

Recent results on kaon physics from OKA experiment

V. Obraztsov, IHEP, Protvino On behalf of the «OKA» collaboration (IHEP-INR-JINR) " XXXV International workshop on High Energy Physics", Protvino, 28.11-01.12 2023

The talk layout

- OKA beam, detector, data Search for the ALP in the $K^+ \rightarrow \pi^+ \pi^0$ a decay
- $K^+ \rightarrow \mu^+ \nu \gamma$ decay study, measurement of $F_V F_A$
- $K^+ \rightarrow \mu^+ \nu \pi^0 \gamma$ decay study

OKA: The experiment with RF-separated K[±] beam @U-70

RF separation with Panofsky scheme is realised. It uses two Karlsruhe-CERN SC RF deflectors. Sophisticated cryogenic system, built at IHEP provides superfluid He for cavities cooling.

Z, m

OKA detector

- 1. Beam spectrometer: 1mm pitch BPC ~1500 channels; Sc and \check{C} counters
- 2. Decay volume with Veto system:

L=11m; Veto: 670 Lead-Scintillator sandwiches 20* (5mm Sc+1.5 mmPb), WLS readout

- **3**. PC's, ST's and DT's for magnetic spectrometer:
- ~5000 ch. PC (2 mm pitch) + 1300 DT (1 and 3 cm)
- 4. Pad(Matrix) Hodoscope ~300 ch. WLS+SiPM readout
- 5. Magnet: aperture 200*140 cm²
- 6. Gamma detectors: GAMS2000, BGD EM cal. ~ 4000 LG.
- 7. Muon identification: GDA-100 HCAL + 4 muon counters (μ C) behind
- 8. For some runs Cu target inside decay volume was used: Ø=8 cm, t=2mm and C3 big Cerenkov counter

The main triggers	$S_1 \cdot S_2 \cdot S_3 \cdot \overline{C_1} \cdot C_2 \cdot \overline{S_{bk}} \cdot (\Sigma_{GAMS} > 2.5 GeV) \cup (2 \leq MH \leq 4)$
Prescaled triggers	$\mathbf{S}_1 \cdot \mathbf{S}_2 \cdot \mathbf{S}_3 \cdot \mathbf{C}_1 \cdot \mathbf{C}_2 \cdot \mathbf{S}_{bk} / 10 \qquad \mathbf{S}_1 \cdot \mathbf{S}_2 \cdot \mathbf{S}_3 \cdot \mathbf{C}_1 \cdot \mathbf{C}_2 \cdot \mathbf{S}_{bk} \cdot \mu \mathbf{C} / 4$
-	Run's in 2010-2013, 2016, 2018 $N_{K} \sim 5 \ge 10^{10}$
	Main directions of the data analysis:

 $K^{\scriptscriptstyle +} \rightarrow e^{\scriptscriptstyle +} \nu \pi^{\scriptscriptstyle 0}, K^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} \nu_s, K^{\scriptscriptstyle +} Cu \rightarrow K^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0} Cu , K^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0} a, K^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} \nu \gamma , K^{\scriptscriptstyle +} \rightarrow e^{\scriptscriptstyle +} \nu \pi^{\scriptscriptstyle 0} \gamma, K^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} \nu \pi^{\scriptscriptstyle 0} \gamma, K^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \gamma, K^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0} \pi^{\scriptscriptstyle 0} \gamma)$

General view of the OKA setup

«OKA» setup

ST, DT chambers, Matrix Hodoscope, ECAL

Decay volume Veto System

RF deflector in the beamline

Liquid He lines

Tail of the beam line

Search for the ALP in $K^+ \rightarrow \pi^+\pi^0$ a decay

F,G,R from $K^+ \rightarrow \pi^+\pi^- l\nu$ (Kl4)

