Estimation of the LO hadronic contribution to $g_{\mu} - 2$ using the IHEP total cross section database

V.V. Bryzgalov, O.V. Zenin

NRC KI - IHEP, Protvino

November 29, 2023

XXXV International Workshop on High Energy Physics "From Quarks to Galaxies: Elucidating Dark Sides"

1 / 44

Introduction

$$ec{\mu}_{\mu}=-g_{\mu}rac{e}{2m_{\mu}}ec{S}$$

• $a_{\mu}=(g_{\mu}-2)/2$ measured by FNAL Muon g-2 experiment to 0.215 ppm

- $\sim 5\sigma$ theory/experiment tension (with the e^+e^- based HVP estimate)
- ullet \sim 1 ppm precision SM test, sensitive to TeV scale New physics
 - Theory uncertainty mostly due to QCD

Experiment vs theory

- BNL E821 (2004): 3.7σ experiment/SM tension
- BNL E821 + FNAL g-2 Run-1 (2021, 5% of the full statistics): 4.2σ
- World average including FNAL g-2 Run-1-2-3 (Muon g-2 Collaboration, arXiv:2308.06230): 5.1σ tension!
- SM prediction uncertainty mostly comes from hadron LO VP term:
 - ► e⁺e⁻ HVP value too low (the "White Paper": Muon g-2 Theory Initiative, Phys. Rept. 887 (2020) 1)
 - Lattice HVP calculation gets SM a_µ closer to the experiment (BMW Collaboration, Nature 593 (2021) 51)
 - Tension between e⁺e⁻ and lattice HVP
 - \blacktriangleright New CMD-3 $\pi^+\pi^-$ data \sim 5% higher than the world average

(CMD-3 Collaboration, arXiv:2309.12910).

 \Rightarrow Taken alone, CMD-3 puts SM a_{μ} estimate within $\sim 2\sigma$ from the experiment

3 / 44

▶ More e^+e^- data to come: CMD-3 in other channels, SND, Babar, KLOE $(\pi^+\pi^-)$, BESIII $(\pi^+\pi^-, \pi^\pm\pi^-\pi^0)$, Belle II ... \Rightarrow

V.V. Bryzgalov, O.V. Zenin (NRC KI – Il-Estimation of the LO hadronic contributio November 29, 2023

 a_{μ} (had, LO) via $\sigma(e^+e^- \rightarrow hadrons)$

The dispersion relation (A. Petermann, Phys. Rev. 105 (1957) 1931):

$$\begin{aligned} a_{\mu}(\text{had}, \text{LO}) &= 4\alpha_0^2 \int_{m_{\pi}^2}^{\infty} \frac{ds}{s} \mathcal{K}(s) \frac{1}{\pi} \text{Im} \, \Pi^{\text{had}}(s) = \frac{\alpha_0^2}{3\pi^2} \int_{m_{\pi}^2}^{\infty} \frac{ds}{s} \mathcal{K}(s) R^{\text{had}}(s) \\ R^{\text{had}}(s) &= \sigma_{\text{tot}}(e^+e^- \to hadrons, \text{Born}) \, \left/ \frac{4\pi\alpha_0^2}{3s} \right. \\ \mathcal{K}(s) &= \int_0^1 dx \frac{x^2(1-x)}{x^2+(1-x)(s/m_{\mu}^2)} \, . \end{aligned}$$

V.V. Bryzgalov, O.V. Zenin (NRC KI – Il-Estimation of the LO hadronic contribution

Born

Improved Born Approximation

Experiment

- We need Born cross section for the dispersion integral
- All experiments publish cross sections corrected for ISR + e^+e^- vertex loops
 - An extreme case is the radiative return measurements (BaBar, Belle, KLOE)
- Some experiments correct for photon VP, others leave the VP correction to readers
 - A caveat: pre-1985 experiments applied only electron VP correction, both in the s-channel hadron production and the t-channel Bhabha scattering, the latter being used for luminosity determination. We roll this partial VP correction back in order to consistently apply the full VP correction.
- FSR correction.
 - Additional hard γ's are rejected in the event selection to suppress backgrounds from other final states. Experimentalists then 'undress' the cross section, i.e. correct it for soft FSR using certain FSR model.
 - ▶ Need to add FSR contribution back: $\sigma(hadrons(+\gamma's)) = \sigma(hadrons) [1 + \eta(s)\frac{\alpha}{\pi}]$, where $\eta(s)$ is computed in scalar QED for charged pions and kaons. The FSR correction factor is approximated by $C_{FSR} = (1 + 0.004 \pm 0.004)^{N_{charged}}$, where the uncertainty is introduced to estimate the associated_systematics.

