${ }^{\circ}$ (1)rrla

Recent results on kaon physics from OKA experiment

V. Obraztsov, IHEP, Protvino

On behalf of the «OKA» collaboration (IHEP-INR-JINR)
" XXXV International workshop on High Energy Physics", Protvino, 28.11-01.12 2023

The talk layout

- OKA beam, detector, data Search for the ALP in the $\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{0}$ a decay
- $\mathrm{K}^{+} \rightarrow \mu^{+} v \gamma$ decay study, measurement of $\mathrm{F}_{\mathrm{V}}-\mathrm{F}_{\mathrm{A}}$
- $\mathrm{K}^{+} \rightarrow \mu^{+} v \pi^{0} \gamma$ decay study

RF separation with Panofsky scheme is realised. It uses two Karlsruhe-CERN SC RF deflectors. Sophisticated cryogenic system, built at IHEP provides superfluid He for cavities cooling.

OKA detector

1. Beam spectrometer: 1 mm pitch $\mathrm{BPC} \sim 1500$ channels; Sc and \check{C} counters
2. Decay volume with Veto system:
$\mathrm{L}=11 \mathrm{~m}$; Veto: 670 Lead-Scintillator sandwiches 20 * ($5 \mathrm{~mm} \mathrm{Sc}+1.5 \mathrm{mmPb}$), WLS readout
3. PC's, ST's and DT's for magnetic spectrometer:
$\sim 5000 \mathrm{ch}$. PC (2 mm pitch $)+1300$ DT (1 and 3 cm)
4. Pad(Matrix) Hodoscope $\sim 300 \mathrm{ch}$. WLS + SiPM readout
5. Magnet: aperture $200 * 140 \mathrm{~cm}^{2}$
6. Gamma detectors: GAMS2000, BGD EM cal. ~ 4000 LG.
7. Muon identification: GDA-100 HCAL +4 muon counters $(\mu \mathrm{C})$ behind
8. For some runs Cu target inside decay volume was used: $\varnothing=8 \mathrm{~cm}, \mathrm{t}=2 \mathrm{~mm}$ and C 3 big Cerenkov counter

The main triggers

Prescaled triggers

$$
S_{1} \cdot S_{2} \cdot S_{3} \cdot \overline{C_{1}} \cdot C_{2} \cdot \overline{S_{b k}} \cdot\left(\Sigma_{G A M S}>2.5 \mathrm{GeV}\right) \cup(2 \leqslant M H \leqslant 4)
$$

$$
\mathrm{S}_{1} \cdot \mathrm{~S}_{2} \cdot \mathrm{~S}_{3} \cdot \mathrm{C}_{1} \cdot \mathrm{C}_{2} \cdot \mathrm{~S}_{\mathrm{bk}} / 10 \quad \mathrm{~S}_{1} \cdot \mathrm{~S}_{2} \cdot \mathrm{~S}_{3} \cdot \mathrm{C}_{1} \cdot \mathrm{C}_{2} \cdot \mathrm{~S}_{\mathrm{bk}} \cdot \mu \mathrm{C} / 4
$$

Run's in 2010-2013, 2016, $2018 \mathrm{~N}_{\mathrm{K}} \sim 5 \times 10^{10}$

Main directions of the data analysis:

«OKA» setup

ST, DT chambers, Matrix Hodoscope, ECAL
Decay volume Veto System

RF deflector in the beamline

Tail of the beam line

Search for the ALP in $\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{0}$ a decay

The QCD Axion is a hypothetical pseudoscalar particle, invented to solve the strong CP problem. It's properties are described by the decay constant f_{a}, related to Peccei-Quinn symmetry braking scale $\boldsymbol{\Lambda}_{\mathrm{PQ}}: \mathrm{f}_{\mathrm{a}}=\boldsymbol{\Lambda}_{\mathrm{PQ}} / 4 \pi$. The QCD axion mass $\mathrm{m}_{\mathrm{a}}=\mathrm{m}_{\pi} \mathrm{f}_{\pi} / \mathrm{f}_{\mathrm{a}}$.

