# Equation of State and Multiple Particle Production

Roman N. Rogalyov

IHEP

01.12.2023

Roman N. Rogalyov (IHEP) Equation of State and Multiple Partic

01.12.2023

1 / 41

E >

## Outline

- Sketch of QGP formation
- Quantities under study:
  - net-baryon probability distributions  $\mathcal{P}_n$  and  $\mathbf{P}_n$ ;
  - their moments and cumulants;
  - ▶ their relation to the pressure and grand canonical partition function.
- Equation of State (EoS)  $p = f(\rho)$ at  $T > T_{RW}$  and  $T < T_c$ .
- Asymptotic behavior of  $\mathbf{P}_n$  at  $n \to \infty$ .
- Phenomenological issues.

In collaboration aith V.A.Goy



Bird's-eye view of heavy-nuclei collision

Roman N. Rogalyov (IHEP) Equation of State and Multiple Partic

01.12.2023 3 / 41

э

イロト イヨト イヨト イヨト



# Glazma formation

- Colliding Pb nuclei are  $\sim \frac{1}{200}$  fm thick
- Glazma stage
- QGP stage (fireball)
- Freezeout (QGP  $\implies$  hadrons)

- - E - F



Larry McLerran, hep-ph/0202025

Roman N. Rogalyov (IHEP) Equation of State and Multiple Partic

01.12.2023 5 / 41

э





Roman N. Rogalyov (IHEP) Equation of State and Multiple Partic

01.12.2023

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ◇◇

# Distribution of charged particles over rapidity

#### from Lipei Du at al., 2211.16408



01.12.2023 7 / 41

# Net-Baryon Number Distribution over rapidity



from Lipei Du at al., 2211.16408

ъ

At very high energies, the net-baryon number seems to be produced at an initial stage of evolution



 $\sqrt{s_{NN}} < 200~{
m GeV}$ 

 $\sqrt{s_{NN}} > 200 \text{ GeV}$ 

A (1) > (1) > (1)

We study production of the net-baryon number n:

$$n = N_b - N_{\bar{b}}$$

- $N_b$  number of baryons
- $N_{\bar{b}}$  number of anti-baryons

$$N_{oldsymbol{b}}=N_p+N_n+N_{\Xi}+N_{\Lambda}+...+3N_{(^3\mathrm{He})}+...$$

It is generally accepted that

$$N_p = 0.4 N_b$$

Roman N. Rogalyov (IHEP) Equation of State and Multiple Partic

The quantities under study:

- probability  $\mathcal{P}_n$  that the net baryon charge of the fireball at a given  $\mu_B$  equals  $\boldsymbol{n}$  (RHIC)
- probability  $\mathbf{P}_n$  that the net baryon charge of the fireball at  $\mu_B = 0$  equals  $\mathbf{n}$  (LHC)
- and the corresponding moments  $\mu_k = \sum_{n=-\infty}^{+\infty} \mathcal{P}_n n^k$

$$\mathbf{P}_n = rac{Z_C(n)}{Z_{GC}(0)}$$

The probabilities  $\mathcal{P}_n$  can be determined from

• experimental data

 $N_{events}$  (Net-Baryon Number = n) =

 $= N_{events}$  (Net-Proton Number = 0.4n)

• lattice simulations

(of the net-baryon density at imaginary  $\mu_B$ )

- models of strong-interactiong matter
  - ▶ Hadron Resonance Gas (HRG) model
  - ► Cluster Expansion Model (CEM)
  - ▶ Nambu–Jona-Lasinio (NJL or PNJL) model

Grand canonical partition function

$$Z_{
m GC}( heta,T,V)\equiv Z_{
m GC}( heta)=\sum_{j}\langle j|\exp\left(rac{-\hat{H}+\mu\hat{B}}{T}
ight)|j
angle$$

can be expanded as follows:

$$Z_{\mathrm{GC}}( heta) \ = \ \exp\left(rac{p( heta)V}{T}
ight) \ = \ \sum_{n=-\infty}^{\infty} Z_{\mathrm{C}}(n) e^{n heta},$$

$$heta = rac{\mu_B}{T}$$

Roman N. Rogalyov (IHEP) Equation of State and Multiple Partic 01.12.2023

The inverse transform

$$Z_{C}(n) = \left. \int_{-\pi}^{\pi} rac{d heta_{I}}{2\pi} e^{-in heta_{I}} Z_{GC}( heta) 
ight|_{ heta_{R}=0}$$

can be used to determine  $Z_C(n)$  and  $\mathcal{P}_n$ .