$a_\mu({ m had},{ m LO})$ via $\sigma(e^+e^ightarrow{ m hadrons})$ (continued)

- Thus, we need first to uniformly rescale all published measurements to Born cross section:
 - ▶ Need to know photon $\Pi(s)$ including hadronic VP which is yet unknown as we determine it using a dispersion relation with $\sigma_{tot}(e^+e^- \rightarrow hadrons, Born)$ as the input
 - Do it iteratively: use simple analytical parameterisation of the hadronic VP as the first approximation, rescale published cross sections to Born, substitute them into the dispersion relation to get the hadronic VP, etc, etc
- $\sigma_{tot}(e^+e^- \rightarrow hadrons)$ is measured mostly inclusively at $\sqrt{s} > 2$ GeV and for (semi)exclusive final states at $\sqrt{s} < 2$ GeV
- Most final states are measured by multiple experiments
- Parameterise Born cross section in each final state in a model-independent way
- Fit the parameterisation taking into account correlated uncertainties within each experiment and between experiments
- Substitute the parameterised cross section into dispersion relations to find final state's contribution to the photon VP and a_µ(had,LO)

• Find total hadronic VP and a_{μ} (had, LO) by summing up contributions from individual final states at $0.3 < \sqrt{s} < 11.2 \text{ GeV}$; use ChPT parameterisation of $R^{had}(s)$ at $m_{\pi} < \sqrt{s} < 0.3 \text{ GeV} (\pi^0 \gamma, \pi \pi(\gamma))$; add contributions from narrow resonances J/Ψ , $\Psi(2S)$, $\Upsilon(1-4S)$; insert analytical parameterisation of $R^{had}(s)$ at $\sqrt{s} > 11.2 \text{ GeV}$ into dispersion relations.

So far, one more e^+e^- based HVP estimate:

- Prerequisites and the workflow:
 - ► The input: ► IHEP database of total cross sections
 - Rescale published cross sections to R^{had} (apply/unfold radiative corrections)
 - ★ The list of inputs is given in the ▶ backup.
 - Parameterise and fit R^{had} in each final state
 - ▶ Integrate fitted R^{had} with the K(s) kernel to obtain HVP contribution to a_{μ} from each final state at $0.3 < \sqrt{s} < 11.2$ GeV, outside this range use analytical parameterisations of R^{had}
- Prerequisites in place since 2003 [V.V. Ezhela et al, hep-ph/0312114]
- The code was used for the PDG minireview "σ and R in e⁺e⁻ collisions" [R.L. Workman et al. (Particle Data Group), Review of Particle Physics, PTEP 2022, 083C01 (2022), also in earlier RPP editions since 2002]
- \Rightarrow All in place, why not making our HVP estimate?
 - ► No common \frown with the Muon g-2 Theory Initiative contributors \Rightarrow one more independent cross-check.

November 29, 2023 7 / 44

Model-independent parameterisation of R^{had}

- Each final state is typically measured by many independent experiments, need to average them.
- Averaging requires to parameterise R^{had} by some continuous function:
 - No prior assumptions about contributions of various amplitudes to the production of the final state.
- A simple choice: parameterise R^{had} by continuous piecewise linear curve. The optimal number and position of the nodes are determined only by the set of experimental measurements $\{s_i, R^{had}_i\}$, no signal model is assumed.

 $\{s_i, R_i^{\text{had}}\}$ points are clustered as follows:

Define the clusterization radius determined by the size of s interval where R^{had} is compatible with a constant within experimental uncertainties. For each s define sliding intervals of "compatibility with a constant": $[s, s + r^+(s)]$, $[s - r^-(s), s]$. For each pair of measurements $\{i, j\}$ $(s_i > s_i)$ define the proximity metric:

$$w_{ij} = \min\left\{\frac{1}{\sigma_i^2}, \frac{1}{\sigma_j^2}
ight\}\left[\frac{s_j - s_i}{\sqrt{a^2r^+(s_i)r^-(s_j)}}
ight]^b,$$

where $\sigma_{i,j}$ are the statistical uncertainties of the measurements and $a, b \sim 1$ are fixed parameters (their variation gives us an estimate of the algorithm's systematics).