$$
\mathrm{a} \rightarrow \gamma \gamma ; \tau_{\mathrm{a}}=2^{8} \pi^{3} \mathrm{f}_{\mathrm{a}}^{2} /\left(\alpha \mathrm{m}_{\mathrm{a}}{ }^{3}\right) . \text { If axion is dark matter } \rightarrow \tau_{\mathrm{a}} \geq 13.8 \mathrm{Gyr} \rightarrow \mathrm{~m}_{\mathrm{a}} \leq 10 \mathrm{eV}
$$

For axion-like particles (ALP) $\mathrm{m}_{\text {ALP }}$ is not set by QCD only \rightarrow two free parameters:

$$
\mathrm{m}_{\mathrm{ALP}}, \mathrm{f}_{\mathrm{ALP}} \quad \mathrm{~m}_{\mathrm{ALP}}<1 \mathrm{GeV} .
$$

Axion may have vector and/or axial couplings to quark currents, in particular to sd FCNC
P-conservation \rightarrow vector $\mathrm{K}^{+} \rightarrow \pi^{+}$a axial $\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{0} \mathrm{a}$

$$
\mathscr{L}=q_{\mu} a\left\{\bar{d}\left(\gamma_{\mu} / F_{s d}^{V}+\gamma_{\mu} \gamma_{5} / F_{s d}^{A}\right) s\right\}
$$

$\mathrm{F}, \mathrm{G}, \mathrm{R}$ from $\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{-} \mathrm{lv}(\mathrm{K} 14)$

Start from 3.6510^{9} events Common cuts for $\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{0} \mathrm{a}$ and $\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{0}$

1 beam track, 1 secondary track $\theta>4 \mathrm{mrad}$, vertex matching $\mathrm{CDA}<1.25 \mathrm{~cm}$.
no extra track segments behind the SM magnet
vertex inside the DV.
$17.0<\mathrm{p}_{\text {beam }}<18.6 \mathrm{GeV}$
number of showers in GAMS or BGD not associated with track $=2$
π^{0} identification $\quad\left|\mathrm{m}_{\gamma \gamma}-\mathrm{m}_{\pi 0}\right|<15 \mathrm{MeV}$
After selections $44.510^{6} \mathrm{~K}^{+} \rightarrow \pi^{+} \pi^{0}$

In order to disentangle $\mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0}$ a from $\mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0}(\gamma), \mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}, \mathbf{K}^{+} \rightarrow \mathbf{e}^{+} \mathbf{v} \pi^{0}, \mathbf{K}^{+} \rightarrow \mu^{+} v \pi^{0}$

- $\quad \mathrm{E}_{\text {mis }}=\mathrm{E}_{\mathrm{K}+}-\mathrm{E}_{\pi+}-\mathrm{E}_{\pi 0}>2.8 \mathrm{GeV}$
- $P_{\pi^{+}}^{*}<150 \mathrm{MeV}, P_{\pi 0}^{*}<189 \mathrm{MeV}$
- No signal in muon counters $\mu \mathrm{C}$
- $\mathrm{E} / \mathrm{p} \leq 0.83$
- track is identified as π^{+}in GAMS or in GDA-100
- $\quad E_{G S}<100 \mathrm{MeV}$

Cut on missing energy

Cuts on the momenta of pions in the K^{+}rest frame againsts $\mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0}$
to suppress $\mathbf{K}^{+} \rightarrow \mu^{+} v \pi^{0}$
E- the energy of the shower, assosiated with the track, againsts $\mathbf{K}^{+} \rightarrow \mathrm{e}^{+} \boldsymbol{v} \boldsymbol{\pi}^{0}$

$\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{0}$
$\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{0} \gamma$
$\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$
$\mathrm{K}^{+} \rightarrow \mu^{+} v \pi^{0}$
$\mathrm{K}^{+} \rightarrow \mathrm{e}^{+} v \pi^{0}$

