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Аннотация на русском языке. We have studied the conformal transformation

of scalar and spinor field equations. These fields scale as, ϕ̃(ψ) = Ωξ ϕ(ψ) and the
metric tensor as g̃µν = Ω2 gµν , where Ω and ξ are called the conformal factor and
wight, respectively. The conformal mass in Klein-Gordon mass (m̃) is related to
original scalar mass, (m) by m̃ = Ω−1m . Moreover, the Klein-Gordon equation
in the conformal’s frame reduces to the quantum Telegraph equation of a particle
whose mass is given by, M = (ξ + 1)m, in Minkowski’s frame. The conformal
wave equation in 2 dimensions with ξ = 1 yields the quantum Telegraph equation
with a mass. We have found that the conformal wave equation in 2 dimensions
yields the Dirac equation for ξ = ± i in flat space. In 4 dimensions the mass of the
conformal spinor field scales as m̃ = Ω−2m. The spinor charge (q) is influenced
by the conformal transformation and becomes Qc = qξ/(ξ + 3

2) . The conformal
factor for a spinor field is found to be equal to the phase factor of the spinor
field. Moreover, the conformal transformation preserves the probability of the
spinor particle. There exists a certain conformal transformation that transforms
the Klein-Gordon equation into the Dirac equation. An Aharonov- Bohm-like
effect is found to occur due to a conformal transformation of the spinor field.
Breaking of conformal invariance is found to give rise to a mass of the particle that
is tantamount to the Higgs mechanism.
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1. Introduction

A scalar field is governed by the Klein-Gordon equation that is known to
describe a particle with zero spins. A dissipative like-Klein-Gordon equation
is recently derived which is found to reproduce the Schrodinger and Dirac
equations under certain transformations [1]. In general relativity one is usu-
ally interested in a gravitational theory that is conformally invariant [2].
The general theory of relativity is however non-invariant under the confor-
mal transformation. A scalar-tensor theory is found to be invariant under
the conformal transformation that led physicists to explore the implications
of such theories [3]. A famous theory among this plethora of models is the
Brans-Dicke theory [3]. Even though Einstein’s equations are not confor-
mally invariant, it reveals that there exists an additional energy-momentum
tensor associated with Einstein’s tensor [4]. We have shown recently that
such a tensor accounts for the matter aspect of the gravitational field [5]. If
such a fluid is coupled to a scalar field it yields an energy density connected
with the space curvature giving mass to the graviton. A theory that is not
invariant under conformal transformation can also be interesting. Such an
investigation may have not been tackled before.
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We would like here to study the Klein-Gordon and Dirac wave equations
under conformal transformation. The breaking of the conformal transfor-
mation gives all fields present a mass. This is because the conformal trans-
formation of Einstein’s tensor yields an additional energy-momentum term
that expresses the vacuum contribution to the curvature of space. This vac-
uum is found to couple to all fields present [5]. Recall that Dirac’s equation
describes particles with spin equal to 1/2, while the Klein-Gordon equa-
tion describes spin-less scalar bosons. Such an investigation reveals that
the Klein-Gordon equation in conformal’s frame yields the dissipative Klein-
Gordon equation, or the quantum Telegraph equation that is believed to
reproduce the Schrodinger and Dirac equations [1]. Moreover, the conformal
transformation of the spinor field preserves the probability, and the conformal
mass scales inversely with the fermion mass. In addition, we found that an
Aharonov-Bohm-like effect exists in curve space arising from the conformal
transformation of the spinor field [6].

2. Conformal scalar field dynamics

The Lagrangian of the massive scalar field is given by

L =
1

2
∂µϕ ∂

µϕ− V (ϕ) , (1)

where V (ϕ) = m2

2
ϕ2 for free massive scalar field. The field equation associated

with the scalar defined in eq.(1) is obtained from the Lagrange equation

∂µ
∂L
∂∂µϕ

=
∂L
∂ϕ

, (2)

that yields the Klein-Gordon equation,

ηµν ∂µ∂νϕ+
(mc

ℏ

)2
ϕ = 0 . (3)

where ηµν is the Minkowski metric tensor. In curved space-time, the partial
derivatives are replaced by the covariant derivatives, so that eq.(1) becomes

L =
1

2
gµν (∇µϕ)(∇νϕ)− V (ϕ) , (4)

where gµν is the metric tensor describing the curved space-time. In the curved
space-time, eq.(3) becomes

□ϕ+
(mc

ℏ

)2
ϕ = 0 , □ = gµν∇µ∇ν . (5)

Under the conformal transformation [2, 7],

g̃µν = Ω2(x) gµν , ϕ̃ = Ωξ ϕ , (6)
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where ξ is some real number, the conformal Klein-Gordon in curved space-
time will be [2]

□̃ϕ̃+

(
m̃c

ℏ

)2

ϕ̃ = 0 , (7)

which upon applying eq.(6) and (5) becomes

□ϕ+2ξ + 2

Ω
gµν(∇µΩ)(∇νϕ)+

(
ξ

Ω
gµν∇µ∇νΩ +

ξ(ξ + 1)

Ω2
gµν(∇µΩ) (∇νΩ) +

c2

ℏ2
m̃2Ω2

)
ϕ = 0.