 $\{i, j\}$ pair with the minimum $w_{ij} = w_{\min}$ is merged into a single point as follows:

Model-independent parameterisation of R^{had}

(continued)

① Set w_{\min} to a value exceeding any possible w_{ij} .

- 2 For all $\{i, j\}$ pairs:
 - **1** Find w_{ij} for the $\{i, j\}$ pair.
 - 2) If for the $\{i, j\}$ pair $w_{ij} \ge 1/\sigma_i^2$ and $w_{ij} \ge 1/\sigma_j^2$ then move on to the next pair of points.
 - 3 If for the $\{i, j\}$ pair $w_{ij} < w_{\min}$ then $w_{\min} := w_{ij}, \{i, j\}_{\min} := \{i, j\}$

3 If $\{i, j\}_{\min}$ is not found then stop the clusterization.

Otherwise merge the pair of points $\{i,j\}_{\min}$ into a single point with $s=w_is_i+w_js_j$ and

$$\sigma^2 = \sigma_i^2 + \sigma_j^2$$
, where weights $w_{i,j} = \frac{1}{\sigma_{i,j}^2} \left/ \left(\frac{1}{\sigma_i^2} + \frac{1}{\sigma_j^2} \right) \right|$

Seturn to step 2.

C

In result, we get a set of $\{s_k\}$ for the nodes of the piecewise linear curve which will approximate the R^{had} . The corresponding $\{R_k\}$ values are then found by a standard χ^2 fit on the set of experimental measurements $\{s_i, R_i\}$ taking into account their binning and statistical and (correlated) systematic uncertainties.

Fitting the R^{had} data A standard χ^2 minimization:

$$\chi^{2} = \sum_{i,j} \left[\frac{1}{\Delta \sqrt{s_{i}}} \int_{\Delta \sqrt{s_{i}}} R_{fit}^{had}(s) d\sqrt{s} - R_{i}^{had} \right] \times \text{COV}_{ij}^{-1} \times \left[\frac{1}{\Delta \sqrt{s_{j}}} \int_{\Delta \sqrt{s_{j}}} R_{fit}^{had}(s) d\sqrt{s} - R_{j}^{had} \right]$$

where $R_{fit}^{had}(s)$ is the fitted parameterisation, R_i^{had} are the measurements in $\Delta \sqrt{s_i}$ bins, and COV_{ij} is the full covariance matrix between measurements:

$$\begin{split} \operatorname{COV}_{ij} &= \delta_{ij} \sigma_{\operatorname{stat},i}^2 \quad + \quad \frac{1}{\Delta \sqrt{s_i}} \int_{\Delta \sqrt{s_i}} R_{fit}^{\operatorname{had}}(s) d\sqrt{s} \times \frac{1}{\Delta \sqrt{s_j}} \int_{\Delta \sqrt{s_j}} R_{fit}^{\operatorname{had}}(s) d\sqrt{s} \times \\ & \times \left\{ \begin{array}{c} \Delta_{\operatorname{sys},i} \Delta_{\operatorname{sys},j}, \, \text{if } i, j \text{ are from the same experiment} \\ \Delta_{\operatorname{sys},i} \Delta_{\operatorname{sys},j} \times (\operatorname{cross-experiment covariation}), \\ & \text{if } i, j \text{ are from different experiments} \end{array} \right\} \end{split}$$

where $\Delta_{\mathrm{sys},i}$ are the relative systematic uncertainties as quoted by the experimentalists.

Why $R_{fit}^{had}(s)$ in the systematic term of COV_{ij} ? Naively taking individual measurements $R_{i,j}^{had}$ for the systematic uncertainty leads to a biased COV_{ij} and to a biased fit as $R_{i,j}^{had}$ are already biased themselves – a manifestation of the well known Peele's Pertinent Puzzle (PPP): "... a phenomenon exhibiting unexpected mean values for experimental data affected by statistical and systematic errors" [R. Frühwirth et al. EPJ Web of Conf., Vol. 27 (2012), 00008]

The problem: $\delta \chi^2 / \delta R_{fit}^{had}(s)$ is non-linear w.r.t. $R_{fit}^{had}(s) \Rightarrow$ run the fit iteratively \Rightarrow

Fitting the R^{had} data

(continued)

 $\ldots \rightarrow$ run the fit iteratively:

- **()** Make the fit ignoring the systematic uncertainties to get zeroth approximation for $R_{fit}^{had}(s)$. Though χ^2/dof is awful, there's no PPP bias in the fit using a diagonal covariance matrix.
- 2 Rebuild the full covariance matrix using the obtained $R_{
 m fit}^{
 m had}(s)$.
- 8 Repeat the fit with the full covariance matrix.
- **O** Compare just obtained $R_{fit}^{had}(s)$ with the one from the previous iteration. **Stop** if the convergence condition (*to be refined*) is satisfied, otherwise return to step 2.