${ }^{\circ}$ ars

Search for the axion in $\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{0}$ a decay

LL for $F_{s d}^{A}(\mathrm{GeV})$

The obtained Lower Limit $F_{s d}^{A}>6.5 \cdot 10^{7} \mathrm{GeV}$ for axion mass below 70 MeV , is the best among the HEP experiments: Phys. Rev. D 102015023 (2020).
Process $\quad F_{i j}^{V}(\mathrm{GeV}) \quad F_{i j}^{A}(\mathrm{GeV})$

$K^{+} \rightarrow \pi^{+} \pi^{0} a$	\cdots	BNL E-787
$\Lambda \rightarrow n a($ decay $)$	1.7×10^{7}	
$\Sigma^{+} \rightarrow p a$	6.9×10^{6}	5.0×10^{6}
$\Xi^{-} \rightarrow \Sigma^{-} a$	6.0×10^{6}	2.3×10^{6}
$\Xi^{0} \rightarrow \Sigma^{0} a$	1.0×10^{7}	1.3×10^{7}
$K-\bar{K}\left(\Delta m_{K}\right)$	1.6×10^{7}	$\mathbf{2 . 0} \times \mathbf{1 0}^{7}$
$\left(\epsilon_{K}\right)$	$5.1 \times 10^{5 \dagger}$	2.0×10^{6}
	$0.9 \times 10^{6^{\dagger}}$	$\mathbf{4 . 4}$

Supernova bound: In the neutron stars(NS) n, p, e, Λ coexist. $\Lambda \rightarrow \mathrm{na}$ new cooling mechanism of NS. Maximum during few seconds after SN explosion, when protoneutron star reaches $\mathrm{T} \sim 0.1 \mathrm{MeV}$
SN1987A $F_{s d}^{A}, F_{s d}^{V}>10^{9} \mathrm{GeV}$ Model dependent!

$\left.{ }^{\circ} \mathrm{CDRC}=\right]$

Study of the $\mathrm{K}^{+} \rightarrow \mu^{+} v \gamma$ decay

$$
\begin{aligned}
\frac{d \Gamma}{d x d y}= & A_{I B} f_{I B}(x, y)+A_{S D}\left[\left(F_{V}+F_{A}\right)^{2} f_{S D^{+}}(x, y)+\left(F_{V}-F_{A}\right)^{2} f_{S D^{-}}(x, y)\right] \\
& -A_{I N T}\left[\left(F_{V}+F_{A}\right) f_{I N T^{+}}(x, y)+\left(F_{V}-F_{A}\right) f_{I N T^{-}}(x, y)\right]
\end{aligned}
$$

$f_{I B}(x, y)=\left[\frac{1-y+r}{x^{2}(x+y-1-r)}\right] \times\left[x^{2}+2(1-x)(1-r)-\frac{2 x r(1-r)}{x+y-1-r}\right]$
$f_{S D^{+}}(x, y)=[x+y-1-r][(1-x)(1-y)+r]$.
$f_{S D^{-}}(x, y)=[1-y+r][(x+y-1)(1-x)-r]$.
$f_{I N T^{+}}(x, y)=\left[\frac{1-y+r}{x(x+y-1-r)}\right] \times[(1-x)(1-x-y)+r] \quad x=\frac{2 E_{\gamma}^{c m}}{m_{K}} ; y=\frac{2 E_{\mu}^{c m}}{m_{K}}$
$f_{I N T^{-}}(x, y)=\left[\frac{1-y+r}{x(x+y-1-r)}\right] \times\left[x^{2}-(1-x)(1-x-y)-r\right]$

$$
x=\frac{2 E_{\gamma}^{c m}}{m_{K}} ; y=\frac{2 E_{\mu}^{c m}}{m_{K}} \quad A_{I B}=\frac{\alpha}{2 \pi} \Gamma_{K \mu 2} \frac{1}{(1-r)^{2}} ; \quad A_{S D}=\frac{\alpha}{2 \pi} \Gamma_{K \mu 2} \frac{1}{4 r(1-r)^{2}}\left(\frac{m_{K}}{f_{K}}\right)^{2} ; \quad A_{\mathrm{INT}}=\frac{\alpha}{2 \pi} \Gamma_{K \mu 2} \frac{1}{(1-r)^{2}} \frac{m_{K}}{f_{K}} ; r=\frac{m_{\mu}}{m_{K}}
$$