(8)
It is remarked that the conformal wave operator (d’Alembertian) is confor-
mally invariant in 2-dimensions for ξ = 0 [2] . The conformal factor, Ω, is
found to represent the vacuum (background) field if one considers the confor-
mal transformation of Einstein’s equations. This energy-momentum tensor
of the vacuum field is shown to have a perfect fluid distribution [5]. This vac-
uum contribution is decoupled from the curvature term when the conformal
transformation is broken by Einstein’s equations.

In D-dimensional space, one has [2]

□̃ϕ̃ = Ωξ−2
[
□ϕ+ (2ξ +D − 2)Ω−1gµν (∇µΩ) (∇ν ϕ)

]
+

Ωξ−2
[
ξΩ−1gµν∇µ∇νΩ + ξ(D + ξ − 3)Ω−2gµν (∇µΩ) (∇νΩ)

]
ϕ.

(8a)

Applying the case D = 2 in the conformal wave equation □̃ϕ̃ = 0, one finds

□ϕ+
2ξ

c2
Ω̇

Ω

∂ϕ

∂t
+

(
ξ
□Ω

Ω
+
ξ(ξ − 1)

c2
Ω̇2

Ω2

)
ϕ = 0 , (9)

where we have assumed that Ω = Ω(t). This particular case would break the
conformal symmetry where Ω = Ω(x) . Interestingly, in 2-dimensions, when
ξ = 1, eq.(10) reduces to the quantum Telegraph equation. However, when
ξ = ±i, eq.(9) yields the Dirac equation in the quadratic form [1, 10]. It is
thus very interesting that the wave equation and Dirac equation are related
in 2 dimensions by the conformal transformation, where Ω is given in eq.(13).

Thus, if the conformal factor, Ω, depends on time only, then eq.(8) be-
comes

□ϕ+
2(ξ + 1)

c2
Ω̇

Ω

∂ϕ

∂t
+

(
ξ
□Ω

Ω
+
ξ(ξ + 1)

c2
Ω̇2

Ω2
+
c2

ℏ2
m̃2Ω2

)
ϕ = 0 . (10)

in Minkowski’s frame. Equation (10) can be rewritten in the form

□ϕ+
2(ξ + 1)

c2
Ω̇

Ω

∂ϕ

∂t
+

(
ξ
□Ω

Ω
+
ξ(ξ + 1)

c2
Ω̇2

Ω2
+
(mc

ℏ

)2)
ϕ = 0 , (11)

where
m̃ = Ω−1m. (12)
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Notice that if ξ = −1, then eq.(11) reduces to the wave equation in Minkowski’s
frame if Ω ∝ exp(mc2t/ℏ) . However, a massless wave equation with ξ = −1
in the conformal’s frame yields a Klein-Gordon equation with an imaginary
mass in Minkowski’s frame. But it yields a Klein-Gordon equation with a
real mass if one uses Ω ∝ exp(imc2t/ℏ) , instead. Such an ansatz can be
considered a way of giving mass to a massless field.

A quantum telegraph equation has recently been derived that is the quan-
tum analog of the classical telegraph equation governing electric current and
voltage in transmission lines [1]. It takes the form

1

c2
∂2ψ

∂t2
−∇2ψ ± 2mi

ℏ
∂ψ

∂t
−
(mc

ℏ

)2
ψ = 0 (13)

A second variant of it, that is a quadratic Dirac equation, is derived from
eq.(13) by rotating space and time clockwise and counterclockwise by an
angle of π/2 , (i.e. t→ ± it and r → ± ir), takes the form

1

c2
∂2ψ

∂t2
−∇2ψ ± 2mi

ℏ
∂ψ

∂t
−
(mc

ℏ

)2
ψ = 0 (14)

Let us now consider the case [5]

Ω = Ω0 e
mc2t/ℏ , (15)

where Ω0 is a constant. Substitute eq.(15) in eq.(11) to obtain

□ϕ+
2M

ℏ
∂ϕ

∂t
+

(
Mc

ℏ

)2

ϕ = 0 , M = (ξ + 1)m. (16)

I interestingly, that the conformal Klein-Gordon equation yields the quan-
tum Telegraph equation in Minkowski’s frame. We have found earlier that
Maxwell’s equations in the conformal’s frame yield the massive Maxwell’s
equations in the Minkowski’s frame, where the photon mass is ξ m and
ξ = ± 1 [8]. The Klein-Gordon equation is transformed into a massless
wave equation if ξ = −1. This is appealing since the conformal transforma-
tion plays the role of the Higgs mechanism that is employed to give mass to
elementary particles in the standard model [9].