In practice, the procedure converges after 2 iterations.

TODO: Estimate the residual bias? Stability w.r.t. the choice of the zeroth approximation for $R_{het}^{had}(s)$? Can we start from a non-diagonal covariance matrix using measured R_i^{had} values for its systematic part? ...?

Fitting the R^{had} data: $a_{\mu}(had, LO)$ integral

- Problematic input data:
 - $\pi^+\pi^-$ with $\chi^2/dof = 2.18$.
 - χ^2/dof drops to 1.47 upon exclusion of the latest CMD-3 data being in 5 σ tension with other measurements. Precision KLOE and BaBar measurements are also in tension (discussed later).
 - ► $2\pi^{+}2\pi^{-}$, $\chi^{2}/dof = 2.34$: high precision BaBar measurement in tension with SND and old Orsay data.
 - data. $\begin{array}{l} \mbox{data.} \pi^{-}\pi^{-}2\pi^{0}, \ \chi^{2}/{\rm dof} = 1.94; \ \mbox{ND} \ (1991) \ \mbox{strongly} \\ \mbox{disagrees with the others, still no reason to} \\ \mbox{exclude.} \end{array}$
- We don't drop (imprecise) pre-1990 data: different instrumentation, reconstruction and statistical procedures provide a cross-check with newer experiments.
- In channels with $\chi^2/\text{dof} > 1.5$ the propagated experimental uncertainty of $R_{\text{fit}}^{\text{fitd}}$ is scaled by $\sqrt{\chi^2/\text{dof}}$ (cf. Birge factor in PDG).

 $a_{\mu}(had, LO) = (696.2 \pm 1.9_{e^+e^-exp.} \pm 2.1_{sys.}) \times 10^{-10}$

in agreement with recent results by other groups [Phys. Rept. 887 (2020) 1: 693.1(4.0) $\times 10^{-10}$], despite an inclusion of 'high' CMD-3 (2023) $\pi^+\pi^-$ data. A good channel-by-channel agreement with A. Keshavarzi *et al*, Phys. Rev. D 101 (2020) 1, 014029 (we intentionally chosen identical integration ranges).

