Equation of State and Multiple Particle Production

Roman N. Rogalyov

IHEP
01.12.2023

Outline

- Sketch of QGP formation
- Quantities under study:
- net-baryon probability distributions \mathcal{P}_{n} and \mathbf{P}_{n};
- their moments and cumulants;
- their relation to the pressure and grand canonical partition function.
- Equation of State (EoS) $p=f(\rho)$ at $T>T_{R W}$ and $T<T_{c}$.
- Asymptotic behavior of \mathbf{P}_{n} at $n \rightarrow \infty$.
- Phenomenological issues.

In collaboration aith V.A.Goy

Bird's-eye view of heavy-nuclei collision

Glazma formation

- Colliding Pb nuclei are $\sim \frac{1}{200} \mathrm{fm}$ thick
- Glazma stage
- QGP stage (fireball)
- Freezeout (QGP \Longrightarrow hadrons)

Larry McLerran, hep-ph/0202025

Distribution of charged particles over rapidity

from Lipei Du at al., 2211.16408

Net-Baryon Number Distribution over rapidity

from Lipei Du at al., 2211.16408

At very high energies, the net-baryon number seems to be produced at an initial stage of evolution

$\sqrt{s_{N N}}<200 \mathrm{GeV}$

$$
\sqrt{s_{N N}}>200 \mathrm{GeV}
$$

We study production of the net-baryon number n :

$$
n=N_{b}-N_{\bar{b}}
$$

N_{b} - number of baryons
$N_{\bar{b}}$ - number of anti-baryons

$$
N_{b}=N_{p}+N_{n}+N_{\Xi}+N_{\Lambda}+\ldots+3 N_{\left({ }^{3} \mathrm{He}\right)}+\ldots
$$

It is generally accepted that

$$
N_{p}=0.4 N_{b}
$$

The quantities under study:

- probability \mathcal{P}_{n} that the net baryon charge of the fireball at a given μ_{B} equals \boldsymbol{n} (RHIC)
- probability \mathbf{P}_{n} that the net baryon charge| of the fireball at $\mu_{B}=0$ equals η (LHC)
- and the corresponding moments $\mu_{k}=\sum_{n=-\infty}^{+\infty} \mathcal{P}_{n} n^{k}$

$$
\mathbf{P}_{n}=\frac{Z_{C}(n)}{Z_{G C}(0)}
$$

The probabilities \mathcal{P}_{n} can be determined from

- experimental data

$$
\begin{aligned}
& N_{\text {events }}(\text { Net-Baryon Number }=n)= \\
= & N_{\text {events }}(\text { Net-Proton Number }=0.4 n)
\end{aligned}
$$

- lattice simulations
(of the net-baryon density at imaginary μ_{B})
- models of strong-interactiong matter
- Hadron Resonance Gas (HRG) model
- Cluster Expansion Model (CEM)
- Nambu-Jona-Lasinio (NJL or PNJL) model

Grand canonical partition function

$$
Z_{G C}(\theta, T, V) \equiv Z_{G C}(\theta)=\sum_{j}\langle j| \exp \left(\frac{-\hat{H}+\mu \hat{B}}{T}\right)|j\rangle
$$

can be expanded as follows:

$$
\begin{aligned}
& Z_{G C}(\theta)=\exp \left(\frac{p(\theta) V}{T}\right)=\sum_{n=-\infty}^{\infty} Z_{C}(n) e^{n \theta} \\
& \theta=\frac{\mu_{B}}{T}
\end{aligned}
$$

The inverse transform

$$
Z_{C}(n)=\left.\int_{-\pi}^{\pi} \frac{d \theta_{I}}{2 \pi} e^{-i n \theta_{I}} Z_{G C}(\theta)\right|_{\theta_{R}=0}
$$

can be used to determine $\boldsymbol{Z}_{C}(\boldsymbol{n})$ and \mathcal{P}_{n}.
Pressure and baryon density are

$$
p(\theta)=\frac{T}{V} \ln Z_{G C}(\theta) \quad \rho(\theta)=\frac{1}{T} \frac{\partial p}{\partial \theta}
$$

$\theta=\mu_{B} / T=\theta_{R}+\imath \theta_{I}$,

If $p(\theta)$ and $\rho(\theta)$ are known,
they determine the Equation of State (EoS)

$$
p=p(\rho)
$$

in parametric form

Thus the EoS of fireball matter is connected with the distribution of collision events
in the net-baryon number