Pressure and baryon density are

$$p(\theta) = rac{T}{V} \ln Z_{GC}(\theta)$$
  $ho( heta) = rac{1}{T} rac{\partial p}{\partial heta}$ 

 $\theta = \mu_B/T = \theta_R + \imath \theta_I \; ,$ 

If  $p(\theta)$  and  $\rho(\theta)$  are known,

they determine the Equation of State (EoS)

 $\boldsymbol{p} = \boldsymbol{p}(\rho)$ 

in parametric form

Thus the EoS of fireball matter is connected with the distribution of collision events in the net-baryon number In lattice QCD at  $\operatorname{Re}\mu_B = \mathbf{0}$ ,  $\operatorname{Im}\mu_B \neq \mathbf{0}$ we employ the formula

$$Z_{
m GC}( heta) = \int {f D} U e^{-S_G} (\det {\cal D}(\mu_B))^{N_f}$$

to find the net baryon number density  $\rho$ and  $\implies$  the grand canonical partition function

$$egin{aligned} &
ho( heta) &= \; rac{1}{V} rac{\partial (T \ln Z_{GC})}{\partial \mu_B} \implies \ &Z_{GC}( heta_I)|_{ heta_R=0} \; = \; \exp\left(V \int_0^{ heta_I} 
ho(x) \; dx
ight) \end{aligned}$$

- 同 ト - 日 ト - 4 日 ト

Roberge-Weiss approach in QCD at  $\mu_B \neq 0$ :

Fock space includes only colorless states at all T and  $\mu_B$ .

$$\theta \equiv \frac{\mu_B}{T} = \theta_R + \imath \theta_I$$

 $Z_{GC}(\theta_I) = Z_{GC}(\theta_I + 2\pi/N_c)$ 



Quark number  $\mathcal{Q}$  is a multiple of  $N_c$ 

Grand canonical partition function

$$Z_{
m GC}( heta,T,V) = \sum_{j} \langle j | \exp\left(rac{-\hat{H}+\mu\hat{\mathcal{Q}}}{T}
ight) | j 
angle$$



A D F A B F A B

æ

Results of lattice simulations, general situation

# $T > T_{RW}$ : Im $ho( heta_I)$ is a periodic function fitted by the polynomial of the type

 $\operatorname{Im} \rho(\theta_I) \simeq a_1 \theta_I - a_3 \theta_I^3 + ... + \simeq a_n \theta_I^n$ 

 $\begin{array}{l} \text{over each segment } \theta_{I}^{(n-1)} < \theta_{I} < \theta_{I}^{(n)} \;, \\ \text{where } \theta_{I}^{(n)} = \frac{(2n+1)\pi}{3}; \end{array}$ 

 $T \sim T_c$ : Im $ho( heta_I)$  should be fitted by

 $\operatorname{Im} \rho(\theta_I) \simeq f_1 \sin(\theta_I) + f_2 \sin(2\theta) + \dots + f_n \sin(n\theta) + \dots$ where  $\{f_n\}$  rapidly decreases with n. Our results of lattice simulations

$$\begin{split} T &= 1.35 T_c > T_{RW}: \quad \mathrm{Im}\rho(\theta_I) \text{ is } \frac{2\pi}{3} \text{-periodic function} \\ & \text{with discontinuities at } \theta_I = \frac{(2n+1)\pi}{3}; \end{split}$$
at  $|\theta_I| < \frac{\pi}{3}$  is well fitted by the polynomial  $\operatorname{Im}\rho(\theta_I) \simeq a_1 \theta_I - a_3 \theta_I^3$  $T = 0.93T_c$ :  $\mathbf{Im}\rho(\theta_I)$  is well fitted by the sine

 $\mathbf{Im}\rho(\theta_I)\simeq f_1\sin(\theta_I)$ 

01.12.2023 20 / 41

#### Equation of State

 $T = 1.35T_c > T_{RW}$ :

$$egin{array}{rl} egin{array}{rl} eta &=& a_1 heta + a_3 heta^3 \ egin{array}{rl} eta &=& rac{a_1}{2} heta^2 + rac{a_3}{4} heta^4 + \hat{p}_0, \end{array}$$

0.00T

$$T = 0.95 T_c$$
:  
 $\frac{\hat{
ho}}{T^3} = f_1 \, \mathrm{sh} heta \ \frac{p}{T^4} = f_1 \left(\mathrm{ch} heta - 1\right) + \hat{p}_0,$   
here  $\hat{p}_0 = \left(\mathrm{the \ pressure}/T^4\right)$  at  $heta = 0.$ 

Roman N. Rogalyov (IHEP)

э.



 $\rho_s = 0.153 \text{ fm}^3$ ; data for  $\hat{p}_0$  are taken from HotQCD Collab.