Main background sources

VALUE	CL\%	EVTS	DOCUMENT ID		TECN	CHG
-0.21 ± 0.06		22K	DUK	2011	ISTR	-
\cdots	We do not use the following data for averages, fits, limits, etc. \cdots					
-0.24 to 0.04	90	2588	ADLER	2000 B	B787	+
-2.2 to 0.6	90		DEMIDOV	1990	XEBC	
-2.5 to 0.3	90		AKIBA	1985	SPEC	

References:

DUK

ADLER	2000B	PRL 852256
DEMIDOV	1990	SJNP 521006
AKIBA	1985	PR D32 2911

Extraction of Kaon Formfactors from $K^{-} \rightarrow \mu \nu \gamma$ Decay at ISTRA+ Setup Measurement of Structure-Dependent $K^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma$ Decay

Measurement of the $K^{+} \rightarrow \mu^{+} \nu \gamma$ Decay Probability
A Study of the Radiative Decay $K^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma$
$\mathrm{K}^{+} \rightarrow \mu^{+} \nu \gamma$ selection and analysis

- 1 beam K^{+}track
- 1 secondary track identified as μ in GAMS, GDA-100 and MC
- Decay vertex inside DV
- 1 e.m. shower in GAMS with $\mathrm{E}>1 \mathrm{GeV}$ not associated with charged track
- $\mathrm{E}_{\mathrm{GS}}<10 \mathrm{MeV} ; \mathrm{E}_{\mathrm{EGS}}<100 \mathrm{MeV}$

-

Fit procedure

- x, y region is devided into strips $\Delta \mathrm{x}=0.05(\sim 12 \mathrm{MeV})$
- plot y-disribution; select cuts $\left\{\mathrm{y}_{\text {min, }} \mathrm{y}_{\max }\right\}$; plot \quad; select $\cos _{\min }$ cut; $\cos \theta^{*} ; \quad$ Plot M_{K}
- Simultaneous fit of the 3 histograms, parameters- $\mathrm{N}_{\text {sig }}, \mathrm{N}_{\mathrm{bkg}}$
both signal(IB) and background shapes are taken from MC
- to correctly estimate errors, fit only M_{K} - plot with initial parameters of the simultaneous fit

Geant3 MC: 22 M sig., 624 M bkg. only IB term in signal

From the fits, in total 144115 ± 380 signal events $25<\mathrm{E}_{\gamma}^{*}<150 \mathrm{MeV}$

Strip \#6 $(0.35<\mathrm{x}<0.4)$

$M_{K}^{2}=\left(p_{\mu}+p_{v}+p_{Y}\right)^{2}$ $\vec{p}_{v}=\vec{p}_{K}-\vec{p}_{\mu}-\vec{p}_{y} ; E_{v}=\left|\vec{p}_{v}\right|$

$\mathrm{N}_{\text {DATA }} / \mathrm{N}_{\mathrm{IB}}$ ratio as a function of x (blue points)

$$
\chi \text { PT O }\left(\mathrm{p}^{4}\right) \text { fit }: \mathrm{F}_{\mathrm{v}}=0.096 ; \mathrm{F}_{\mathrm{A}}=0.042 ; \mathrm{F}_{\mathrm{V}}-\mathrm{F}_{\mathrm{A}}=0.054
$$