The QCD Axion is a hypothetical pseudoscalar particle, invented to solve the strong CP problem. It's properties are described by the decay constant f_a , related to Peccei-Quinn symmetry braking scale Λ_{PQ} : $f_a = \Lambda_{PQ}/4\pi$. The QCD axion mass $m_a = m_{\pi} f_{\pi}/f_a$. $a \rightarrow \gamma\gamma$; $\tau_a = 2^8 \pi^3 f_a^2/(\alpha m_a^3)$. If axion is dark matter $\rightarrow \tau_a \ge 13.8$ Gyr $\rightarrow m_a \le 10$ eV. For axion-like particles (ALP) m_{ALP} is not set by QCD only \rightarrow two free parameters: m_{ALP} , $f_{ALP} = m_{ALP} < 1$ GeV. Axion may have vector and/or axial couplings to quark currents, in particular to sd FCNC P-conservation $\rightarrow \text{ vector } K^+ \rightarrow \pi^+ a = \text{ axial } K^+ \rightarrow \pi^+\pi^0 a$ $\mathscr{L} = q_{\mu}a\{\overline{d}(\gamma_{\mu}/F_{sd}^V + \gamma_{\mu}\gamma_5/F_{sd}^A)s\}$

Start from 3.65 10° eventsCommon cuts for $K^+ \to \pi^+\pi^0$ and $K^+ \to \pi^+\pi^0$ I beam track , 1 secondary track $\theta > 4$ mrad , vertex matching CDA < 1.25 cm.</td>no extra track segments behind the SM magnetvertex inside the DV .17. 0 < $p_{beam} < 18.6$ GeVnumber of showers in GAMS or BGD not associated with track = 2 π^0 identification $|m_{\gamma\gamma} - m_{\pi0}| < 15$ MeV

After selections 44.5 $10^6 \text{ K}^+ \rightarrow \pi^+ \pi^0$

Search for the axion in $K^+ \rightarrow \pi^+\pi^0$ a decay

In order to disentangle $K^+ \rightarrow \pi^+\pi^0 a$ from $K^+ \rightarrow \pi^+\pi^0(\gamma)$, $K^+ \rightarrow \pi^+\pi^0\pi^0$, $K^+ \rightarrow e^+\nu\pi^0$, $K^+ \rightarrow \mu^+\nu\pi^0$

- $E_{mis} = E_{K+} E_{\pi^+} E_{\pi^0} > 2.8 \text{ GeV}$ Cut on missing energy
 - $P_{\pi^+}^* < 150 \text{ MeV}$, $P_{\pi^0}^* < 189 \text{ MeV}$ Cuts on the momenta of pions in the K⁺ rest frame againsts K⁺ $\rightarrow \pi^+\pi^0$
 - No signal in muon counters μC to suppress $K^+ \rightarrow \mu^+ \nu \pi^0$

E- the energy of the shower, assosiated with the track, againsts $K^+ \rightarrow e^+ v \pi^0$

- track is identified as π^+ in GAMS or in GDA-100
- E_{GS} < 100 MeV

 $E/p \le 0.83$

the cut on the energy in the guard system - against $K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0} \pi^{\scriptscriptstyle 0}$

Search for the axion in $K^+ \rightarrow \pi^+ \pi^0 a$ decay

Supernova bound: In the neutron stars(NS) n, p, e, Λ coexist. $\Lambda \rightarrow$ n a new cooling mechanism of NS. Maximum during few seconds after SN explosion, when protoneutron star reaches T~ 0.1 MeV SN1987A $F_{sd}^A, F_{sd}^V > 10^9 \text{ GeV}$ Model dependent !

