Top quark physics

Slabospitsky Sergey

NRC "Kurchatov Institute" - IHEP, Protvino, Russia

XXXV International Workchop on High Energy Physics "From Quarks to Galaxies: Elucidating Dark Sides"

> Protvino 30.11.2023

Why we like the *t*-quark ?

The top-quark is an extraordinary Standard Model (SM) object

- \bigcirc the most heavy SM object, $m_t pprox 172.5$ GeV and $|V_{tb}| \lesssim 1$
- \bigcirc \Rightarrow top decays before hadronization \Rightarrow there are no "top" hadrons
- O connection with other generations is very small: $|V_{td}| \simeq 0.008, |V_{ts}| \simeq 0.04$
- extraordinary accuracy of the theoretical predictions $(\sigma, \Gamma, \mathsf{Br}, \ldots, \sim \mathcal{O}(1\,\%))$
- all properties are described within the SM without additional phenomenological parameters
 provides the direct information about spin and polarization
- the largest Yukawa coupling: $y_t = \sqrt{2}m_t/v \approx 1$

t-quark is an excellent laboratory to search for New Physics

- new interactions and particles
- new anomalous interactions: tWb; tHq; $tg/\gamma/Zq$
- new heavy objects $R(t\bar{t}), Q \rightarrow tX, ...$

...

Top-quark interactions within the Standard Model

The Lagrangian

$$\mathcal{L}_{\rm SM} = -\frac{y_t}{\sqrt{2}} \bar{t} t H - g_s \bar{t} \gamma^{\mu} t^a t G^a_{\mu} - \frac{g}{\sqrt{2}} \sum_{q=d,s,b} \frac{V_{tq}}{2} \bar{t} \gamma^{\mu} (1 - \gamma_5) q W^+_{\mu}$$

$$-Q_t e \bar{t} \gamma^{\mu} t A_{\mu} - \frac{g}{2 \cos \vartheta_W} \bar{t} \gamma^{\mu} \left[\left(\frac{1}{2} - 2Q_t \sin^2 \vartheta_W \right) - \frac{1}{2} \gamma_5 \right] t Z_{\mu} + \text{h.c.}$$

$$v_t = \sqrt{2} rac{m_t}{v_{ew}} pprox 1, \;\; v_{ew} pprox 246 \; {
m GeV}$$

vew - electroweak scale - vacuum expectation value

Top-quark production processes in the SM

Top-quark decays within the SM

dominant decay channel $t \rightarrow b W^+$; $W^+ \rightarrow q \bar{q}', \ell \nu$ decay width (neglecting m_b^2/m_t^2)

$$\begin{split} \Gamma_{tot} &= \Gamma_t = \frac{G_F m_t^3}{8\sqrt{2}\pi} \left(1 - \frac{M_W^2}{m_t^2} \right)^2 \left(1 + 2\frac{M_W^2}{m_t^2} \right) \left[1 - \frac{2\alpha_s}{3\pi} \left(\frac{2\pi^2}{3} - \frac{5}{2} \right) \right] \\ G_F &= 1.16637 \times 10^{-5} \text{ GeV}^{-2}, \ m_t = 172.5 \text{ GeV}, \ \alpha_s(m_t) = 0.118 \\ \Rightarrow \ \Gamma_t \simeq 1.39 \text{ GeV} \gg \Lambda_{QCD} \simeq 200 \text{ MeV} \end{split}$$

t-quark decays before hadronization. There are no "top"-hadrons $(t\bar{t}), (t\bar{q}), (tqq')$

$$BR(t \rightarrow b \ell^+(e, \mu, \tau) \nu) \simeq 33\%$$
; $BR(t \rightarrow b q q') \simeq 67\%$

decay probabilities for $t\bar{t}$ pair

$$\begin{array}{rcl} t\bar{t} \rightarrow b\,\bar{b}q\,\bar{q}'\,q''\,\bar{q}''' \\ t\bar{t} \rightarrow b\,\bar{b}q\,\bar{q}'\,\ell^+\,\nu \ + \ b\,\bar{b}q\,\bar{q}'\,\ell^-\,\bar{\nu} &\simeq & 46.2\,\% \\ t\bar{t} \rightarrow b\,\bar{b}q\,\bar{q}'\,\ell^+\,\nu \ + \ b\,\bar{b}q\,\bar{q}'\,\ell^-\,\bar{\nu} &\simeq & 43.5\,\% \\ t\bar{t} \rightarrow b\,\bar{b}\ell^+\,\ell^-\,\nu\,\bar{n}u &\simeq & 10.3\,\% \end{array}$$

the final states have two *b*-jets; 0, 1, 2 "isolated" charged leptons; "missing" energy (neutrino) and several hadronic jets from light quarks

