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Outline
1 Sketch of QGP formation
2 Quantities under study:

I net-baryon probability distributions Pn and Pn ;
I their moments and cumulants;
I their relation to the pressure and grand canonical partition function.

3 Equation of State (EoS) p = f (ρ)
at T > TRW and T < Tc .

4 Asymptotic behavior of Pn at n →∞.
5 Phenomenological issues.

In collaboration aith V.A.Goy
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Bird’s-eye view of heavy-nuclei collision
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Glazma formation
Colliding Pb nuclei are

∼ 1
200

fm thick

Glazma stage
QGP stage (fireball)
Freezeout (QGP =⇒
hadrons)
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Larry McLerran, hep-ph/0202025
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Distribution of charged particles over rapidity

from Lipei Du at al., 2211.16408
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Net-Baryon Number Distribution over rapidity

from Lipei Du at al., 2211.16408
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At very high energies,
the net-baryon number seems to be produced
at an initial stage of evolution

1

√
sNN < 200 GeV

nucleons
antinucleons

1

√
sNN > 200 GeV
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We study production of the net-baryon number n:

n = Nb − Nb̄

Nb – number of baryons
Nb̄ – number of anti-baryons

Nb = Np + Nn + NΞ + NΛ + ...+ 3N(3He) + ...

It is generally accepted that

Np = 0.4Nb
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The quantities under study:

probability Pn that the net baryon charge|
of the fireball at a given µB equals n (RHIC)

probability Pn that the net baryon charge|
of the fireball at µB = 0 equals n (LHC)

and the corresponding moments µk=
∑+∞

n=−∞Pnnk

Pn =
ZC(n)

ZGC(0)
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The probabilities Pn can be determined from

experimental data

Nevents (Net-Baryon Number = n) =

= Nevents (Net-Proton Number = 0.4n)

lattice simulations
(of the net-baryon density at imaginary µB)
models of strong-interactiong matter

I Hadron Resonance Gas (HRG) model
I Cluster Expansion Model (CEM)
I Nambu–Jona-Lasinio (NJL or PNJL) model
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Grand canonical partition function

ZGC(θ,T ,V ) ≡ ZGC(θ) =
∑

j

〈j| exp

(
− Ĥ + µB̂

T

)
|j〉

can be expanded as follows:

ZGC(θ) = exp

(
p(θ)V

T

)
=

∞∑
n=−∞

ZC(n)enθ,

θ =
µB

T
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The inverse transform

ZC(n) =

∫ π

−π

dθI

2π
e−inθI ZGC(θ)

∣∣∣∣
θR=0

.

can be used to determine ZC(n) and Pn .

Pressure and baryon density are

p(θ) =
T
V

ln ZGC(θ) ρ(θ) =
1
T
∂p
∂θ

θ = µB/T = θR + ıθI ,
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If p(θ) and ρ(θ) are known,

they determine the Equation of State (EoS)

p = p(ρ)
in parametric form

Thus the EoS of fireball matter
is connected with the distribution
of collision events
in the net-baryon number
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In lattice QCD at ReµB = 0, ImµB 6= 0
we employ the formula

ZGC(θ) =

∫
DUe−SG (detD(µB))Nf

to find the net baryon number density ρ
and =⇒ the grand canonical partition function

ρ(θ) =
1
V
∂(T ln ZGC)

∂µB
=⇒

ZGC(θI )|θR=0 = exp

(
V
∫ θI

0
ρ(x) dx

)
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Roberge-Weiss approach in QCD at µB 6= 0:

Fock space includes
only colorless states
at all T and µB.