Study of the $K^+ \rightarrow \mu^+ \nu \gamma$ decay

Main background sources

$$A_{IB} = \frac{\alpha}{2\pi} \Gamma_{K\mu 2} \frac{1}{(1-r)^2}; \quad A_{SD} = \frac{\alpha}{2\pi} \Gamma_{K\mu 2} \frac{1}{4r(1-r)^2} \left(\frac{m_K}{f_K}\right)^2; \quad A_{INT} = \frac{\alpha}{2\pi} \Gamma_{K\mu 2} \frac{1}{(1-r)^2} \frac{m_K}{f_K}; \quad r = \frac{m_\mu}{m_K}$$

$$\chi PTO(p^{4}): F_{V} = \frac{\sqrt{2}M_{K}}{8\pi^{2}F_{\pi}} = 0.096; F_{A} = \frac{4\sqrt{2}M_{K}}{F_{\pi}} (L_{9}^{r} + L_{10}^{r}) = 0.042; F_{V} - F_{A} = 0.054$$

$$\chi PTO(p^{6}): F_{V} = F_{V}(0)(1 + \lambda(1 - x)); F_{V}(0) = 0.082; \lambda = 0.4; F_{A} = 0.034$$

VALUE	(CL%	EVTS	DOCUMENT ID		TECN	CHG
-0.21 ± 0.06			22K	DUK	2011	ISTR	-
•••We do n	ot use the	e following data	for averages, fits, lir	nits, etc. • • •			
-0.24 to 0.04	4 9	90	2588	ADLER	2000B	B787	+
-2.2 to 0.6	ç	90		DEMIDOV	1990	XEBC	
-2.5 to 0.3	ć	90		AKIBA	1985	SPEC	
Reference	es:						
DUK	2011	PL B695 59	Extraction of K	aon Formfactors from	${\it K}^- o \mu u \gamma$ D	ecay at ISTRA	+ Setup
ADLER	2000B	PRL 85 2256	Measurement	of Structure-Depender	nt $K^+ o \mu^+ u$	$\gamma_\mu \gamma$ Decay	
DEMIDOV	1990	SJNP 52 100	6 Measurement	of the $K^+ ightarrow \mu^+ u \gamma$ Dec	ay Probabili	ty	
AKIBA	1985	PR D32 2911	A Study of the	Radiative Decay K ⁺ -	$ ightarrow \mu^+ u_\mu \gamma$		

y

$K^+ \rightarrow \mu^+ \nu \gamma$ selection and analysis

I beam K⁺ track

Q

- 1 secondary track identified as μ in GAMS, GDA-100 and MC
- Decay vertex inside DV
- 1 e.m. shower in GAMS with E > 1GeV not associated with charged track
- $E_{GS} < 10 \text{ MeV}$; $E_{EGS} < 100 \text{ MeV}$

Fit procedure

• x,y region is devided into strips $\Delta x=0.05$ (~12 MeV)

Plot y-disribution; select cuts $\{y_{\min}, y_{\max}\}$; plot ; select $\cos_{\min} \operatorname{cut}$; Plot M_K
Simultaneous fit of the 3 histograms, parameters- N ... N.

- Simultaneous fit of the 3 histograms, parameters- N_{sig} , N_{bkg} COS $\theta_{\mu\gamma}$ both signal(IB) and background shapes are taken from MC
- to correctly estimate errors, fit only M_{K}^{-} plot with initial parameters of the simultaneous fit

 $\chi PT O(p^4)$ fit : $F_v = 0.096$; $F_a = 0.042$; $F_v - F_a = 0.054$

Red line is the result of the fit with $p_{sig}(x)=p0(1+p1\cdot\phi_{INT}(x)/\phi_{IB}(x))$ p0 is the normalization $p0=0.9952 \pm 0.005$; $p1=Fv-Fa=0.135\pm0.017$ $\phi_{INT}(x)$ - x-distribution of reconstructed MC-signal weighted events $w_{INT}=(M_K/F_K) f_{INT}(x_{true},y_{true}); \phi_{IB}(x)$ - the same with $w_{IB}=f_{IB}(x_{true},y_{true})$