Top-quark reconstruction

• two ways for the reconstruction: $t \to bW^+(\to \ell^+\nu)$ and $t \to bW^+(\to q\bar{q}')$ reconstruction of the $W(m(jj) \sim M_W)$, then $m(J_b "W") = m(j_b jj)$

• "boosted" t-quark

Total cross sections production of $t \bar{t}$ at the LHC

Great progress has been made in describing the production of $t\bar{t}$ taking into account higher orders of perturbation theory (NNLO and NNLL). The main theoretical uncertainty comes from PDF

The cross sections for the production of the pair $t \bar{t}$ are measured in various final states:

 $ee, \mu\mu, e\mu, \ell\tau_h, e/\mu + jets, all jets$

Total cross sections production of t \overline{t} at the LHC

joint analysis of two experiments ("LHC Top Physics Working Group"):

\sqrt{s} , TeV	$\sigma(pb)$ (experiment)	$\sigma({\sf pb})$ (theory)
7	$69.5\pm6.1(\textit{stat})\pm5.6(\textit{syst})\pm1.6(\textit{lumi})$	70 \pm 10 (scale + PDF+ $lpha_s$)
7	$173 \pm 3(\textit{stat}) \pm 8(\textit{syst}) \pm 6(\textit{lumi})$	$177.3^{+4.7}_{-6.8}(scale) \pm 9 (PDF+ \alpha_s)$
8	$240.6\pm1.4(\textit{stat})\pm5.7(\textit{syst})\pm6.2(\textit{lumi})$	252.9 $^{+6.4}_{-8.6}(\textit{scale}) \pm 11.7 \;(PDF\!+\!lpha_{s})$
13.0	$836\pm27(\textit{stat})\pm81(\textit{syst})\pm100(\textit{lumi})$	$832.0^{+20}_{-28}(scale) \pm 35 (PDF+lpha_s)$

• there are two measurements of the top pair production in *pp*-collisions at $\sqrt{s} = 13.6$ TeV CMS: JHEP 08, p. 204 (2023), arXiv:2303.10680, $\mathcal{L}_{int} = 1.21$ fb⁻¹ ATLAS: arXiv:2308.09529, $\mathcal{L}_{int} = 29$ fb⁻¹

ATLAS	$\sigma(tar{t})=850\pm3(ext{stat})\pm18(ext{syst})\pm20(ext{umi})$ pb
CMS	$\sigma(tar{t})=881\pm23(ext{stat+syst})\pm20(ext{lumi}) ext{ pb}$
theory	$\sigma(tar{t})=$ 924 $^{+32}_{-40}($ scale + PDF + $lpha_s)$ pb

Four-top-quark production

Four top quark production in *pp*-collisions is among the rarest SM processes currently accessible at hadron colliders

The SM cross section is calculated at NLO in QCD and EW theory JHEP 02 (2018) 031, arXiv:1711.02116 [hep-ph] and arXiv:2212.03259 (2022)

 $\sigma^{theory} = 12.0 \pm 2.4 \, {
m fb}$ and $= 13.4^{+1.0}_{-1.8} \, {
m fb}$ $\sqrt{s} = 13 \, {
m TeV}$

there two measurements of the four-top-quark production in pp-collisions at $\sqrt{s} = 13$ TeV

ATLAS: Eur. Phys. J. C 83 (2023) 496, arXiv:2303.15061 $\mathcal{L}_{int} = 140 \text{ fb}^{-1}$, $\sigma(t\bar{t}t\bar{t}) = 22.5^{+4.6}_{-4.3}(\text{stat})^{+4.6}_{-3.4}\text{syst}) \text{ pb} = 22.5^{+6.6}_{-5.5} \text{ fb}$ top-quark Yukawa coupling $|\kappa_t| < 2.2(1.8)$ CMS: Phys.Lett.B 847 (2023) 138290, arXiv:2305.13439 [hep-ex] $\mathcal{L}_{int} = 138 \text{ fb}^{-1}$, $\sigma(t\bar{t}t\bar{t}) = 17.7^{+3.7}_{-3.5}(\text{stat})^{+2.3}_{-1.9}\text{syst}) \text{ pb} = 17.4^{+4.4}_{-4.0} \text{ fb}$ $\sigma(t\bar{t}W) = 990 \pm 98 \text{ fb}$, $\sigma^{theor} = 722 \pm 74 \text{ fb}$ $\sigma(t\bar{t}Z) = 945 \pm 81 \text{ fb}$, $\sigma^{theor} = 859 \pm 80 \text{ fb}$

top-quark Yukawa coupling $|\kappa_t| < 1.7$

$pp \rightarrow pt\bar{t}p$ and $PbPb \rightarrow t\bar{t}$

• CMS+TOTEM Collaborations, arXiv:2310.11231. Central exclusive production of $t\bar{t}$ pairs ...