- Final state	a_{μ} (had, LO) ×10 ¹⁰	(FIC-3/1	2/1-6
r mai state	(exp.) (par.) (rad.)	Vs[Gev]	χ /doi
$\pi^{+}\pi^{-}(\gamma)$	505.147 (1.367) (1.551) (0.606)	$0.3 \div 1.937$	2.18
$\pi^{+}\pi^{-}\pi^{0}$	48.481 (0.967) (0.629) (0.066)	$0.66 \div 1.937$	1.79
$\pi^{+}\pi^{-}2\pi^{0}$	18.778 (0.431) (0.509) (0.067)	$0.85 \div 1.937$	1.94
$2\pi^{+}2\pi^{-}$	15.397 (0.181) (0.060) (0.043)	$0.6125 \div 1.937$	2.34
$K^{+}K^{-}$	23.211 (0.188) (0.072) (0.009)	$0.985 \div 1.937$	1.99
$K_S K_L$	13.188 (0.130) (0.000) (0.000)	$1.00371 \div 1.937$	0.95
$\pi^0 \gamma$	4.359 (0.093) (0.049) (0.000)	$0.59986 \div 1.38$	1.70
$K_{S}K^{+}\pi^{-} + K_{S}K^{-}\pi^{+}$	1.814 (0.100) (0.000) (0.000)	$1.24 \div 1.937$	0.99
$2\pi^{+}2\pi^{-}\pi^{0}$	1.746 (0.043) (0.000) (0.009)	$1.0125 \div 1.937$	0.00
$2\pi^{+}2\pi^{0}2\pi^{-}$	1.728 (0.198) (0.034) (0.000)	$1.3125 \div 1.937$	1.99
$2\pi^{+}2\pi^{-}3\pi^{0}$	0.099 (0.013) (0.002) (0.001)	$1.575 \div 1.937$	0.57
$3\pi^{+}3\pi^{-}$	0.240 (0.014) (0.000) (0.012)	$1.3125 \div 1.937$	0.00
$3\pi^{+}3\pi^{-}\pi^{0}$	0.020 (0.004) (0.001) (0.000)	$1.6 \div 1.937$	0.65
$\eta\gamma$	0.691 (0.051) (0.000) (0.000)	$0.6 \div 1.354$	1.36
$\eta \pi^{+} \pi^{-}$	0.575 (0.019) (0.000) (0.000)	$1.15 \div 1.937$	1.18
$K^{+}K^{-}\pi^{0}$	0.202 (0.050) (0.000) (0.001)	$1.44 \div 1.937$	0.54
$K^{+}K^{-}\pi^{0}\pi^{0}$	0.100 (0.011) (0.000) (0.000)	$1.5 \div 1.937$	1.32
$K^{+}K^{-}\pi^{+}\pi^{-}$	0.799 (0.033) (0.000) (0.000)	$1.4 \div 1.937$	0.00
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	0.129 (0.024) (0.000) (0.000)	$1.6125 \div 1.937$	1.63
$K_S K_L \eta$	0.238 (0.059) (0.000) (0.000)	$1.575 \div 1.937$	1.31
$K_S K_L \pi^0$	0.839 (0.114) (0.000) (0.000)	$1.425 \div 1.937$	1.50
$K_S K_L \pi^0 \pi^0$	0.137 (0.043) (0.000) (0.000)	$1.35 \div 1.937$	0.00
$K_S K_L \pi^+ \pi^-$	0.166 (0.028) (0.000) (0.000)	$1.425 \div 1.937$	0.00
$K_S K^+ \pi^- \pi^0 + K_S K^- \pi^+ \pi^0$	0.640 (0.044) (0.000) (0.000)	$1.51 \div 1.937$	1.08
$K_S K_S \pi^+ \pi^-$	0.066 (0.007) (0.000) (0.000)	$1.63 \div 1.937$	1.37
ω(783)η	0.035 (0.002) (0.000) (0.000)	$1.34 \div 1.937$	0.85
$ω(783) < π^0 γ > π^0$	0.894 (0.021) (0.000) (0.000)	$0.75 \div 1.937$	1.56
$\omega(783) < \pi^+\pi^-\pi^0 > \pi^+\pi^-$	0.098 (0.005) (0.000) (0.000)	$1.15 \div 1.937$	1.10
$\omega \eta \pi^0$	0.055 (0.043) (0.000) (0.000)	$1.5 \div 1.937$	1.16
$\phi(1020)\eta$	0.067 (0.003) (0.000) (0.000)	$1.56 \div 1.937$	0.98
$\pi^{+}\pi^{-}2\pi^{0}\eta$	0.117 (0.019) (0.000) (0.000)	$1.625 \div 1.937$	0.85
$\pi^{+}\pi^{-}3\pi^{0}$	1.067 (0.112) (0.000) (0.000)	$1.125 \div 1.937$	0.68
$\pi^{+}\pi^{-}\pi^{0}\eta$	0.663 (0.075) (0.000) (0.000)	$1.394 \div 1.937$	0.82
$p\bar{p}$	0.030 (0.001) (0.000) (0.000)	$1.889 \div 1.937$	1.24
nn	0.028 (0.006) (0.000) (0.000)	$1.89 \div 1.937$	1.24
2hadron(hadrons)	43.509 (0.722) (0.661) (0.000)	$1.937 \div 11.199$	1.35
pQCD	2.065 (0.002)	> 11.1990	
ChPT $\pi\pi, \pi^*\gamma$	0.538 (0.013)	$0.2792 \div 0.3000$	
$\Psi(1S)$	6.495 (0.124)	3.0969	
$\Psi(2S)$	1.631 (0.057)	3.6861	
1(15)	0.054 (0.002)	9.4604	
1(25)	0.021 (0.003)	10.0234	
1(35)	0.014 (0.002)	10.3551	
1(45)	0.010 (0.001)	10.5794	
Total	696.181 (1.925) (1.953) (0.813)		
Image:	- ・ 一日 ・ ・ 日 ・ ・ 日	Image: 1	000
		_	
dronic contribution	November 20 1	0022 12	/ / /