Red line is the result of the fit with $\mathrm{p}_{\text {sig }}(\mathrm{x})=\mathrm{p} 0\left(1+\mathrm{p} 1 \cdot \phi_{\text {INT }-}(\mathrm{x}) / \phi_{\mathrm{IB}}(\mathrm{x})\right)$ p 0 is the normalization $\mathrm{p} 0=0.9952 \pm 0.005 ; \mathrm{p} 1=\mathrm{Fv}-\mathrm{Fa}=0.135 \pm 0.017$ $\phi_{\text {INT- }}(\mathrm{x})-\mathrm{x}$-distribution of reconstructed MC-signal weighted events $\mathrm{W}_{\text {INT- }}=\left(\mathrm{M}_{\mathrm{K}} / \mathrm{F}_{\mathrm{K}}\right) \mathrm{f}_{\mathrm{INT}-}\left(\mathrm{x}_{\text {true }}, \mathrm{y}_{\text {true }}\right) ; \phi_{\mathrm{IB}}(\mathrm{x})$ - the same with $\mathrm{W}_{\mathrm{IB}}^{-}=\mathrm{f}_{\mathrm{IB}}\left(\mathrm{x}_{\text {true }}, \mathrm{y}_{\text {true }}\right)$

$\chi \mathrm{PT} \mathrm{O}\left(\mathrm{p}^{6}\right)$ fit: $\mathrm{Fv}=\mathrm{Fv}(0)(1+\lambda(1-\mathrm{x})) ; \mathrm{F}_{\mathrm{v}}(0)=0.082 ; \lambda=0.4 \mathrm{~F}_{\mathrm{A}}=0.034$

* Fit with fixed $\chi \mathrm{PT} \mathrm{O}\left(\mathrm{p}^{6}\right)$ parameters: $\quad \chi^{2} / \mathrm{NDF}=29.0 / 9$
- $\mathrm{F}_{\mathrm{v}}(0)$ and F_{A} from $\chi \mathrm{PT} \mathrm{O}\left(\mathrm{p}^{6}\right), \lambda$-free parameter $\rightarrow \lambda=2.23 \pm 0.44 ; \quad \chi^{2} / \mathrm{NDF}=11.8 / 8$
${ }^{\bullet} \mathrm{F}_{\mathrm{V}}(0)$ from $\chi \mathrm{PT} \mathrm{O}\left(\mathrm{p}^{6}\right), \lambda, \mathrm{F}_{\mathrm{A}}$-free parameters \rightarrow (see the correlation plot on the right figure)

Systematics

a Non-ideal description of signal and background by MC: $1.3<\chi^{2} / \mathrm{NDF}<1.7$
Stat. errors in each bin of $\mathrm{N}_{\text {DATA }} / \mathrm{N}_{\text {IB }}$-plot scaled with $\sqrt{ }\left(\chi^{2} / \mathrm{NDF}\right)$. New value $\mathrm{Fv}-\mathrm{Fa}=0.138 \pm 0.026$ (nominal $\left.0.134 \pm 0.021\right) \rightarrow \sigma_{\text {shape }}=0.012$
a Width of -x- strips: Fv-Fa calculation repeated for 2 different values of width $\Delta x=0.035, \Delta x=0.07$ (nominal 0.05) $\rightarrow \sigma_{\Delta x}=0.008$

- The fit range in x (number of $-x-$ strips): remove one or two bins on the left(right) edge. $\rightarrow \sigma_{x}=0.005$
- -y- limit in the strips: instead of maximizing $\mathrm{S} / \sqrt{ }(\mathrm{S}+\mathrm{B})$ use FWHM from the signal MC
$\rightarrow \sigma_{y}=0.005$
${ }^{6}$ Effect of INT+ : INT+ term is added to $\mathrm{N}_{\text {DATA }} / \mathrm{N}_{\mathrm{IB}}$ fit. The BNL E787 value $|\mathrm{Fv}+\mathrm{Fa}|=0.165 \pm 0.013$ is used (± 0.178)
$\rightarrow \sigma_{\mathrm{INT}^{+}}=0.018$
$\rightarrow \sigma_{\mathrm{SYS}}=0.024$