θ ≡ µB

T
= θR + ıθI

ZGC(θI ) = ZGC(θI +2π/Nc)

.
=⇒ =⇒

Quark number Q is a multiple of Nc

Grand canonical partition function

ZGC(θ,T ,V ) =
∑

j

〈j| exp

(
− Ĥ + µQ̂

T

)
|j〉
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Tc

TRW

T

ImθB−π − π
3

π
3 π

arg(P) ∼ 2π

3
∼ 4π

3 ∼ 0 ∼ 2π

3
∼ 4π

3

II III I II III

|P| 6= 0 |P| 6= 0

P = 0
P = 0

1
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Results of lattice simulations, general situation
T > TRW : Imρ(θI ) is a periodic function

fitted by the polynomial of the type

Imρ(θI ) ' a1θI − a3θ
3
I + ...+ ' anθ

n
I

over each segment θ(n−1)
I < θI < θ

(n)
I ,

where θ(n)
I =

(2n + 1)π

3
;

T ∼ Tc : Imρ(θI ) should be fitted by

Imρ(θI ) ' f1 sin(θI ) + f2 sin(2θ) + ...+ fn sin(nθ) + ...

where {fn} rapidly decreases with n .
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Our results of lattice simulations

T = 1.35Tc > TRW : Imρ(θI ) is
2π
3

-periodic function

with discontinuities at θI =
(2n + 1)π

3
;

at |θI | <
π

3
is well fitted by the polynomial

Imρ(θI ) ' a1θI − a3θ
3
I

T = 0.93Tc : Imρ(θI ) is well fitted by the sine

Imρ(θI ) ' f1 sin(θI )
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Equation of State

T = 1.35Tc > TRW :

ρ

T 3 = a1θ + a3θ
3

p
T 4 =

a1

2
θ2 +

a3

4
θ4 + p̂0,

T = 0.93Tc : ρ

T 3 = f1 shθ
p

T 4 = f1

(
chθ − 1

)
+ p̂0,

here p̂0 =
(
the pressure/T 4

)
at θ = 0.
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Roman N. Rogalyov (IHEP) Equation of State and Multiple Particle Production01.12.2023 22 / 41



Equation of State at T ∼ Tc

T = 0.99Tc : Imρ(θI ) ' f1 sin(θI ) + f2 sin(2θ)
f1 = 0.2541(8) , f2 = − 0.0053(7)

ρ̂ = f1 s + 2f2 s
√

s2 + 1;

p̂ = f1(
√

s2 + 1− 1) + f2 s2 + p̂0.

here p̂0 = p/T 4 at θ = 0; s = sinh(θ); f2 < 0.
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VdW type isotherm

Van der Waals isotherm here is hypothetical
CD - is nonphysical part
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p(ρ) increases at θ > 0 !!!

Models for ρ(θ)

simplified versions

CEM: Tc < T < TRW :
ρ(θ) = b

∑∞
n=1 qnsh(nθ), q < 0

T = TRW =⇒ q = −1, T ∼ Tc =⇒ q = 0.

NJL: T < Tc :
ρ(θ) = b

∑∞
n=1 qnsh(nθ), q > 0
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Hypothetical QCD phase diagram

1st order phase transition

Critical
End Point

~155 MeV

0 MeV
0 MeV 900 MeV

Hadron Gas

Quark-Gluon Plasma

Nuclear Matter

Future experiments

Baryon Chemical Potential

T
em

pe
ra

tu
re

RH
IC

L
H

C

Dense Matter

Fireball evolution: Tini , µ
(ini)
B −→ TF , µ

(F )
B

Roman N. Rogalyov (IHEP) Equation of State and Multiple Particle Production01.12.2023 29 / 41



In addition to the
net-baryon number probability distribution Pn
and its momenta µk ,
primary attention is focused on

The moments generating function

M (t) = 1 +
∞∑

k=1

µk

k !
tk

and the cumulant generating function

K(t) = ln M (t) =
∞∑

k=1

κk

k !
tk

Roman N. Rogalyov (IHEP) Equation of State and Multiple Particle Production01.12.2023 30 / 41



Net-baryon probability distribution at µB = 0

Pn ≡ Pn(θ = 0) involve all info on θ-dependence:

Pn(θ) =
ZC(n)enθ

ZGC(θ)
= Pnenθ ZGC(0)

ZGC(θ)

Mθ(t) =
ZGC(t + θ)

ZGC(θ)
−→ M(t) =

ZGC(t)

ZGC(0)

Kθ(t) = −→ K(t) =

(
p(t)− p(0)

)
V

T
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Pn(θ) =
ZC(n)enθ

ZGC(θ)
- is the probability that

the baryon charge at the given T and µB equals n .