V.V. Bryzgalov, O.V. Zenin (NRC KI – IHEstimation of the LO hadronic contributio

$R^{ m had}$ outside the experimental range

• No $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ measurements at $2m_{\pi} < \sqrt{s} < 0.3$ GeV \Rightarrow use ChPT parameterisation of the pion formfactor:

$$F_{\pi}^{ ext{ChPT}}(s) = 1 + rac{\langle r^2
angle_{\pi}}{6}s + c_1s^2 + c_2s^3 + \mathcal{O}(s^4),$$

where the pion charge radius $\langle r^2 \rangle_{\pi} = (11.27 \pm 0.21) \, \mathrm{GeV}^{-2}$ is extracted from the *t*-channel π – *e* scattering [Nucl. Phys. B 277 (1986) 168] and $c_{1,2}$ are from the $\sigma(\pi\pi)$ fit at $0.4 < \sqrt{s} < 0.6 \, \mathrm{GeV}$. Though we didn't update the parameters since 2003, the impact would be at $\sim 0.05 \times 10^{-10}$ level

- No $\sigma(e^+e^- \to \pi^0\gamma)$ data at $\sqrt{s} < 0.6 \text{ GeV} \Rightarrow$ parameterise using the $\pi^0 \to \gamma^*\gamma$ transition formfactor [Phys. Rev. D 65 (2002) 073034]. Much smaller than $\pi\pi$ in the same range.
- Narrow $\Psi(1, 2S)$, $\Upsilon(1-4S)$ resonances: the relativistic Breit-Wigner σ parameterisation with undressed Γ_{ee} , Γ_{tot} , M values. A caveat: due to $V-\gamma$ interference we can't use $R^{had}(s)$ in the otherwise convenient form $\sigma_{IBA}^{had}(s)/\sigma_{IBA}^{\mu\mu}(s)$, instead use an explicit Born parameterisation,

 $R^{\rm res}(s) = \sigma_{\rm BW}^{\rm res}(s) / \sigma_0^{\mu\mu}(s)$ (see, e.g., S. Eidelman, F. Jegerlehner, Z. Phys. C 67 (1995) 585).

• R^{had} at $\sqrt{s} > 11.2 \text{ GeV}$: measurements do exist up to LEP II energies, still use the 3-loop pQCD expression [K.G. Chetyrkin *et al.*, Phys. Rept 277 (1996) 189]:

$$R^{ ext{had}}(s) = 3\sum_{2m_q < \sqrt{s}} Q_q^2 \left(1 - rac{4m_q^2}{s}
ight)^{1/2} \left(1 + rac{2m_q^2}{s}
ight) \left[1 + rac{lpha_{ extsf{S}}(s)}{\pi} + \dots
ight]$$

Switching between data/pQCD in the $11.2 < \sqrt{s} < 40$ GeV range gives a negligible uncertainty on a_{μ} (had, LO).

V.V. Bryzgalov, <u>O.V. Zenin</u> (NRC KI – IHEstimation of the LO hadronic contributio

R^{had}: overall picture

R.L. Workman et al., Review of Particle Physics, PTEP 2022, 083C01 (2022) (our contribution)

- New CMD-3 and BES III (2023) data not included (the difference would be hardly visible).
- Good agreement between inclusive $e^+e^- \rightarrow 2hadron(hadrons)$ and the sum of exclusive measurements at $\sqrt{s} \sim 2$ GeV. This indicates that we didn't miss (semi)exclusive final states with a non-negligible cross section.
- Good agreement between data and pQCD prediction for R^{had} outside qq threshold regions.

V.V. Bryzgalov, <u>O.V. Zenin</u> (NRC KI – Il-Estimation of the LO hadronic contribution