In lattice QCD at $\operatorname{Re} \mu_{B}=0, \operatorname{Im} \mu_{B} \neq 0$ we employ the formula

$$
Z_{G C}(\theta)=\int \mathbf{D} U e^{-S_{G}}\left(\operatorname{det} \mathcal{D}\left(\mu_{B}\right)\right)^{N_{f}}
$$

to find the net baryon number density ρ and \Longrightarrow the grand canonical partition function

$$
\begin{aligned}
\rho(\theta) & =\frac{1}{V} \frac{\partial\left(T \ln \boldsymbol{Z}_{G C}\right)}{\partial \mu_{B}} \Longrightarrow \\
\left.Z_{G C}\left(\theta_{I}\right)\right|_{\theta_{R}=0} & =\exp \left(V \int_{0}^{\theta_{I}} \rho(x) d x\right)
\end{aligned}
$$

Roberge-Weiss approach in QCD at $\mu_{B} \neq 0$:
Fock space includes only colorless states

$$
\theta \equiv \frac{\mu_{B}}{T}=\theta_{R}+\imath \theta_{I}
$$

at all T and μ_{B}.

$$
Z_{G C}\left(\theta_{I}\right)=Z_{G C}\left(\theta_{I}+2 \pi / N_{c}\right)
$$

Quark number \mathcal{Q} is a multiple of N_{c}

Grand canonical partition function

$$
Z_{G C}(\theta, T, V)=\sum_{j}\langle j| \exp \left(\frac{-\hat{H}+\mu \hat{\mathcal{Q}}}{T}\right)|j\rangle
$$

Results of lattice simulations, general situation
$T>T_{R W}: \quad \operatorname{Im} \rho\left(\theta_{I}\right)$ is a periodic function fitted by the polynomial of the type

$$
\operatorname{lm} \rho\left(\theta_{I}\right) \simeq a_{1} \theta_{I}-a_{3} \theta_{I}^{3}+\ldots+\simeq a_{n} \theta_{I}^{n}
$$

over each segment $\theta_{I}^{(n-1)}<\theta_{I}<\theta_{I}^{(n)}$,

$$
\text { where } \theta_{I}^{(n)}=\frac{(2 n+1) \pi}{3}
$$

$T \sim T_{c}: \quad \operatorname{Im} \rho\left(\theta_{I}\right)$ should be fitted by
$\operatorname{lm} \rho\left(\theta_{I}\right) \simeq f_{1} \sin \left(\theta_{I}\right)+f_{2} \sin (2 \theta)+\ldots+f_{n} \sin (n \theta)+\ldots$ where $\left\{f_{n}\right\}$ rapidly decreases with n.

Our results of lattice simulations

$T=1.35 T_{c}>T_{R W}: \quad \operatorname{lm} \rho\left(\theta_{I}\right)$ is $\frac{2 \pi}{3}$-periodic function with discontinuities at $\theta_{I}=\frac{(2 n+1) \pi}{3}$;

$$
\begin{aligned}
& \text { at }\left|\theta_{I}\right|<\frac{\pi}{3} \text { is well fitted by the polynomial } \\
& \qquad \operatorname{lm} \rho\left(\theta_{I}\right) \simeq a_{1} \theta_{I}-a_{3} \theta_{I}^{3}
\end{aligned}
$$

$T=0.93 T_{c}: \quad \operatorname{lm} \rho\left(\theta_{I}\right)$ is well fitted by the sine

$$
\operatorname{lm} \rho\left(\theta_{I}\right) \simeq f_{1} \sin \left(\theta_{I}\right)
$$

Equation of State

$$
\begin{aligned}
T=1.35 T_{c}>T_{R W} & \\
\frac{\rho}{T^{3}} & =a_{1} \theta+a_{3} \theta^{3} \\
\frac{p}{T^{4}} & =\frac{a_{1}}{2} \theta^{2}+\frac{a_{3}}{4} \theta^{4}+\hat{p}_{0}
\end{aligned}
$$

$$
T=0.93 T_{c}:
$$

$$
\begin{aligned}
\frac{\rho}{T^{3}} & =f_{1} \operatorname{sh} \theta \\
\frac{p}{T^{4}} & =f_{1}(\operatorname{ch} \theta-1)+\hat{p}_{0}
\end{aligned}
$$

here $\hat{p}_{0}=\left(\right.$ the pressure $\left./ T^{4}\right)$ at $\theta=0$.

$\rho_{s}=0.153 \mathrm{fm}^{3} ;$ data for \hat{p}_{0} are taken from HotQCD Collab.

Equation of State at $T \sim T_{c}$

$$
\begin{aligned}
T & =0.99 T_{c}: \operatorname{lm} \rho\left(\theta_{I}\right) \simeq f_{1} \sin \left(\theta_{I}\right)+f_{2} \sin (2 \theta) \\
f_{1} & =0.2541(8), \quad f_{2}=-0.0053(7)
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\rho}=f_{1} \boldsymbol{s}+2 f_{2} s \sqrt{s^{2}+1} \\
& \hat{p}=f_{1}\left(\sqrt{s^{2}+1}-1\right)+f_{2} s^{2}+\hat{p}_{0}
\end{aligned}
$$

here $\hat{p}_{0}=p / T^{4}$ at $\theta=0 ; \boldsymbol{s}=\sinh (\theta) ; f_{2}<0$.

