Overview of recent ALICE results

Evgeny Kryshen for the ALICE collaboration Petersburg Nuclear Physics Institute XXXV Intrantional Workshop on High Energy Physics "From Quarks to Galaxies: Elucidating Dark Sides" 29 November 2023

A journey through QCD

ALICE review of Run 1-2 studies:

- QGP properties in heavy-ion collisions
 - Macroscopic properties
 - Interactions of partons with QGP medium
 - Hadronization
 - Electromagnetic effects
 - Initial state
- QGP-like effects in small systems
- Many other aspects of QCD and beyond

ALICE,arXiv:2211.04384

Relativistic heavy-ion collisions

ALICE

ALICE detector

Precise vertexing •

1

Global properties

 $\langle \mathsf{dN}_{\mathsf{ch}}/\mathsf{d}\eta \rangle$

- Initial energy density in central Pb-Pb collisions is 30 times larger than $\varepsilon_c!$
- Effective photon temperature $T_{eff} = 304 \pm 41$ MeV twice larger than $T_c \simeq 160$ MeV

ALICE

Light flavour spectra

6

Light flavour spectra

ALICE,arXiv:2211.04384

 $T_{\rm chem} \approx T_{\rm c} \approx 156 \, {\rm MeV}$

Charmonium melting and regeneration

- Interplay of melting and regeneration effects
- Large regeneration effects at the LHC due to much larger charm cross section compared to RHIC/SPS
- Larger regeneration effects at midrapidity and at low p_{T}

Excited quarkonium states

- Different states have different binding energies. Loosely bound states melt first!
- Sequential suppression of individual states provides a "thermometer" of the QGP
- Charmonium: sequential suppression + regeneration effects
- Bottomonium: sequential suppression

ALICE

Probing hadronic phase with resonances

- Suppression of short-lived resonances increasing from peripheral to central collisions
- Possible interpretation: rescattering of resonance decay products in the hadronic phase
 - Hadronic phase duration 1 10 fm/c
 - Times estimated from different resonances differ by order of magnitude. Different freeze-out times for different species?

Temperature scales

Many observables imply temperatures far greater than T_c

- Sequential melting of quarkonium states
- Effective thermal photon $T \sim 2T_c$
- Chemical freeze-out ~ T_c

Anisotropic flow

- Spatial anisotropy and density fluctuations of the initial state induce momentum anisotropy via QGP response
- Characterised by anisotropic flow coefficients v_n

QGP properties from anisotropic flow

- Global radial and anisotropic expansion of QGP described by hydrodynamical equation of state with small viscosity close to Ads/CFT limit
- QGP is strongly coupled at this temperature scale

ALICE

Hard probes

- Jet and high p_{T} hadron suppression observed over extensive range
- Explained by energy loss of hard partons interacting with QGP medium
 - Dominated by radiative emission. Extracted energy loss: 8 ± 2 GeV
- New ML-based techniques allow for the extension to lower p_{T} and larger R = 0.6•

https://www.int.washington.edu/node/776

Heavy flavours

- D-meson spectra measured down to 0 $p_{\rm T}$
- Challenge for charm-quark transport models to describe both the R_{AA} and anisotropic flow (v_2):
 - providing constraints on heavy-quark spatial diffusion coefficient: $1.5 < 2\pi D_s T_c < 4.5$
- D mesons from bottom decays are less suppressed than those formed from charm
 - Indication of mass dependent radiative losses in agreement with expectations from QCD

Initial state with ultra-peripheral collisions

- Pb Pb Z^2 γ J/ψ J/ψ nPb Pb
- Coherent J/ ψ photoproduction: probing low-x gluon PDFs in the nucleus
- Neutron emission due to EMD helps to decouple low-*x* and high-*x* contributions

Initial state with ultra-peripheral collisions

Probing transverse profile of Pb nuclei

Pb

Pb

- need shadowing/saturation effects to describe the data
- Incoherent J/ ψ : *t*-dependence sensitive to the variance of the gluon field
 - data better described by models with sub-nucleon degrees of freedom

QGP-like effects in small collision systems

Enhancement of particle yields

- Yields of strange and charm particles relative to pions increase with multiplicity
- Same trend for light nuclei relative to protons
- Reaching highest multiplicity ratios comparable with Pb-Pb
- Non-QGP effects playing a role?

Flow in small systems

- Light and charmed hadrons exhibit anisotropic flow in small systems
- Light sector described by hydrodynamics with QGP equation of state

QCD aspects beyond QGP

Hypertriton lifetime

- Unprecedented precision with Pb-Pb Run 2 data
- No deviation from the free Λ lifetime
- Binding energy = 130 ± 30 keV, one of the smallest binding energies observed

 \rightarrow loosely bound d- Λ molecule

 Produced in Pb-Pb collisions, despite having size comparable to medium (~10 fm)

Probing proton-hyperon interactions

- Large production of hyperons provides unique opportunity to study rare hadronic interactions via femtoscopy measurements
- Strength of proton-hyperon interaction important for equation of state at high density → neutron stars

Dead cone effect

- Part of modern parton shower models
- First direct observation with ALICE!

SHERPA LQ / inclusive

no dead-cone limit

SHERPA

ALICE in Run 3 and beyond

ALICE in Run 3

- All-pixel Inner Tracking System
- GEM-based TPC readout
- Pixel Muon Forward Tracker
- Fast Interaction trigger
- New Online-Offline system
- Readout upgrade of all detectors

Overlapping events in TPC @ 50 kHz PbPb Tracks of different collisions shown in different colour

Main goals:

.........

- Collect 13/nb in Run 3 and 4 (x100 larger minimum bias statistics)
- Improve tracking precision by a factor 3-6

ALICE performance in Run 3: pp data taking

10

Data

1.75

— Background — Total fit function

1.8

 $D^0 \rightarrow K^- \pi^+$ and charge conj

1.85

1.95

1.9

2

 $M(K\pi)$ (GeV/ c^2)

10

ALI-PERF-547176

-2

2

3

 $N_{\sigma}^{TPC}(^{4}\overline{He})$ 26

 Permanent storage of 10⁻⁴ selected time frames: using high-level software-based triggers

ALICE performance in Run 3: Pb-Pb

- Interaction rates up to 50 kHz. The goal reached!
- Raw data rate up to 770 GB/s
- Excellent performance and stability of all ALICE subsystems at these extreme conditions!
- **12 billion Pb-Pb collisions collected** (x40 larger minimum bias sample compared to Run 1-2)

Future upgrades

Summary

- A wealth of physics results from Run 1 and Run 2
- Providing quantitative estimates on QGP properties
- Summarized in the ALICE review paper (arXiv:2211.04384)
- Successful upgrade: excellent performance with continuous readout
- New Pb-Pb data: x40 larger minimum bias sample compared to Run 2!

BACKUP

Jet substructure studies

- ΔR_{axis} angle between standard E-scheme jet axis and WTA axis (Winner-Takes-All, often consistent with leading particle)
- Narrowing of ΔR_{axis} distribution in Pb-Pb compared to pp
 - Quark-initiated jets more likely than gluon-initiated jets
 - Intra-jet p_{T} broadening disfavoured