$\pi^+\pi^-\pi^0$ and $\pi^0\gamma$ channels

< 口 > < 同 >

< ∃ >

4π channels

< 口 > < 同

$K\bar{K}$ channels

< 口 > < 同 >

э

Inclusive measurements at $\sqrt{s} > 2 \; { m GeV}$

Results

Final state	a_{μ} (had, I	.O) $\times 10^{10}$	$\sqrt{a} [C_{\alpha} V]$	v^2/dof
Final state		exp.) (par.) (rad.)	As [Gev]	χ / ασι
$\pi^{+}\pi^{-}(\gamma)$	505.147 (1.3	67) (1.551) (0.606)	$0.3 \div 1.937$	2.18
$\pi^{+}\pi^{-}\pi^{0}$	48.481 (0.9	67) (0.629) (0.066)	$0.66 \div 1.937$	1.79
$\pi^{+}\pi^{-}2\pi^{0}$	18.778 (0.4	31) (0.509) (0.067)	$0.85 \div 1.937$	1.94
$2\pi^{+}2\pi^{-}$	15.397 (0.1	81) (0.060) (0.043)	$0.6125 \div 1.937$	2.34
$K^{+}K^{-}$	23.211 (0.1	88) (0.072) (0.009)	$0.985 \div 1.937$	1.99
$K_S K_L$	13.188 (0.1	30) (0.000) (0.000)	$1.00371 \div 1.937$	0.95
$\pi^0 \gamma$	4.359 (0.0	93) (0.049) (0.000)	$0.59986 \div 1.38$	1.70
$K_{S}K^{+}\pi^{-} + K_{S}K^{-}\pi^{+}$	1.814 (0.1	00) (0.000) (0.000)	$1.24 \div 1.937$	0.99
$2\pi^+ 2\pi^- \pi^0$	1.746 (0.0	43) (0.000) (0.009)	$1.0125 \div 1.937$	0.00
$2\pi^{+}2\pi^{0}2\pi^{-}$	1.728 (0.1	98) (0.034) (0.000)	$1.3125 \div 1.937$	1.99
$2\pi^{+}2\pi^{-}3\pi^{0}$	0.099 (0.0	13) (0.002) (0.001)	$1.575 \div 1.937$	0.57
$3\pi^{+}3\pi^{-}$	0.240 (0.0	(14)(0.000)(0.012)	$1.3125 \div 1.937$	0.00
$3\pi^{+}3\pi^{-}\pi^{0}$	0.020 (0.0	(04)(0.001)(0.000)	$1.6 \div 1.937$	0.65
$\eta\gamma$	0.691 (0.0	51) (0.000) (0.000)	$0.6 \div 1.354$	1.36
$\eta \pi^+ \pi^-$	0.575 (0.0	(19)(0.000)(0.000)	$1.15 \div 1.937$	1.18
$K^{+}K^{-}\pi^{0}$	0.202 (0.0	50) (0.000) (0.001)	$1.44 \div 1.937$	0.54
$K^{+}K^{-}\pi^{0}\pi^{0}$	0.100 (0.0	(11)(0.000)(0.000)	$1.5 \div 1.937$	1.32
$K^{+}K^{-}\pi^{+}\pi^{-}$	0.799 (0.0	33) (0.000) (0.000)	$1.4 \div 1.937$	0.00
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	0.129 (0.0	24) (0.000) (0.000)	$1.6125 \div 1.937$	1.63
$K_S K_L \eta$	0.238 (0.0	59) (0.000) (0.000)	$1.575 \div 1.937$	1.31
$K_S K_L \pi^0$	0.839 (0.1	14) (0.000) (0.000)	$1.425 \div 1.937$	1.50
$K_S K_L \pi^0 \pi^0$	0.137 (0.0	43) (0.000) (0.000)	$1.35 \div 1.937$	0.00
$K_S K_L \pi^+ \pi^-$	0.166 (0.0	28) (0.000) (0.000)	$1.425 \div 1.937$	0.00
$K_S K^+ \pi^- \pi^0 + K_S K^- \pi^+ \pi^0$	0.640 (0.0	44) (0.000) (0.000)	$1.51 \div 1.937$	1.08
$K_S K_S \pi^+ \pi^-$	0.066 (0.0	07) (0.000) (0.000)	$1.63 \div 1.937$	1.37
$\omega(783)\eta$	0.035 (0.0	(02)(0.000)(0.000)	$1.34 \div 1.937$	0.85
$\omega(783) < \pi^0 \gamma > \pi^0$	0.894 (0.0	21) (0.000) (0.000)	$0.75 \div 1.937$	1.56
$\omega(783) < \pi^+\pi^-\pi^0 > \pi^+\pi^-$	0.098 (0.0	(0.000) (0.000) (0.000)	$1.15 \div 1.937$	1.10
$\omega \eta \pi^0$	0.055 (0.0	43) (0.000) (0.000)	$1.5 \div 1.937$	1.16
$\phi(1020)\eta$	0.067 (0.0	03) (0.000) (0.000)	$1.56 \div 1.937$	0.98
$\pi^{+}\pi^{-}2\pi^{0}\eta$	0.117 (0.0	19) (0.000) (0.000)	$1.625 \div 1.937$	0.85
$\pi^{+}\pi^{-}3\pi^{0}$	1.067 (0.1	12) (0.000) (0.000)	$1.125 \div 1.937$	0.68
$\pi^{+}\pi^{-}\pi^{0}\eta$	0.663 (0.0	75) (0.000) (0.000)	$1.394 \div 1.937$	0.82
$p\bar{p}$	0.030 (0.0	(0.000) (0.000)	$1.889 \div 1.937$	1.24
$n\bar{n}$	0.028 (0.0	06) (0.000) (0.000)	$1.89 \div 1.937$	1.24
2hadron(hadrons)	43.509(0.7)	22) (0.661) (0.000)	$1.937 \div 11.199$	1.35
pQCD	2.065	(0.002)	> 11.1990	
ChPT $\pi\pi, \pi^0\gamma$	0.538	(0.013)	$0.2792 \div 0.3000$	
$\Psi(1S)$	6.495	(0.124)	3.0969	
$\Psi(2S)$	1.631	(0.057)	3.6861	
$\Upsilon(1S)$	0.054	(0.002)	9.4604	
$\Upsilon(2S)$	0.021	(0.003)	10.0234	
$\Upsilon(3S)$	0.014	(0.002)	10.3551	
$\Upsilon(4S)$	0.010	(0.001)	10.5794	
Total	696 181 (1 0	(25) (1.052) (0.812)		