fractional momentum loss of the intact protons $\zeta = (|\vec{p}_i| - |\vec{p}_0|)/|\vec{p}_i|$, \vec{p}_i and \vec{p}_0 are the momenta of the incoming and outgoing protons: $0.02 < \zeta < 0.20$

$$pp
ightarrow pt \overline{t}p$$
 : $\sigma(t\overline{t}) < 0.59$ pb at 95%, $\sqrt{s} = 13$ TeV
 $pp
ightarrow p\gamma p
ightarrow pt \overline{t}p$: $\sigma(t\overline{t})^{theor} = 0.22 \pm 0.05$ fb

• CMS Collaboration "Evidence for top quark production in nucleus-nucleus collisions", PRL 125 (2020) 22, 222001, arXiv:2006.11110

$$\begin{array}{l} Pb \ Pb \ \rightarrow t\bar{t}X, \quad \sqrt{s_{NN}} = 5.02 \ \text{TeV} \\ \sigma_{t\bar{t}} = 2.54^{+0.84}_{-0.74} \ (\ell\ell') = 2.03^{+0.71}_{-0.64} \ (+b) \ \mu\text{b} \end{array}$$

it is compatible with previous CMS result times $A(Pb)^2$

$$pp
ightarrow t ar{t} X, \; \sqrt{s} = 5.02 \; ext{TeV}, \quad \sigma_{tar{t}} = 69.5 \pm 8.43 \; ext{pb}$$

Top-quark mass

 m_t is the fundamental parameter of theory \diamond related to other EW parameters – stringent tests of SM \diamond vacuum stability depends on exact value of m_t \diamond important for m_W , Br($B_s \rightarrow \mu\mu$), ...

• $m_t \leftarrow M_{inv}(j_b "W"(jj))$

•
$$m_t \leftarrow M_{inv}(j_b M_T(\ell E_T^{miss}))$$

- $m_t \leftarrow M_{inv}(j_b \ell^{\pm}), M_{inv}(\ell^+ \ell^-)$
- $m_t \leftarrow M_{inv}(\ell^{\pm} J/\psi)$
- $m_t \Leftarrow \sigma(pp \rightarrow t\bar{t}) = f(m_t)$

30.11.2023

t-quark mass

CMS: $\sqrt{s} = 13$ TeV, five observables: m_W , $m_{\ell b}$, m_t , $m_{\ell b}/m_t$, $R_{\ell b}$, ATLAS+CMS (15 measurements), $\sqrt{s} = 7$, 8 TeV

 $\begin{array}{lll} m_{top}({\rm CMS}) &=& 171.37 \pm 0.37 \; {\rm GeV}, \; {\rm arXiv:} 2302.01967 \; (2023) \\ m_{top}({\rm ATLAS+CMS}) &=& 172.52 \pm 0.33 \; {\rm GeV}, \; {\rm ATLAS-CONF-} 2023-066 \\ {\rm CMS} \Rightarrow \Delta m_{\rm t} &=& m_{\rm t} - m_{\rm \bar{t}} = -0.15 \pm 0.19 ({\rm stat}) \pm 0.09 ({\rm syst}) \end{array}$

RPP: R.L. Workmanet al.(Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

> $m_t(\text{RPP}) = 172.69 \pm 0.30 \text{ GeV}$ direct measurements $m_t(\text{RPP}) = 172.5 \pm 0.7 \text{ GeV}$ from $\sigma_{t\bar{t}}$