Van der Waals isotherm here is hypothetical $C D$ - is nonphysical part

$p(\rho)$ increases at $\theta>0$!!!

Models for $\rho(\theta)$
simplified versions

- CEM: $T_{c}<T<T_{R W}$:
$\rho(\theta)=b \sum_{n=1}^{\infty} q^{n} \operatorname{sh}(n \theta)$,
$q<0$
$T=T_{R W} \Longrightarrow q=-1$,
$T \sim T_{c} \Longrightarrow q=0$.
- NJL: $T<T_{c}$:
$\rho(\theta)=b \sum_{n=1}^{\infty} q^{n} \operatorname{sh}(n \theta)$,
$q>0$

Isotherms in

- CEM ($\mathrm{q}=-0.4$)
- $\operatorname{NJL}(q=0.4)$
("physical" values $q \sim 10^{-3}$)

$$
\begin{aligned}
\mathbf{p} & =C+\frac{1-q \operatorname{ch} \theta}{1+q^{2}-2 q \operatorname{ch} \theta} \\
\rho & =\frac{|q|\left(1-q^{2}\right) \operatorname{sh} \theta}{\left(1+q^{2}-2 q \operatorname{ch} \theta\right)^{2}}
\end{aligned}
$$

$\mathbf{p}=\frac{p}{T^{4}}$ versus $\rho=\frac{\varrho}{T^{3}}$

At $q<0$, the values $\theta>\theta_{c}$ are unphysical, where

$$
\operatorname{ch}^{2} \theta_{c}+\frac{q^{2}+1}{2 q} \operatorname{ch} \theta_{c}=2
$$

$$
\mathbf{p}=\frac{p}{T^{4}} \text { versus } \rho=\frac{\varrho}{T^{3}}
$$

$$
\theta \rightarrow\left(\ln \frac{1}{q}\right)-0
$$

$$
\mathbf{p} \sim \sqrt{\frac{\left(1-q^{2}\right) \rho}{2 q}}
$$

Asymptotic behavior of the isoterm in NJL

Hypothetical QCD phase diagram

Fireball evolution: $\quad T_{i n i}, \mu_{B}^{(i n i)} \longrightarrow T_{F}, \mu_{B}^{(F)}$

In addition to the
net-baryon number probability distribution \mathcal{P}_{n}
and its momenta μ_{k},
primary attention is focused on

- The moments generating function

$$
M(t)=1+\sum_{k=1}^{\infty} \frac{\mu_{k}}{k!} t^{k}
$$

- and the cumulant generating function

$$
K(t)=\ln M(t)=\sum_{k=1}^{\infty} \frac{\varkappa_{k}}{k!} t^{k}
$$

Net-baryon probability distribution at $\mu_{B}=0$
$\mathbf{P}_{n} \equiv \mathcal{P}_{n}(\theta=0)$ involve all info on θ-dependence:

$$
\begin{gathered}
\mathcal{P}_{n}(\theta)=\frac{Z_{C}(n) e^{n \theta}}{Z_{G C}(\theta)}=\mathbf{P}_{n} e^{n \theta} \frac{Z_{G C}(0)}{Z_{G C}(\theta)} \\
M_{\theta}(t)=\frac{Z_{G C}(t+\theta)}{Z_{G C}(\theta)} \longrightarrow \mathfrak{M}(t)=\frac{Z_{G C}(t)}{Z_{G C}(0)} \\
K_{\theta}(t)=\longrightarrow \mathfrak{K}(t)=\frac{(p(t)-p(0)) V}{T}
\end{gathered}
$$

$\mathcal{P}_{n}(\theta)=\frac{Z_{C}(n) e^{n \theta}}{Z_{G C}(\theta)}$ - is the probability that
the baryon charge at the given T and μ_{B} equals n.
C-parity conservation implies $Z_{C}(n)=Z_{C}(-n)$

$$
\Longrightarrow \quad \frac{\mathcal{P}_{n}}{\mathcal{P}_{-n}}=\xi^{2 n} \quad \Longrightarrow \quad \mu_{B}=\frac{T}{2 n} \ln \left(\frac{\mathcal{P}_{n}}{\mathcal{P}_{-n}}\right)
$$

- possible procedure of measurement of μ_{B} [A.Nakamura, K.Nagato 2013]
- criterion of thermodynamical equilibrium: μ_{B} measured for different n coincide

$$
\mathbf{P}_{n}=\frac{Z_{C}(n)}{Z_{G C}(0)}
$$

and the respective cumulants
in contrast to θ-dependent cumulants $\varkappa_{n}(\theta)$
coincide with the coefficients
of the Taylor expansion of the pressure in θ :

$$
p(\theta)=p(0)+\sum_{n=1}^{\infty} \frac{\kappa_{2 n}}{(2 n)!} \theta^{2 n}
$$

Main attention is focused on
EXP.: $\quad \varkappa_{n}(\theta)$ at small n instead of $\mathcal{P}_{n}(\theta)$
THEOR.: $\quad \kappa_{n}$ at small n instead of $\mathbf{P}_{n}(\theta) \quad \forall n$
because $\kappa_{n}=\varkappa_{n}(\mathbf{0})$
are related to the Taylor expansion of the pressure.