01.12.2023 22 / 41

Equation of State at  $T \sim T_c$ 

$$T = 0.99T_c : \operatorname{Im}\rho(\theta_I) \simeq f_1 \sin(\theta_I) + f_2 \sin(2\theta)$$
  
$$f_1 = 0.2541(8) , \quad f_2 = -0.0053(7)$$

$$\hat{
ho} = f_1 \, s + 2f_2 \, s \sqrt{s^2 + 1}; \ \hat{p} = f_1(\sqrt{s^2 + 1} - 1) + f_2 \, s^2 + \hat{p}_0.$$

here  $\hat{p}_0 = p/T^4$  at  $\theta = 0$ ;  $s = \sinh(\theta)$ ;  $f_2 < 0$ .

3

イロト イボト イヨト イヨト



Van der Waals isotherm here is hypothetical CD - is nonphysical part

01.12.2023

# $p(\rho)$ increases at $\theta > 0$ !!!

# Models for $\rho(\theta)$

simplified versions

• CEM: 
$$T_c < T < T_{RW}$$
:  
 $\rho(\theta) = b \sum_{n=1}^{\infty} q^n \operatorname{sh}(n\theta), \quad q < 0$   
 $T = T_{RW} \implies q = -1, \quad T \sim T_c \implies q = 0.$ 

• NJL: 
$$T < T_c$$
:  
 $\rho(\theta) = b \sum_{n=1}^{\infty} q^n \operatorname{sh}(n\theta), \qquad q > 0$ 

A 3 b

A (1) < A (1) </p>



Isotherms in

CEM (q=-0.4)
NJL (q=0.4) ("physical" values q ~ 10<sup>-3</sup>)

$$\mathbf{p} = C + rac{1-q \mathrm{ch}\, heta}{1+q^2-2q \mathrm{ch}\, heta}$$

$$\rho = \frac{|q|(1-q^2)\mathrm{sh}\,\theta}{(1+q^2-2q\mathrm{ch}\,\theta)^2}$$

Roman N. Rogalyov (IHEP) Equation of State and Multiple Partic



At q < 0, the values  $\theta > \theta_c$ are unphysical,

where

$$\mathrm{ch}^2 heta_c+rac{q^2+1}{2q}\mathrm{ch} heta_c=2$$

$$\mathbf{p} = rac{p}{T^4}$$
 versus  $ho = rac{\varrho}{T^3}$ 

э.



Asymptotic behavior of the isoterm in NJL

#### Hypothetical QCD phase diagram





In addition to the

net-baryon number probability distribution  $\mathcal{P}_n$ and its momenta  $\mu_k$ ,

primary attention is focused on

• The moments generating function

$$M(t) = 1 + \sum_{k=1}^{\infty} \frac{\mu_k}{k!} t^k$$

• and the cumulant generating function

$$K(t) = \ln M(t) = \sum_{k=1}^{\infty} \frac{\varkappa_k}{k!} t^k$$

Net-baryon probability distribution at  $\mu_B = 0$ 

 $\mathbf{P}_n \equiv \mathcal{P}_n(\theta = \mathbf{0})$  involve all info on  $\theta$ -dependence:

$$\mathcal{P}_n( heta) = rac{Z_C(n)e^{n heta}}{Z_{
m GC}( heta)} = \mathbf{P}_n e^{n heta} \, rac{Z_{
m GC}(0)}{Z_{
m GC}( heta)}$$

$$egin{aligned} M_{ heta}(t) &= rac{Z_{GC}(t+ heta)}{Z_{GC}( heta)} &\longrightarrow \mathfrak{M}(t) = rac{Z_{GC}(t)}{Z_{GC}(0)} \ K_{ heta}(t) &= & \longrightarrow \mathfrak{K}(t) = rac{ig(p(t)-p(0)ig)V}{T} \end{aligned}$$

Roman N. Rogalyov (IHEP) Equation of State and Multiple Partic

・ロト ・同ト ・ヨト ・ヨト ・ヨー うくぐ

$$\mathcal{P}_n( heta) = rac{Z_C(n) e^{n heta}}{Z_{GC}( heta)}$$
 - is the probability that

the baryon charge at the given T and  $\mu_B$  equals n.

C-parity conservation implies  $Z_C(n) = Z_C(-n)$ 

$$\implies \qquad \frac{\mathcal{P}_n}{\mathcal{P}_{-n}} = \xi^{2n} \qquad \Longrightarrow \qquad \mu_B = \frac{T}{2n} \ln\left(\frac{\mathcal{P}_n}{\mathcal{P}_{-n}}\right)$$

- possible procedure of measurement of  $\mu_B$ [A.Nakamura, K.Nagato 2013]
- criterion of thermodynamical equilibrium:  $\mu_B$  measured for different n coincide

$$\mathbf{P}_n = rac{Z_C(n)}{Z_{GC}(0)}$$

and the respective cumulants in contrast to  $\theta$ -dependent cumulants  $\varkappa_n(\theta)$ coincide with the coefficients of the Taylor expansion of the pressure in  $\theta$ :

$$p( heta)=p(0)+\sum_{n=1}^{\infty}rac{\kappa_{2n}}{(2n)!} heta^{2n}$$

#### Main attention is focused on

EXP.: $\varkappa_n(\theta)$  at small n instead of  $\mathcal{P}_n(\theta)$ THEOR.: $\kappa_n$  at small n instead of  $\mathbf{P}_n(\theta)$ 

because  $\kappa_n = \varkappa_n(0)$ are related to the Taylor expansion of the pressure.