t-quark mass

		√s=7,8 TeV
LHC combined stat uncertainty total uncertainty		stat
ATLAS		m. +total (+stat +syst)
dilepton 7 TeV		$173.79 \pm 1.42 \ (\pm 0.54 \pm 1.31)$
lepton+jets 7 TeV		172.33 ± 1.28 (±0.75±1.04)
all-jets 7 TeV		175.06 ± 1.82 (±1.35±1.21)
dilepton 8 TeV		172.99 ± 0.84 (±0.41±0.74)
lepton+jets 8 TeV		172.08 ± 0.91 (±0.39±0.82)
all-jets 8 TeV		173.72 ± 1.15 (±0.55±1.02)
combined		$172.71 \pm 0.48 (\pm 0.25 \pm 0.41)$
CMS		
dilepton 7 TeV		172.50 ± 1.58 (±0.43±1.52)
lepton+jets 7 TeV		173.49 ± 1.06 (±0.43±0.97)
all-jets 7 TeV		173.49 ± 1.41 (±0.69±1.23)
dilepton 8 TeV		172.22 ± 0.95 (±0.18±0.94)
lepton+jets 8 TeV	F-ini-i	172.35 ± 0.48 (±0.16±0.45)
all-jets 8 TeV	⊢ + + - 1	172.32 ± 0.62 (±0.25±0.57)
single top 8 TeV	▶ - (+ (172.95 ± 1.20 (±0.77±0.93)
J/ψ 8 TeV 🕂		173.50 ± 3.14 (±3.00±0.94)
secondary vertex 8 TeV	} + ● ↓↓	173.68 ± 1.12 (±0.20±1.11)
combined	⊢ 	172.52 ± 0.42 (±0.14±0.39)
LHC combination		
dilepton	F++++++++	172.30 ± 0.59 (±0.29±0.51)
lepton+jets	1 1	172.45 ± 0.36 (±0.17±0.32)
all-jets	₽ + 1 == + - 1	172.60 ± 0.45 (±0.26±0.36)
other		173.53 ± 0.77 (±0.43±0.64)
combined		172.52 ± 0.33 (±0.14±0.30)
165 170	175	180 18
	m, [GeV]	

Measurements of the total decay width Γ_t

• conventional methods (peak value in $M_{inv}(bW)$) do not provide acceptable accuracy

• ATLAS - $M_{inv}^{exp}(j_b \ell^{\pm})$ comparison with modeling events for different Γ_t $\Gamma_t = 0.1, 0.2, 0.3, \dots 5.0 \text{ GeV}, \Delta\Gamma = 0.1 \text{ GeV}$ ATLAS Collaboration, ATLAS-CONF-2019-038

• CMS - indirect measurement CMS Collaboration, *Phys.Lett. B 736 (2014), 33;* arXiv:1404.2292 [hep-ex]

$$\Gamma_t = \frac{\sigma_{t-channel}}{\mathcal{B}(t \to Wb)} \times \frac{\Gamma^{tn}(t \to bW)}{\sigma_{t-ch}^{th}}$$

collaboration	Γ_t^{exp} , GeV	Γ_t^{SM}
ATLAS	$\Gamma_t = 1.94^{+0.52}_{-0.49}$	1.39 GeV
CMS	$\Gamma_t = 1.36 \pm 0.02 (\textit{stat.})^{+0.14}_{-0.11} \; ({ m syst.})$	

Measurements of *t*-quark parameters

Measurements of events with $t\bar{t}$ -pair production with subsequent decays into different final states:

dileptons: ee, $e\mu$, $\mu\mu$, $\ell + jets$: e + jets, $\mu + jets$ and $\ell + \tau$ allow ones to measure decay probabilities through various channels (Br, %)

channel	Br, %	SM	W^{\pm} (LEP)
$t \rightarrow b j j$	66.5 ± 0.4 (stat) ±1.3 (syst)	67.51 ± 0.007	67.48 ± 0.28
t ightarrow be u	13.3 ± 0.4 (stat) ±0.5 (syst)	12.72 ± 0.01	67.48 ± 0.20
$t ightarrow b\mu u$	13.4 ± 0.3 (stat) ±0.5 (syst)	12.72 ± 0.01	12.60 ± 0.18
$t \to b\tau\nu$	7.0 ± 0.3 (stat) ±0.5 (syst)	7.05 ± 0.01	7.2 ± 0.12

• CMS

$$pp
ightarrow t\overline{t}X, \quad t(\overline{t})
ightarrow \ell^{\pm} j_b$$
 $R = rac{\mathcal{B}(t
ightarrow bW)}{\sum_{q=s,d,s,b} \mathcal{B}(t
ightarrow qW)} = 1.014 \pm 0.003(stat) \pm 0.032(syst)$