$$
\begin{array}{lll}
\text { "OKA" } & \mathrm{F}_{\mathrm{V}}-\mathrm{F}_{\mathrm{A}}=0.135 \pm 0.017_{\text {stat }} \pm 0.024_{\text {syst }} \\
\chi \text { PT O }\left(\mathrm{p}^{4}\right) & F_{\mathrm{V}}=\frac{\sqrt{2} M_{\mathrm{K}}}{8 \pi^{2} F_{\pi}}=0.096 ; F_{A}=\frac{4 \sqrt{2} M_{K}}{F_{\pi}}\left(L_{9}^{r}+L_{10}^{r}\right)=0.042 \\
& \mathrm{~F}_{\mathrm{V}}-\mathrm{F}_{\mathrm{A}}=0.054 & 2.8 \sigma \text { difference } \\
\chi \text { PT O }\left(\mathrm{p}^{6}\right) & & \text { out of } 3 \sigma \text { ellipse }
\end{array}
$$

Lattice calcullations: $\mathrm{F}_{\mathrm{v}}-\mathrm{F}_{\mathrm{A}}=(0.083 \pm 0.013)-(0.019 \pm 0.012) \cdot \mathrm{x}_{\gamma} \quad$ Phys. Rev. D 103, 014502 (2021) (2 σ)

E χ A (gauge non-local effective chiral action) S. Shim et al.,

$$
\mathrm{F}_{\mathrm{V}}-\mathrm{F}_{\mathrm{A}}=0.08
$$

The measured value is in a reasonable agreement with ISTRA+ result:
And with a (model dependent) result of BNL E865 ($\mathrm{K}^{+} \rightarrow \mu^{+} v \mathrm{e}^{+} \mathrm{e}^{-+} \mu^{+} v \mathrm{e}^{+} \mathrm{e}^{-}$) $\mathrm{F}_{\mathrm{v}}-\mathrm{F}_{\mathrm{A}}=0.077 \pm 0.026$ (1.47σ)

Expect doubling of the statistics by the end of 2024

Study of the decay $\mathrm{K}^{+} \rightarrow \pi^{0} \mu \nu \gamma(\mathrm{~K} \mu 3 \gamma)$

This decay complements Ke3 γ much better studied by OKA and NA62. OKA publications: JETP Lett. v. 116 No 9 (2022), EPJ C(2021) 81. $\mathrm{K}^{+} \mu 3 \gamma$ was first seen by ISTRA+ and KEK K470 in 2006 and later by BNL E787 in 2010.
For K^{0} was discovered by NA48 in 1998 and later improved by KTeV in 2005
There are calculations of Branching and T-odd asymmetry: $\quad \xi=\vec{p}_{\gamma} \cdot\left(\vec{p}_{l} \times \vec{p}_{\pi}\right) / m_{K}^{3} \quad A_{\xi}=\frac{N_{\xi>0}-N_{\xi<0}}{N_{\xi>0}+N_{\xi<0}}$

$\Gamma\left(K^{+} \rightarrow \pi^{0} \mu^{+} \nu_{\mu} \gamma\right) / \Gamma_{\text {total }}$								$\mathrm{r}_{13} / \mathrm{T}$
Value (10^{-5})	CL\%	EVTS	DOCUMENTID		TECN	CHG	COMMENT	
$1.25 \pm 0.25 \quad$ OUR AVERAGE	OUR AVERAGE							
$1.10 \pm 0.32 \pm 0.05$		23	${ }^{1}$ ADIER	2010	B787		$30<E_{\gamma}<60 \mathrm{MeV}$	
$1.46 \pm 0.22 \pm 0.32$		153	${ }^{2}$ TCHIKILEV	2007	ISTR	-	$30<E_{\gamma}<60 \mathrm{MeV}$	
- We do not use the following data for averages, fits, limits, etc. - .								
$2.4 \pm 0.5 \pm 0.6$		125	SHIMIZU	2006	K470	+	$E_{\gamma}>30 \mathrm{MeV} ; \Theta_{\mu \gamma}>20^{\circ}$	
<6.1	90	0	UUNG	1973	HLBC	+	$E(\gamma)>30 \mathrm{MeV}$	

