the total spin S of two
interacting gluons to be equal 2, S = 2, then the formula (10) gives the perturbative

asymptotic for the Pomeron trajectory

_a(th) e
m_l, t . (15)

This prediction for the Pomeron trajectory very similar to those obtained in the

ap(t) =1+

framework of the leading and subleading log’s summation in QCD [13]
ap(t) ~ 1+ 0(G%(t)), —t— oo. (16)

where §%(t)) stands for the running coupling of QCD.

5. Considering the properties of the Regge trajectories it is need to stress an
important aspect, namely that these functions give a smooth transition from the s
channel to the ¢ channel, i.e. its connect the scattering region with bound state re-
gion, as well as the scattering problem with bound state problem. We have obtained
the perturbative asymptotic of Regge trajectories from the point of view of the po-
tential approach which assumes a unify consideration both the scattering problem
and bound state problem. Our results are in agreement with predictions of ref. [8]
obtained in the Born approximation of perturbative QCD.

But these results, as in [8], on the asymptotic behaviour of Regge trajectories
contradict to the experimental data [9,10]. This contradiction between the theoret-
ical estimations and the experimental data have resolved in [8] by showing that the
hard QCD part of the trajectory is weakly coupled and that its contribution will be
hidden until much high energy.

As for experimental data [9,10], it is need to note the following. Extracted at

these experiments Regge trajectories have obtained by model-dependent way (with
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the use of the triple Regge approximation). For invariant variable ¢, for example,
there has been used approximate relation ¢ ~ —p?% /z, which is valid only at small ¢,
p. and z — 1. There are other uncertainties conjugated with the definition of the
fractional variable z. Namely where have used z as the lab energy divided by the
maximum possible energy at the given ¢ value. Changing the definition so that the
denominator is just the beam energy would change the fitted a(t). Nevertheless the

main result of these experiments seems to be valid: Regge trajectories flatten off at

some constant value.
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