Measurements of t-quark parameters

- \bullet polarized *t*-quark transits the information about the spin to the decay products (angular distributions)
- "at the threshold" pair of $t\bar{t}$ quarks is produced mainly with identical helicities, and for large $\sqrt{S_{t\bar{t}}}$ with opposite ones
- $pp \to t\bar{t}X, t \to \ell^+X, \bar{t} \to \ell^-X$: $\Delta \phi_{I^+I^-}$ sensitive to the presence of quark polarization

Top-quark and Higgs boson

 \diamond all Higgs boson couplings are evaluated within SM $(g, v, m_t, m_{W/Z})$

$$f\bar{f}H \Leftrightarrow y_f = \sqrt{2}\frac{m_f}{v}; \quad y_t(m_t = 172.5 \text{ GeV}) = 0.99, \ y_b(m_b = 4.5 \text{ GeV}) = 0.02$$

 $\diamond t\bar{t}$ -pair and Higgs production provides the direct measurement of y_t

• Higgs decay channels

$$\begin{array}{c|c} \mbox{channel} & H \rightarrow b\bar{b} & H \rightarrow WW/ZZ & H \rightarrow gg & H \rightarrow \gamma\gamma \\ \hline \mbox{Br} & \sim 58 \ \% & \sim 24 \ \% & \sim 8 \ \% & \sim 0.2 \ \% \end{array}$$

the main contribution to the Higgs inclusive cross section production comes from gluon annihilation $gg \rightarrow H$ (loop contribution)

Higgs boson and t-quark

 y_t parameter can be measured both in pair and single production of t-quarks

$$pp \rightarrow t \, \bar{t} \, HX, \, pp \rightarrow t \, HX, \quad H \rightarrow b\bar{b}, \, WW^*, \, ZZ^*, \, \tau^+\tau^-, \gamma\gamma$$

 $\kappa_t = y_t^{\text{mes}}/y_t^{\text{SM}} \approx 1.01 \pm 0.1$

 \bullet there were obtained the limits on on the anomalous interaction of the Higgs boson with the t-quark

$$\mathcal{L} = -\frac{y_t}{\sqrt{2}} \bar{\psi}_t \left(c_\alpha \kappa_{Htt} + i s_\alpha \kappa_{Att} \gamma_5 \right) \psi_t X_0$$

Electroweak *t*-quark production - "single" top

• The cross section production up to 50% to QCD There are three processes of the single top production

 $\sigma_{t-\textit{chan}}(t+\bar{t})\simeq 218 \ \text{pb}, \ \sigma_{tW-\textit{chan}}(t+\bar{t})\simeq 70 \ \text{pb}, \ \sigma_{s-\textit{chan}}(t+\bar{t})\simeq 11 \ \text{pb}$

• production mechanisms depend on W-boson virtuality

- cross sections are calculated with NNLO accuracy, in this case, NNLO makes a small correction (mutual cancellation of QCD and EW)
- calculations can be done in 4F (without taking into account the contribution of the initial b-quarks) and 5F

Electroweak t-quark production

s-channel

ATLAS	$\sigma = 8.2 \pm 0.6(\textit{stat})^{+3.4}_{-2.8}(\textit{syst}) = 8.2^{+3.5}_{-2.9} \; pb,$	$\sigma^{theor} = 10.32^{0.40}_{-0.36}~{ m pb}$
theory(tW)	$\sigma=$ 71.7 \pm 1.8(scale) \pm 3.4(PDF) pb	
ATLAS(tW)	$\sigma=$ 94 \pm 109(stat) $^{+28}_{-22}$ (syst) \pm 2(lumi) pb	
CMS(tW)	$\sigma = 79.2 \pm 0.9 ({\it stat})^{+2.7}_{-8.0} ({\it syst}) \pm 1.2 ({\it lumi})$ p	b

Slabospitsky Sergey

|V_{tb}| measurements

• cross-section of the electroweak t-quark production $\sigma_{EW}(tX) \propto |V_{tb}|^2$

$\Rightarrow |V_{tb}|_{EW top} = 1.019 \pm 0.028$

Measuring t-quark polarization

- CMS: t-quark polarization in processes single top production: $bu \rightarrow d t (\rightarrow \ell^+ X)$
- ullet distributions over \cosartheta^*_μ between ℓ^\pm from decay t-quark and light quark
- correlations of the spin states in the production and decay of the t-quark

Top-quarks and W/Z-bosons associated production

vector bosons and t-quark associated production processes.