C-parity conservation implies ZC(n) = ZC(−n)

=⇒ Pn

P−n
= ξ2n =⇒ µB =

T
2n

ln

( Pn

P−n

)
possible procedure of measurement of µB
[A.Nakamura, K.Nagato 2013]

criterion of thermodynamical equilibrium:
µB measured for different n coincide
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Pn =
ZC(n)

ZGC(0)

and the respective cumulants
in contrast to θ-dependent cumulants κn(θ)
coincide with the coefficients
of the Taylor expansion of the pressure in θ:

p(θ) = p(0) +
∞∑

n=1

κ2n

(2n)!
θ2n
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Main attention is focused on

EXP.: κn(θ) at small n instead of Pn(θ)
THEOR.: κn at small n instead of Pn(θ) ∀n
because κn = κn(0)
are related to the Taylor expansion of the pressure.

We argue that
Asymptotic behavior of Pn at n →∞
may become an indicator of the chiral phase transition

Problem: Given κn find Pn
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T > TRW : Pn ' exp

(
− n2

2a1VT 3

)
, n � VT 3

Pn ' exp

(
− 3

4
3

√
3
a3

( n
VT 3

)4/3
)
, when n � VT 3

T < Tc : coincidence with the HRG,

Pn ' e−AIn(A)† =⇒ A = 2
√

bb̄

(b̄)b is the average number of the (anti)baryons in the
fireball
—————-
† [Bornyakov et al., 1611.04229]
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Two scenarios of thermalization

1. The fireball after formation at
an early stage is isolated from the
remnants of colliding nuclei.

Evolution starts with
the ZGC(µini ,T ,V )
and proceeds with
ZC(n,T ,V ).

2. Exchange of conserved charges
(B,Q,S) proceeds during the
fireball expansion.

Grand canonical approach
works down to Tfreezeout
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Experimental data prefer the latter scenario

ALICE 2019:
0.8 <

κ4
κ2

< 1.0

In agreement with the HRG model

Gas of massless fermions (at reasonable values of VT 3):

κ4
κ2

< 0.2

However: the ALICE 2017 result µB = 0@
√

sNN = 5 TeV
indicates that the former scenario is not completely excluded.
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Imρ(θI ) ' a1θI + ...+ a2J+1θ
2J+1
I ,

sign a2J+1 = (−1)J

Pn ∼ exp

 − J
J + 1

J

√
nJ+1

νaJ

 ν = VT 3 .

Imρ(θI ) ' f1 sin(θI )...+ fJ sin(Jθ), fJ > 0 ∀J

Pn ∼
(νfJ )n/J

Γ
(n

J
+ 1

) , ν = VT 3
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The Krein criterion states that the problem of moments
becomes indeterminate when∫

dx
lnϕ(x)

(1 + x2)
> −∞, (1)

where ϕ(x) is the probability density function.
The rate of decrease in Pn at low temperatures is very
close to the line of demarcation between probability
mass functions generating determinate and
indeterminate moment problems

Roman N. Rogalyov (IHEP) Equation of State and Multiple Particle Production01.12.2023 40 / 41



Conclusions:

Net-baryon number distribution Pn is evaluated on a lattice
at T >TRW (it is similar to but doesn’t coincide with the free
theory) and at T < Tc (coincides with the HRG predictions).
The probabilities Pn can in principle be reconstructed either
from the cumulants of the net-baryon number probabilty
distribution or from the EoS of strong-interacting matter.
Relations between them can shed a new light on fireball
evolution.
The dependence of the EoS on T and fit parameters has been
used to formulate a possible scenario of emergence of the van
der Waals isotherms corresponding to the first-order chiral
phase transition.
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