 $\begin{array}{l} \chi PT \ O(p^6) \ fit: \ Fv=Fv(0)(1+\lambda(1-x)); \ F_v(0)=0.082; \ \lambda=0.4 \ F_A=0.034 \\ \hline \ e \ Fit \ with \ fixed \ \chi PT \ O(p^6) \ parameters: \ \chi^2/NDF=29.0/9 \\ \hline \ e \ F_v(0) \ and \ F_A \ from \ \chi PT \ O(p^6), \ \lambda-free \ parameter \ \rightarrow \lambda=2.23\pm0.44; \ \chi^2/NDF=11.8/8 \\ \hline \ \ F_v(0) \ from \ \chi PT \ O(p^6), \ \lambda, \ F_A-free \ parameters \ \rightarrow (see \ the \ correlation \ plot \ on \ the \ right \ figure) \end{array}$

° and

Systematics

• Non-ideal description of signal and background by MC: $1.3 < \chi^2 / \text{NDF} < 1.7$	
Stat. errors in each bin of N_{DATA}/N_{IB} -plot scaled with $\sqrt{(\chi^2/NDF)}$. New value Fv-Fa=0.138±0.026 (nominal 0.134±0.021) –	$\rightarrow \sigma_{shape} = 0.012$
Width of -x- strips: Fv-Fa calculation repeated for 2 different values of width $\Delta x=0.035$, $\Delta x=0.07$ (nominal 0.05)	$\rightarrow \sigma_{\Delta x} = 0.008$
The fit range in x (number of -x- strips): remove one or two bins on the left(right) edge.	$\rightarrow \sigma_x = 0.005$
• -y- limit in the strips: instead of maximizing $S/\sqrt{(S+B)}$ use FWHM from the signal MC	$\rightarrow \sigma_v = 0.005$
• Effect of INT+: INT+ term is added to N_{DATA} / N_{IB} fit. The BNL E787 value $ Fv+Fa = 0.165 \pm 0.013$ is used (±0.178)	$\rightarrow \sigma_{INT^+} = 0.018$
	$\rightarrow \sigma_{_{SYS}} = 0.024$

"OKA"	$F_{V}-F_{A} = 0.135 \pm 0.017_{stat} \pm 0.024_{syst}$
$\chi PT O(p^4)$	$F_{V} = \frac{\sqrt{2} M_{K}}{8 \pi^{2} F_{\pi}} = 0.096 ; F_{A} = \frac{4 \sqrt{2} M_{K}}{F_{\pi}} (L_{9}^{r} + L_{10}^{r}) = 0.042$ F_{E} = 0.054
χPT O(p ⁶)	$\Gamma_V \Gamma_A = 0.034$ 2.8 6 difference out of 3σ ellipse
Lattice calcultations: $F_V - F_A = (0.083 \pm 0.000)$	013) -(0.019 ± 0.012) · x_{γ} Phys. Rev. D 103, 014502 (2021) (2 σ)

ExA (gauge non-local effective chiral action) S.Shim et al.,
 $F_V - F_A = 0.08$ Phys.Lett. B795 (2019)438-445
(1.9 σ)The measured value is in a reasonable agreement with ISTRA+ result:
And with a (model dependent) result of BNL E865 (K⁺ $\rightarrow \mu^+ \nu \ e^+ e^- + \mu^+ \nu \ e^+ e^-$)Phys.Lett. B795 (2019)438-445
(1.9 σ)F_V - F_A = 0.21 \pm 0.04_{stat} \pm 0.04_{syst} (1.17 σ)(1.17 σ)

Expect doubling of the statistics by the end of 2024

Study of the decay $K^+ \rightarrow \pi^0 \mu \nu \gamma (K \mu 3 \gamma)$

 Γ_{19}/Γ

1500

1000

500

50 100 150

This decay complements Ke3y much better studied by OKA and NA62. OKA publications: JETP Lett. v.116 No 9 (2022), EPJ C(2021) 81. $K^+\mu 3\gamma$ was first seen by ISTRA+ and KEK K470 in 2006 and later by BNL E787 in 2010.