 $pp \rightarrow t\bar{t} + Z, t\bar{t} + W^{\pm}, t\bar{t} + \gamma, \text{ CDF} : \sigma(p\bar{p} \rightarrow t\bar{t}\gamma)_{\sqrt{S}=2} \text{ TeV} = 180 \pm 80 \text{ fb}$

are sensitive to physics beyond SM

$\sigma(t\bar{t}V)$	ATLAS (fb)	CMS (fb)
$\sigma_{t\bar{t}\gamma}$ (7 TeV)	$2000\pm500(\textit{stat})\pm700(\textit{syst})$	
$\sigma_{t\bar{t}\gamma}$ (8 TeV)		$2400\pm200(\textit{stat})\pm600(\textit{syst})$
$\sigma_{t\bar{t}Z/\gamma^*}$ (7 TeV)	< 700	$280^{+140}_{-110}(stat)^{+60}_{-30}(syst)$
$\sigma_{t\bar{t}Z/\gamma^*}$ (8 TeV)	$150^{+55}_{-50}(\textit{stat})\pm21(\textit{syst})$	$200\pm90(\mathit{total})$
$\sigma_{t\bar{t}W}(8{ m TeV})$	$300^{+120}_{-100}(stat)^{+70}_{-40}(syst)$	$170^{+110}_{-100}(total)$

Top-quarks and W/Z-bosons associated production

$\sqrt{S}=8~{ m TeV}$	$\sigma(SM),fb$	ATLAS (fb)	CMS (fb)
$t\bar{t}+\gamma$	1880 ± 500		
$t\bar{t}Z/\gamma^*$	215 ± 30	$176^{+52}_{-48}(\textit{stat})\pm24(\textit{syst})$	242^{+65}_{-55}
tŦW	232 ± 32	$369^{+86}_{-79}(\textit{stat})\pm44(\textit{syst})$	382^{+117}_{-102}

Search for the New physics beyond the Standard Model

- In the top quark sector, New physics may manifest itself in the following
- ◊ rare (within the SM) decays of t-quarks;
- ◊ deviations in *t*-quark production cross sections (within the SM framework);
- o production of t-quarks due to very rare reactions in the SM;
- \diamond decays of *t*-quarks through channels absent in the SM;

 \diamond new particles decaying into final states containing t and/or \bar{t} -quark and possibly other particles and resonances

- Numerous SM extensions \implies various predictions in the *t*-quark sector with their a specific set of interaction types and parameters (coupling constants, masses of new objects)
- \bullet different scenarios \Longrightarrow processes with identical final states
- Effective field theory formalism effective (phenomenological) Lagrangian $\mathcal{L_{EFT}}$ gauge-invariant with respect to to calibration group SM

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \kappa_4 \bar{\psi}_q \hat{O}^{(4)} \psi_t + \frac{\kappa_6}{\Lambda^2} \bar{\psi}_q \hat{O}^{(6)} \psi_t + \cdots$$

Experimental results are presented in the form restrictions
 κ/Λ - values of anomalous constants interaction
 in the form of limits on probability rare decays of the *t*-quark

Anomalous gt \overline{t} and tWb interactions

• *gtt*: deviations from the SM can manifest themselves in energy and angle distributions phenomenological Lagrangian (with anomalous chromomagnetic moment):

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} - rac{ ilde{\mu}_t}{2} ar{\psi}_t \sigma^{\mu
u} \psi_t G^a_{\mu
u} \quad ext{experiment} \quad \Rightarrow \ -0.50 < Re(ilde{\mu}_t) < 0.070(95\% CL)$$

• *tWb* effective interaction Lagrangian

$$\mathcal{L}_{EFT} = \frac{g}{\sqrt{2}}\overline{b}\gamma^{\mu}(f_{V}^{L}P_{L}+f_{V}^{R}P_{R})tW_{\mu}^{-} + \frac{g}{\sqrt{2}}\overline{b}\frac{\sigma^{\mu\nu}}{2M_{W}}(f_{T}^{L}P_{L}+f_{T}^{R}P_{R})tW_{\mu\nu}^{-} + h.c.$$

where $W_{\mu\nu}^{-} = \partial_{\mu}W_{\nu}^{-} - \partial_{\nu}W_{\mu}^{-}$, within SM one has: $f_{V}^{L} = V_{tb}$; $f_{V}^{R} = f_{T}^{L} = f_{T}^{R} = 0$ $|f_{V}^{R}| < 0.16$, $|f_{T}^{L}| < 0.057$, $|f_{T}^{R}| < 0.048$ at 95% CL