Value obtained from $\mathrm{B}\left(K^{+} \rightarrow \pi^{0} \mu^{+} \nu_{\mu} \gamma\right)=(2.51 \pm 0.74 \pm 0.12) \times 10^{-5}$ obtained in the kinematic region $E_{\gamma}>20 \mathrm{MeV}$, and then theoretical $K_{\mu 3 \gamma}$ spectrum has been used. Also $\mathrm{B}\left(K^{+} \rightarrow\right.$ $\left.\pi^{0} \mu^{+} \nu_{\mu} \gamma\right)=(1.58 \pm 0.46 \pm 0.08) \times 10^{-5}$, for $E_{\gamma}>30 \mathrm{MeV}$ and $\theta_{\mu \gamma}>20^{\circ}$, was determined.
${ }^{2}$ Obtained from measuring $\mathrm{B}\left(K_{\mu 33}\right) / \mathrm{B}\left(K_{\mu 3}\right)$ and using PDG 2002 value $\mathrm{B}\left(K_{\mu 3}\right)=3.27 \% . \mathrm{B}\left(K_{\mu 3 \gamma}\right)=(8.82 \pm 0.94 \pm 0.86) \times 10^{-5}$ is obtained for $5 \mathrm{MeV}<E_{\gamma}<30 \mathrm{MeV}$.

$\mathrm{K} \mu 3 \gamma$ theory	Branching $E_{\gamma}^{*}>30 \mathrm{MeV} \theta_{\mu \gamma}>20^{\circ}$	A_{ξ} QED FSI
Bijnens et al. Nucl.Phys. B 396(1993) χ PT O(p ${ }^{6}$)	1.9×10^{-5}	
Braguta et al. PR D65(2002), D68(2003) χ PT O(p ${ }^{4}$)	2.15×10^{-5}	1.14×10^{-4}
Khriplovich et al. Phys.Atom.Nucl. 74(2011)	1.81×10^{-5}	2.38×10^{-4}
From Braguta et al. D68(2003) for NP: $-\left(3.6 \cdot 10^{-3} \operatorname{Im}\left(\mathrm{~g}_{\mathrm{s}}\right)+1.2 \cdot 10^{-2} \operatorname{Im}\left(\mathrm{~g}_{\mathrm{p}}\right)+1.0 \cdot 10^{-2} \operatorname{Im}\left(\mathrm{~g}_{\mathrm{v}}\right.\right.$	ga))	

- 1 beam K^{+}track

Q 1 secondary track identified as μ in GAMS, GDA-100 and $\mu \mathrm{C}$

- Decay vertex inside DV
- 3 e.m. shower in GAMS with $\mathrm{E}>0.6 \mathrm{GeV}$ not ass. with track
- π^{0} identification $\left|\mathrm{m}_{r y}-\mathrm{m}_{\pi 0}\right|<15 \mathrm{MeV}$ (best combination)
- $\mathrm{E}_{\text {miss }}>0.5 \mathrm{GeV}$
- The position of radiative photon at GAMS surface is not near beam hole nor at the boudary
- $\mathrm{E}_{\mathrm{GS}}<10 \mathrm{MeV} ; \mathrm{E}_{\mathrm{EGS}}<100 \mathrm{MeV}$
- Number of additional track segments after spectrometer magnet is zero
- Miss-mass $\left(\mathrm{P}_{\mathrm{K}}-\mathrm{P}_{\pi+}-\mathrm{P}_{\pi 0}\right)^{2}<0.014 \mathrm{GeV}^{2}$ (against $\mathrm{K} \rightarrow \pi^{+} \pi^{0} \pi^{0}$ bkg)

Branching: The decay $\mathbf{K} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{v} \pi^{0}$ is used for the normalisation

$$
\operatorname{Br}(\mathrm{K} \mu 3 \gamma) / \operatorname{Br}(\mathrm{K} \mu 3)=(4.5 \pm 0.25(\mathrm{stat})) \cdot 10^{-4}, \quad 30 \mathrm{MeV}<E_{\gamma}^{*}<60 \mathrm{MeV}
$$