An interesting case exists when ξ + 1 = ± i for which eq.(14) becomes

□ϕ± 2mi

ℏ
∂ϕ

∂t
−
(mc

ℏ

)2
ϕ = 0 , (17)

which is the Dirac equation in a quadratic form [1, 10]. Therefore, the con-
formal scalar field in eq.(6) becomes

ϕ̃ = Ω± i−1 ϕ , (18)

where Ω is given by eq.(15). Consequently, one can deal with the conformal
transformation of Dirac’s equation using the above recipe.
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3. Conformal Spinor dynamics

Let us now consider the Dirac equation for spin-1/2 massless particles.
This is expressed in a covariant form as [20]

iℏγµ∂µψ = 0 , (19)

where ψ is called the spinor. In curved space-time, the partial derivative is
replaced by the covariant derivative, so that [11]

iℏγµ∇µψ = 0 . (20)

Let us assume that the spinor transforms under the conformal transformation
as

ψ̃ = Ωξ ψ . (21)

where ξ is a real number (weight). The spinor covariant derivative is defined
by [12]

∇µ = ∂µ + Ωµ , [γa ,Ων ] = ωa
bν γ

b ,

Ων = − i

4
ωabν σ

ab , σab =
i

2

[
γa , γb

]
,

(19a)

where ωa
bν is the spin connection, and that γµ = eµaγ

a , with eµa is the vielbein.
Note that the Latin indices refer to local inertial coordinates whereas Greek
indices refer to general coordinates. When the spinor field is coupled to a
gravitational field, spontaneous particle creation may occur.

Let us now consider the conformal transformation of eq.(20) which reads

iℏγ̃µg̃µν∇̃νψ̃ = 0 . (22)

Apply now eqs.(6) and (20a) in eq.(22) to obtain [13]

iℏγµ∇µψ + iℏ(ξ +
3

2
)Ω−1γµ(∇µΩ)ψ = 0 , γ̃µ = Ω−1γµ . (23)

Equation (21) reduces to

iℏγµ∂µψ + iℏ(ξ +
3

2
)Ω−1γµ(∂

µΩ)ψ = 0 , (24)

in Minkowski’s frame. If we assume that Ω = Ω(t), then eq.(24) yields

iℏ γµ∂µψ +
i(ξ + 3

2
)

c
ℏ γ0

Ω̇

Ω
ψ = 0 , (25)

which can be compared with the massive Dirac’s equation, i.e.,

iℏ γµ∂µψ −mcψ = 0 . (26)
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It is now apparent that the conformal transformation of Dirac’s equation,
eq.(23), induces a mass term for the spinor (fermion) given by

m = −iℏ
(ξ + 3

2
)

c2
γ0

Ω̇

Ω
. (27)

It is known previously that it is the Higgs mechanism that offers a particle
its mass [9]. Hence, a tantamount mechanism of giving mass to a massless
particle now emerges. Interestingly, the above scenario reveals that the mass
expresses the interaction of the particle with the outside world. Thus, if
we demand that the massless Dirac’s equation be conformally invariant then
ξ = −3/2 so that ψ̃ = Ω−3/2ψ . It seems breaking the conformal invariance
gives rise to the mass generation of the particle.

Equation (27) can now be solved to give the conformal factor

Ω = Ω0e
i
mγ0c

2

(ξ+3
2 )ℏ

t
. (28)

Now the massive Dirac’s equation, eq.(26), will transform in curved space,
under the conformal transformation, as

iℏ γµ∇µψ − c m̃Ω2 ψ + iℏ(ξ +
3

2
)Ω−1γµ(∇µΩ)ψ = 0 , (29)

where
m̃ = Ω−2m. (30)

If Ω if a function of time only, then eq.(29) reduces to

iℏ γµ∂µψ −mcψ + i(ξ +
3

2
)
ℏ
c
γ0

Ω̇

Ω
ψ = 0 , (31)

in Minkowski’s frame.
Interestingly, an extra term in eq.(31) arises in the Dirac equation. This

term could represent the magnetic moment of the spinor, which is described
by [14–16]

iℏγµ∂µψ −mcψ + a σµν F
µνψ = 0 , (32)

where a is some constant, σµν and Fµν are, respectively, the spin and the
electromagnet field tensors.