Flavor changing neutral currents – FCNC: tVq

FCNC interactions tVq, V = g, γ , Z, H strongly suppressed within SM

	SM	two-Higgs	SUSY	"exotic" quarks
BR(t ightarrow qg)	$5 imes 10^{-11}$	$\sim 10^{-5}$	$\sim 10^{-3}$	$\sim 5 imes 10^{-4}$
$BR(t ightarrow q \gamma)$	$5 imes 10^{-13}$	$\sim 10^{-7}$	$\sim 10^{-5}$	$\sim 10^{-5}$
BR(t ightarrow qZ)	$\sim 10^{-13}$	$\sim 10^{-6}$	$\sim 10^{-4}$	$5 imes \sim 10^{-2}$

	SM	SUSY	MSSM	2HDM
BR(t ightarrow Hc)	$3 imes 10^{-15}$	10^{-6}	10 ⁻⁵	10-3
BR(t ightarrow Hu)	$2 imes 10^{-17}$	10^{-6}	$8 imes 10^{-5}$	10 ⁻⁴

model independent analysis. The phenomenological Lagrangian

$$\begin{split} \mathcal{L}_{FCNC} &= -e \sum_{q=u,c} \frac{\kappa_q^{\gamma}}{\Lambda} \bar{t} \sigma^{\mu\nu} (f_q^{\gamma} + i h_q^{\gamma} \gamma_5) q A_{\mu\nu} - g_s \sum_{q=u,c} \frac{\kappa_q^g}{\Lambda} \bar{t} \sigma^{\mu\nu} t^a (f_q^g + i h_q^g \gamma_5) q G_{\mu\nu}^a \\ &- \frac{g}{2\cos\theta_W} \sum_{q=u,c} \kappa_q^Z \bar{t} \gamma^{\mu} (f_q^Z - h_q^Z \gamma_5) q Z_{\mu} - \frac{g}{2\cos\theta_W} \sum_{q=u,c} \frac{\tilde{\kappa}_q^Z}{\Lambda} \bar{t} \sigma^{\mu\nu} (\tilde{t}_q^Z + i \tilde{h}_q^Z \gamma_5) q Z_{\mu\nu} \end{split}$$

FCNC tgq, $t\gamma q$, tZq, tHq

• two scenarios for searching (FCNC/SM $\ll 1$) \diamond tt-pair production with the subsequent FCNC decay

$$pp
ightarrow t \, \overline{t} : t
ightarrow q \, g, \ t
ightarrow q \, \gamma, \ t
ightarrow q \, Z$$

 $\diamond t$ -quark production due to FCNC with subsequent SM decay

 $g u(c) \rightarrow t; uu \rightarrow tt; cg \rightarrow tg; qg \rightarrow t\gamma/Z, ...t \rightarrow bW$

 $\diamond tHq$: $t \rightarrow H u/c \rightarrow Higgs + FCNC$

30.11.2023

Summary for FCNC t ightarrow q H/g/ γ/Z

	<i>B</i> (95% CL)			<i>B</i> (95	% CL)
channel	ATLAS	CMS	mode	ATLAS	CMS
$t \rightarrow Hu$	$6.9 imes 10^{-4}$	$1.9 imes10^{-4}$	$t \rightarrow Hc$	$9.4 imes10^{-4}$	$7.3 imes 10^{-4}$
t ightarrow gu	$4.0 imes10^{-5}$	$2.0 imes10^{-5}$	t ightarrow gc	$20.0 imes10^{-5}$	$41 imes 10^{-5}$
$t \rightarrow \gamma u$		$0.95 imes10^{-5}$	$t \rightarrow \gamma c$		$1.51 imes10^{-5}$
$t \rightarrow Zu$	$6.2 imes 10^{-5}$	$22 imes10^{-5}$	$t \rightarrow Zc$	$12 imes10^{-5}$	$44 imes10^{-5}$

the best constraints on anomalous FCNC interactions in the *t*-quark sector

Lepton-flavor violation (CMS arXiv 22060159)

 $t
ightarrow e^{\pm} \mu^{\mp} q$ due to vector (V), scalar (S) tensor (T) interactions

	B (95% CL)			
channel	V	S	Т	
$t ightarrow e^{\pm} \mu^{\mp} u$	$1.3 imes10^{-7}$	$0.7 imes10^{-7}$	$2.5 imes10^{-7}$	
$t ightarrow e^{\pm} \mu^{\mp} c$	$13.1 imes 10^{-7}$	$8.9 imes10^{-7}$	$25.9 imes10^{-7}$	