Using PDG value $\operatorname{Br}(\mathrm{K} \mu 3)=3.352 \%$:

$$
\operatorname{Br}(\mathrm{K} \mu 3 \gamma)=(1.49 \pm 0.085(\text { stat })) \cdot 10^{-5}, \quad 30 \mathrm{MeV}<E_{\gamma}^{*}<60 \mathrm{MeV}
$$ in agreement with ISTRA+ measurement, but statistical error is 3 times smaller.

For the comparison with theory :

$$
\operatorname{Br}(\mathrm{K} \mu 3 \gamma)=(2.0 \pm 0.1(\text { stat })) \cdot 10^{-5}, \quad E_{\gamma}^{*}>30 \mathrm{MeV}, \theta_{\mu \gamma}>20^{\circ}
$$

Bijnens et al. $\left.\chi \mathrm{PTO} \mathrm{O}^{6}\right) \mathbf{1 . 9 \times 1 0 ^ { - 5 }}$, Braguta et al. $\chi \mathrm{PTO}\left(\mathrm{p}^{4}\right) \quad \mathbf{2 . 1 5 \times 1 0 ^ { - 5 }}$, Khriplovich et al. $\mathbf{1 . 8} \times \mathbf{1 0}^{-5}$ For the T-odd asymmetry the result is: $\quad \mathbf{A}_{\xi}=-\mathbf{0 . 0 0 6} \pm \mathbf{0 . 0 6 9}$

Summary

\checkmark Search for the ALP in the decay $\mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0} \mathbf{a}$ is performed. No signal found, 90% C.L. upper limit
 the upper limit is $4.4 \cdot 10^{-6}$. A lower limit for the $F_{s d}^{A}$ - coupling constant of the axion to the axial sd FCNC is $\boldsymbol{F}_{s d}^{A}>\mathbf{6 . 5} \cdot \mathbf{1 0} \mathbf{0}^{7} \mathbf{G e V}$ for the ALP mass below 70 MeV
\boldsymbol{v} The radiative decay $\mathrm{K}^{+} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{v} \gamma$ is studied on statistics of $\sim 144 \mathrm{~K}$ events for $25 \mathrm{MeV}<\mathrm{E}^{*}{ }_{\gamma}<150 \mathrm{MeV}$. A destructive interference between IB and SD- is clearly seen. The difference of vector and axial vector constants $\mathrm{Fv}-\mathrm{Fa}$ is measured:

$$
\mathrm{F}_{\mathrm{v}}-\mathrm{F}_{\mathrm{A}}=0.135 \pm 0.017_{\text {stat }} \pm 0.024_{\text {syst }}
$$

which is 2.8σ from $\chi \mathrm{PT} \mathrm{O}\left(\mathrm{p}^{4}\right)$ and 1.5σ from Lattice and $\mathrm{E} \chi \mathrm{A}$.

The decay $\mathbf{K}^{+} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{v} \pi^{0} \gamma$ is studied on statistics of $\sim 1 \mathrm{~K}$ events for $\mathrm{E}_{\gamma}>30 \mathrm{MeV}$ region.
Branching fraction is measured:

$$
\operatorname{Br}(K \mu 3 \gamma)=(1.98 \pm 0.1(\text { stat })) \cdot 10^{-5}
$$

To be compared with $\chi \mathrm{PT} \mathrm{O}\left(\mathrm{p}^{4}\right) \quad 2.15 \cdot 10^{-5} ; \chi \mathrm{PT} \mathrm{O}\left(\mathrm{p}^{6}\right) \quad 1.9 \cdot 10^{-5}$ An upper limit for the CP-odd asymmetry is obtained:

$$
A_{\xi}=-0.006 \pm 0.069\left(A_{\xi}<0.990 \% \text { C.L. }\right)
$$