### We argue that

Asymptotic behavior of  $\mathbf{P}_n$  at  $n \to \infty$ may become an indicator of the chiral phase transition

Problem: Given  $\kappa_n$  find  $\mathbf{P}_n$ 

伺い イヨン イヨン

$$egin{aligned} T > T_{RW}: & \mathbf{P}_n \simeq \exp\left(-rac{n^2}{2a_1VT^3}
ight), & n \ll VT^3 \ & \mathbf{P}_n \simeq \exp\left(-rac{3}{4}\sqrt[3]{rac{3}{a_3}}\left(rac{n}{VT^3}
ight)^{4/3}
ight), & ext{when } n \gg VT^3 \end{aligned}$$

 $T < T_c$ : coincidence with the HRG,

$$\mathbf{P}_n\simeq e^{-A}I_n(A)^\dagger \quad \Longrightarrow \quad A=2\sqrt{bar{b}}$$

 $(\hat{\boldsymbol{b}})\boldsymbol{b}$  is the average number of the (anti)baryons in the fireball

<sup>&</sup>lt;sup>†</sup> [Bornyakov et al., 1611.04229]

# Two scenarios of thermalization



1. The fireball after formation at an early stage is isolated from the remnants of colliding nuclei.

Evolution starts with the  $Z_{GC}(\mu_{ini}, T, V)$ and proceeds with  $Z_C(n, T, V)$ .



2. Exchange of conserved charges (B, Q, S) proceeds during the fireball expansion.

Grand canonical approach works down to  $T_{freezeout}$ 

### Experimental data prefer the latter scenario

ALICE 2019:

$$0.8 < \frac{\kappa_4}{\kappa_2} < 1.0$$

In agreement with the HRG model

Gas of massless fermions (at reasonable values of  $VT^3$ ):

 $\frac{\kappa_4}{\kappa_2} < 0.2$ 

However: the ALICE 2017 result  $\mu_B = 0 @\sqrt{s_{NN}} = 5$  TeV indicates that the former scenario is not completely excluded.

37 / 41

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\operatorname{Im} 
ho( heta_I) \simeq a_1 heta_I + ... + a_{2J+1} heta_I^{2J+1},$$
  
 $\operatorname{sign} a_{2J+1} = (-1)^J$   
 $\mathbf{P}_n \sim \exp\left(-\frac{J}{J+1} \sqrt[J]{rac{n^{J+1}}{
u a_J}}\right) \qquad 
u = VT^3.$ 

 $\mathbf{Im}\rho(\theta_I) \simeq f_1 \sin(\theta_I) \dots + f_J \sin(J\theta), \quad f_J > 0 \ \forall J$ 

$$\mathbf{P}_n \sim rac{(
u f_J)^{n/J}}{\Gamma\left(rac{n}{J}+1
ight)}, \qquad 
u = VT^3$$

Roman N. Rogalyov (IHEP) Equation of State and Multiple Partic

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● のへで



Net-baryon number probability distribution at  $\mu_B = 0$ in CEM (blue) and NJL (brown)

01.12.2023 39 / 41

The Krein criterion states that the problem of moments becomes indeterminate when

$$\int dx \frac{\ln \varphi(x)}{(1+x^2)} > -\infty, \qquad (1)$$

where  $\varphi(\mathbf{x})$  is the probability density function.

The rate of decrease in  $\mathbf{P}_n$  at low temperatures is very close to the line of demarcation between probability mass functions generating determinate and indeterminate moment problems

### Conclusions:

- Net-baryon number distribution  $\mathbf{P}_n$  is evaluated on a lattice at  $T > T_{RW}$  (it is similar to but doesn't coincide with the free theory) and at  $T < T_c$  (coincides with the HRG predictions).
- The probabilities  $\mathbf{P}_n$  can in principle be reconstructed either from the cumulants of the net-baryon number probability distribution or from the EoS of strong-interacting matter. Relations between them can shed a new light on fireball evolution.
- The dependence of the EoS on *T* and fit parameters has been used to formulate a possible scenario of emergence of the van der Waals isotherms corresponding to the first-order chiral phase transition.

- 4 周 ト 4 日 ト 4 日 ト