Charged Higgs H^{\pm} and rare processes with t-quarks

• interaction Lagrangian of the charged Higgs H^{\pm} (MSSM)

$$\mathcal{L} = \frac{g}{\sqrt{2}M_W} H^+ \{ V_{ud}\overline{u}(m_u \cot\beta P_L + m_d \tan\beta P_R)d + \overline{\nu}(\tan\beta m_\ell P_R)\ell \}, \ P_{L/R} = 1/2 \left(1 \mp \gamma^5\right)$$

• two regions of the charged Higgs mass

 $m_{H^{\pm}} = 80 - 160 \text{ GeV} \, : \, t
ightarrow H^{\pm} \, b \quad m_{H^{\pm}} > 180 \text{ GeV} \, : \, pp
ightarrow \overline{t} \, H^{\pm} \, b$

charged Higgs is excluded in the regions:

 $\begin{array}{ll} \tan\beta < \mathcal{O}(1) & m_H < 180 \; \mathrm{GeV} \; \mathrm{and} \; m_H > 180 \; \mathrm{GeV} \\ \tan\beta \gtrsim 1 & m_H(90 \div 2000) \; \mathrm{GeV} \end{array}$

Slabospitsky Sergey

Search for heavy particles decaying into t-quarks • CMS: arXiv:2310.19893

new heavy charged vector boson $W' \rightarrow tb$, $\sqrt{s} = 13$ TeV, $\mathcal{L}_{int} = 138$ fb⁻¹ Multiple hypotheses are considered for the new particle mass, width, and chirality

$\Gamma(W')/M(W')$	right-handed	left-handed
1%	< 4.3 TeV	< 3.9 TeV
10%	< 2.7 TeV	< 2.5 TeV

• SUSY predicts a large number of new reactions with t quarks with presence of large "lost" energy carried away by the new neutral particle. For example, single t-quark production with a large "lost" energy ("mono-top") \Rightarrow search for "dark matter"

• "vector" T-quarks: $T \to tZ$ SUSY \Rightarrow ($\tilde{t} \to t \chi_1^0$, spin(\tilde{t}) = 0), constraint: $m_t \le m_{stop} < 195 \text{ GeV}$

Top-quark physics at future hadronic colliders

collider	\sqrt{s} , TeV	\mathcal{L} , cm $^{-2} \cdot c^{-1}$	$\int \mathcal{L}$, ab $^{-1}$	$<\mu>$
LHC	7-13	$pprox 10^{34}$	0.3	10-40
HL-LHC	14	10 ³⁵	3	140-200
HE-LHC	27	$2.5 imes10^{35}$	12	800
FCC-hh	100	$3 imes 10^{35}$	30	500-1000

Summary of the top-quark properties (RPP)

R.L. Workmanet al.(Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 and 2023

$$\begin{split} m_t &= 172.69 \pm 0.30 \; \text{GeV} & \text{direct measurements} \\ m_t &= 172.5 \pm 0.7 \; \text{GeV} & \text{from } \sigma_{t\bar{t}} \\ m_t &- m_{\bar{t}} &= 0.15 \pm 0.20 \; \text{GeV} \\ \Gamma_{tot} &= 1.42^{+0.19}_{-0.15} \; \text{GeV} \\ \Gamma(Wb)/\Gamma(Wq(q = b, s, d)) &= 0.957 \pm 0.034 \end{split}$$

t-quark decay modes (Br = Γ_i/Γ_{tot} and CL - confidence level) Br decay mode CL $e\nu_e b$ $(11.10 \pm 0.30)\%$ $(11.40 \pm 0.20)\%$ $\mu \nu_{\mu} b$ $(10.7 \pm 0.5)\%$ $\tau \nu_{\tau} b$ qąb $(66.5 \pm 1.4)\%$ $< 1.8 \times 10^{-4}$ $\gamma q(q = u, c)$ 95% Zq(q = u, c) $< 5 imes 10^{-4}$ 95% $< 1.9(7.3) imes 10^{-4}$ Hu(c)95% $\ell^+ q \bar{q}'(q=d,s,b; q'=u,c)$ $< 1.6 imes 10^{-3}$ 95% $< 8.9 imes 10^{-7}$ $e^{\pm}\mu^{\mp}c$ $e^{\pm}u^{\mp}u$ $< 7 \times 10^{-8}$

Thank you very much !