Recall that when the spinor is coupled to the electromagnetic field, Dirac’s
equation becomes

iℏγµ(∂µ + iqAµ)ψ −mcψ = 0 , (32a)

which yields
iℏ γµ∂µψ −mcψ − q

c
γ0φψ = 0 , (33)

where q is the particle’s charge and A⃗ = 0. This shows that the conformal
transformation appearing in eq.(29) is equivalent to coupling the spinor with
an electromagnetic potential given by

φ = −i(ξ + 3

2
)
ℏ
q

Ω̇

Ω
. (34)
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Hence, a free electron (q) would feel interaction with a virtual electric poten-
tial. Therefore, one can envisage the conformal factor as a background field
permeating the whole space. It couples to the scalar field differently from
that of the spinor field. One can also look at the additional term in eq.(31)
as a mass term where the spinor effective mass is but

meff. = m− i(ξ +
3

2
)
ℏ
c2
γ0

Ω̇

Ω
, (35)

that the spinor acquires when interacting with the conformal field, Ω .
Owing to eq.(34), the conformal factor is now connected with the electric

potential by the relation

Ω = Ω0e
i
∫ qφ

ℏ(ξ+3
2 )

dt
, (36)

so that eq.(19) yields

ψ̃ = ψ0e
i
∫ qξφ

ℏ(ξ+3
2 )

dt
ψ , ξ ̸= −3/2 . (37)

This result was also found by Schrodinger and London in the conformal Weyl
theory that initiated the gauge invariance in quantum field theory [17–19].
London, however, stated that the re-scaling of the metric (Weyl) has to be
replaced by a phase change of the wave function in the realm of quantum
mechanics (ψ′ = eiQχψ under A′

µ = Aµ − ∂µχ). When this is compared with
the above transformation, we obtain

Q =
ξ

ξ + 3
2

q , ξ ̸= −3/2 . (38)

As a result of the conformal transformation of the Einstein tensor, an addi-
tional energy-momentum term arises, which owing to the Weyl theory should
represent the electromagnetic field. Nonetheless, the additional term repre-
sents a material field (vacuum) in our present formalism.

Equation (34) can be rewritten in a form analogous to the second Joseph-
son’s relation as

2qφ

ℏ
=
∂η

∂t
, η = ln(Ω)−2iξ−3i , (39)

where η acts like a phase in the Josephson junction [21]. The conformal factor
in curved space acts here like a phase in the quantum Josephson junction
that leads to the Josephson effect. The connection between curved space
and superconductivity was entertained by Horowitz et al. [22].

Interestingly, the conformal transformation of the spinor field preserves
the probability, i.e., |ψ̃|2 = |ψ|2. It is shown by Aharonov-Bohm (AB) that
if a quantum particle passes through two different paths encapsulating a
magnetic field, an interference pattern shows up where the difference in the
phase angle is given by δ = qφ t/ℏ [6]. This case corresponds to

δ =
ξ

ξ + 3
2

, ξ ̸= −3/2 . (40)
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Equation (37) exhibits this result if the electric potential is constant. Here
the origin of the electric potential is the conformal factor, as evident from
eq.(34). Hence, eq.(40) suggests that in a conformal frame, this phenomenon
exists. The sign of ξ indicates whether the path is clockwise or anticlockwise.
According to eq.(38), one may define the charge Qc = qξ/(ξ + 3

2
) as the

conformal charge.

4. Concluding remarks

We have found that the Klein-Gordon equation in the conformal’s frame
reduces to the quantum telegraph equation with mass given by M = (ξ +
1)m , where m is the mass of the scalar field. Moreover, the scalar field mass
is transformed under conformal transformation by m̃ = Ω−1m . However, if
ξ = −1, we obtain the wave equation with zero mass. The conformal wave
equation in 2 dimensions with ξ = 1 yields the quantum Telegraph equation
in Minkowski’s frame. The conformal mass of the spinor field is found to
scale as m̃ = Ω−2m. Additionally, the spinor field probability is preserved by
the conformal transformation. An effect similar to the AB effect is found to
occur due to a conformal transformation of the spinor field. The conformal
transformation induces conformal mass and charge defined by Mc = m/ξ
and Qc = qξ/(ξ+ 3

2
) , respectively. There exists a certain conformal transfor-

mation that transforms the Klein-Gordon equation into the Dirac equation.
The conformal transformation of massive Dirac’s equation induces an extra
mass that depends on the scale factor.
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