For K⁰ was discovered by NA48 in 1998 and later improved by KTeV in 2005 There are calculations of Branching and T-odd asymmetry: $\xi = \vec{p}_v \cdot (\vec{p}_l \times \vec{p}_{\pi}) / m_K^3 = A_{\xi} =$

3000

2500

2000

1500

1000

100 150 200

_	$N_{\xi>0} - N_{\xi<0}$	
_	$N_{\xi>0} + N_{\xi<0}$	

$\Gamma(K^+$	$ ightarrow \pi^0 \mu^+$	$\nu_{\mu}\gamma$)	$/\Gamma_{total}$	
--------------	--------------------------	---------------------	-------------------	--

VALUE (10^{-5})		CL%	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
$\textbf{1.25} \pm \textbf{0.25}$	OUR AVERAGE							
$1.10 \pm 0.32 \pm 0.05$			23	¹ ADLER	2010	B787		$30 < E_\gamma < 60$ MeV
$1.46 \pm 0.22 \pm 0.32$			153	² TCHIKILEV	2007	ISTR	-	$30 < E_\gamma < 60~{ m MeV}$
• We do not use the following data for averages, fits, limits, etc. • •								
$2.4 \pm 0.5 \pm 0.6$			125	SHIMIZU	2006	K470	+	$E_\gamma >$ 30 MeV; $\Theta_{\mu\gamma} > 20^\circ$
<6.1		90	0	LIUNG	1973	HLBC	+	$E(\gamma$) $>$ 30 MeV

 1 Value obtained from B($K^{+}
ightarrow \pi^{0}\mu^{+}\nu_{x}\gamma$) = (2.51 ±0.74 ±0.12) ×10⁻⁵ obtained in the kinematic region E_{x} > 20 MeV, and then theoretical $K_{\mu3\gamma}$ spectrum has been used. Also B($K^{+}
ightarrow$ $\pi^0 \mu^+ \nu_\mu \gamma$) = (1.58 ±0.46 ±0.08) ×10⁻⁵, for E_γ > 30 MeV and $\theta_{\mu\gamma}$ > 20°, was determined.

² Obtained from measuring $B(K_{u33}) / B(K_{u3})$ and using PDG 2002 value $B(K_{u3}) = 3.27\%$. $B(K_{u33}) = (8.82 \pm 0.94 \pm 0.86) \times 10^{-5}$ is obtained for 5 MeV < E_{γ} < 30 MeV.

Kμ3γ theory	Branching $E_{y}^{*}>30 MeV \theta_{\mu y}>20^{\circ}$	Α _ξ QED FSI				
Bijnens et al. Nucl.Phys. B 396 (1993) χPT O(p ⁶)	1.9 x 10 ⁻⁵					
Braguta et al. PR D65(2002), D68(2003) χPT O(p ⁴)	2.15 x 10 ⁻⁵	1.14x10-4				
Khriplovich et al. Phys.Atom.Nucl. 74(2011)	1.81 x 10 ⁻⁵	2.38 x 10 ⁻⁴				
From Braguta et al. D68(2003) for NP:	♦ 4500 ♥ ↓ 4000		2500			
$= -(3.6 \cdot 10^{-3} \mathrm{Im}(g_{\rm s}) + 1.2 \cdot 10^{-2} \mathrm{Im}(g_{\rm p}) + 1.0 \cdot 10^{-2} \mathrm{Im}(g_{\rm v} + g_{\rm a})) \qquad $						

$$A_{\xi} = -(3.6 \cdot 10^{-3} \, Im(g_s) + 1.2 \cdot 10^{-2} \, Im(g_p) + 1.0 \cdot 10^{-2} \, Im(g_v + g_a) \;)$$