We argue that

Asymptotic behavior of \mathbf{P}_{n} at $n \rightarrow \infty$ may become an indicator of the chiral phase transition

Problem: Given κ_{n} find \mathbf{P}_{n}

$$
\begin{aligned}
T>T_{R W}: \quad \mathbf{P}_{n} \simeq \exp \left(-\frac{n^{2}}{2 a_{1} V T^{3}}\right), \quad n \ll V T^{3} \\
\mathbf{P}_{n} \simeq \exp \left(-\frac{3}{4} \sqrt[3]{\frac{3}{a_{3}}}\left(\frac{n}{V T^{3}}\right)^{4 / 3}\right), \quad \text { when } n \gg V T^{3}
\end{aligned}
$$

$T<T_{c}$: coincidence with the HRG,

$$
\mathbf{P}_{n} \simeq e^{-A} I_{n}(A)^{\dagger} \quad \Longrightarrow \quad A=2 \sqrt{b \bar{b}}
$$

$(\bar{b}) b$ is the average number of the (anti)baryons in the fireball
\dagger [Bornyakov et al., 1611.04229]

Two scenarios of thermalization

1. The fireball after formation at an early stage is isolated from the remnants of colliding nuclei.

Evolution starts with the $Z_{G C}\left(\mu_{i n i}, T, V\right)$ and proceeds with
$Z_{C}(n, T, V)$.

2. Exchange of conserved charges (B, Q, S) proceeds during the fireball expansion.

Grand canonical approach works down to $T_{\text {freezeout }}$

Experimental data prefer the latter scenario

ALICE 2019:

$$
0.8<\frac{\kappa_{4}}{\kappa_{2}}<1.0
$$

In agreement with the HRG model

Gas of massless fermions (at reasonable values of $V T^{3}$):

$$
\frac{\kappa_{4}}{\kappa_{2}}<0.2
$$

However: the ALICE 2017 result $\mu_{B}=0 @ \sqrt{s_{N N}}=5 \mathrm{TeV}$ indicates that the former scenario is not completely excluded.

$$
\operatorname{m} \rho\left(\theta_{I}\right) \simeq a_{1} \theta_{I}+\ldots+a_{2 J+1} \theta_{I}^{2 J+1}
$$

$\operatorname{sign} a_{2 J+1}=(-1)^{J}$
$\mathbf{P}_{n} \sim \exp \left(-\frac{J}{J+1} \sqrt[J]{\frac{n^{J+1}}{\nu a_{J}}}\right) \quad \nu=V T^{3}$.
$\operatorname{lm} \rho\left(\theta_{I}\right) \simeq f_{1} \sin \left(\theta_{I}\right) \ldots+f_{J} \sin (J \theta), \quad f_{J}>0 \forall J$

$$
\mathbf{P}_{n} \sim \frac{\left(\nu f_{J}\right)^{n / J}}{\Gamma\left(\frac{n}{J}+1\right)}, \quad \nu=V T^{3}
$$

Net-baryon number probability distribution at $\mu_{B}=0$ in CEM (blue) and NJL (brown)

The Krein criterion states that the problem of moments becomes indeterminate when

$$
\begin{equation*}
\int d x \frac{\ln \varphi(x)}{\left(1+x^{2}\right)}>-\infty \tag{1}
\end{equation*}
$$

where $\varphi(\boldsymbol{x})$ is the probability density function.
The rate of decrease in \mathbf{P}_{n} at low temperatures is very close to the line of demarcation between probability mass functions generating determinate and indeterminate moment problems

Conclusions:

- Net-baryon number distribution \mathbf{P}_{n} is evaluated on a lattice at $T>T_{R W}$ (it is similar to but doesn't coincide with the free theory) and at $T<T_{c}$ (coincides with the HRG predictions).
- The probabilities \mathbf{P}_{n} can in principle be reconstructed either from the cumulants of the net-baryon number probabilty distribution or from the EoS of strong-interacting matter. Relations between them can shed a new light on fireball evolution.
- The dependence of the EoS on T and fit parameters has been used to formulate a possible scenario of emergence of the van der Waals isotherms corresponding to the first-order chiral phase transition.