Event selection

- 1 beam K⁺ track
- 1 secondary track identified as μ in GAMS, GDA-100 and μ C
- Decay vertex inside DV C
- 3 e.m. shower in GAMS with E > 0.6GeV not ass. with track
- π^0 identification $|m_{\gamma\gamma} m_{\pi 0}| < 15$ MeV (best combination)
- Q $E_{miss} > 0.5 \text{ GeV}$
- Q. The position of radiative photon at GAMS surface is not near beam hole nor at the boudary
- $E_{GS} < 10 \text{ MeV}$; $E_{FGS} < 100 \text{ MeV}$ Q
- Number of additional track segments after spectrometer magnet is zero
- Miss-mass $(P_K P_{\pi^+} P_{\pi^0})^2 < 0.014 \text{ GeV}^2$ (against $K \rightarrow \pi^+ \pi^0 \pi^0$ bkg) •

$30 \, MeV < E_{v}^{*} < 60 \, MeV$ OKA Preliminary

Study of the decay $K^+ \rightarrow \pi^0 \mu \nu \gamma (K \mu 3 \gamma)$ Results

Branching : The decay $\mathbf{K} \rightarrow \boldsymbol{\mu}^+ \mathbf{v} \pi^0$ is used for the normalisation

```
Br(K\mu3\gamma)/Br(K\mu3) = (4.5 ± 0.25 (stat)) ·10<sup>-4</sup>, 30 MeV < E_{\gamma}^{*} < 60 MeV
```

Using PDG value $Br(K\mu 3) = 3.352\%$:

Br(Kμ3γ) = $(1.49 \pm 0.085 \text{ (stat)}) \cdot 10^{-5}$, $30 \text{ MeV} < E_{\gamma}^* < 60 \text{ MeV}$ in agreement with ISTRA+ measurement, but statistical error is 3 times smaller. For the comparison with theory :

Br(Kμ3γ) = (2.0 ± 0.1 (stat)) · 10⁻⁵, $E_{\gamma}^*>30 \text{ MeV}$, $\theta_{\mu\gamma}>20^\circ$ Bijnens et al. χPT O(p⁶) 1.9 x 10⁻⁵, Braguta et al. χPT O(p⁴) 2.15 x 10⁻⁵, Khriplovich et al. 1.8 x 10⁻⁵ For the T-odd asymmetry the result is: $A_{\xi} = -0.006 \pm 0.069$

Summary

✓ Search for the ALP in the decay $\mathbf{K}^+ \rightarrow \pi^+ \pi^0 \mathbf{a}$ is performed. No signal found, 90% C.L. upper limit $\mathbf{Br} < \mathbf{2.5} \cdot \mathbf{10}^{-6} \div \mathbf{2} \cdot \mathbf{10}^{-7}$ for the ALP mass from 0 to 200 MeV, except for the region of π^0 mass, where the upper limit is $4.4 \cdot 10^{-6}$. A lower limit for the F_{sd}^A - coupling constant of the axion to the axial sd FCNC is $F_{sd}^A > \mathbf{6.5} \cdot \mathbf{10}^7 \, \text{GeV}$ for the ALP mass below 70 MeV

✓ The radiative decay $K^+ \rightarrow \mu^+ v \gamma$ is studied on statistics of ~144K events for 25 MeV < E*_γ < 150 MeV. A destructive interference between IB and SD- is clearly seen. The difference of vector and axial vector constants Fv-Fa is measured:

 $F_V - F_A = 0.135 \pm 0.017_{stat} \pm 0.024_{syst}$

which is 2.8 σ from χ PT O(p⁴) and 1.5 σ from Lattice and E χ A.

The decay $\mathbf{K}^+ \rightarrow \mathbf{\mu}^+ \mathbf{v} \pi^0 \gamma$ is studied on statistics of ~1K events for $E_{\gamma} > 30$ MeV region. Branching fraction is measured:

 $Br(K\mu 3\gamma) = (1.98 \pm 0.1 \text{ (stat)}) \cdot 10^{-5}$

To be compared with χ PT O(p⁴) 2.15 · 10⁻⁵ ; χ PT O(p⁶) 1.9 · 10⁻⁵ An upper limit for the CP-odd asymmetry is obtained:

 $A_{\xi} = -0.006 \pm 0.069$ ($A_{\xi} < 0.9$ 90% C.L.)