The table shows both propagated experimental uncertainties (exp.) and the systematic uncertainties due to cross section parameterisation (par.) (technically, due to E.c.m. binning) and radiative corrections (rad.).

Our estimate,

$$a_{\mu}(had, LO) = (696.2 \pm 1.9_{exp.} \pm 1.9_{par.} \pm 0.8_{rad.}) \times 10^{-10}$$

is consistent with results obtained by dispersive method by other authors before 2021, though we included 2021 2023 data. The *Muon g* - 2 *Theory Initiative group* quoted an average value of (693.1 ± 4.0_{tot}) × 10⁻¹⁰ obtained by merging the recent results [Davier 20, Keshavarzi 20, Colangelo 19, Hoferichter 19, Keshavarzi 18, Davier 17]. We also have a good per final state agreement with [Keshavarzi 20]. With our a_{μ} (had, LO) estimate, the $a_{\mu}^{\rm SM} - a_{\mu}^{\rm SM}$ disagreement remains at ~ 5 σ level.

V.V. Bryzgalov, O.V. Zenin (NRC KI – IHEstimation of the LO hadronic contributio

Open issues & prospects

Experimental inputs:

- Controversy between experiments:
 - CMD-3 (2023) $\pi^+\pi^-$ cross section is ~ 5% (~ 4 σ) higher than the others at 600-800 MeV. Waiting for their final $\pi^+\pi^-$ results. more details ... Is there an excess in CMD-3 data in other final states? SND2k full statistics?
 - ► KLOE vs BaBar tension in $\pi^+\pi^-$. More ISR data to arrive: BaBar, Belle, KLOE2
- All-neutral final states in inclusive measurements?
- Unexpected states? Low-mass New Physics?
- Using space-like data to evaluate a_{μ} (had, LO) MUonE μe scattering experiment
- Hadronic form-factors from au decays ...
- New Physics affecting a_{μ}^{exp} measurement itself? (cf. talk by Alexander Silenko)

Hadronic VP from lattice QCD:

BMW Collaboration (2021) estimated a_μ(had, LO) to sub-percent precision (aSM_μ uncertainty is comparable to the one of a^{exp}_μ). The resulting aSM_μ value is *consistent* with

 a_{μ}^{\exp} represented by more on this ...

Questions to our procedure:

- Systematics associated with the unfolding of radiative corrections applied by experimentalists?
- Building a non-biased global covariance matrix?
- Cross section parameterisation for the fit.

• ...?

November 29, 2023

Summary

• Using an up-to-date as of November 2023 compilation of the world data on $\sigma_{tot}(e^+e^- \rightarrow hadrons)$ we independently estimated the leading order hadronic contribution to the muon anomalous magnetic moment:

$$a_{\mu}(\mathrm{had},\mathrm{LO}) = (696.2 \pm 1.9_{\mathrm{exp.}} \pm 2.1_{\mathrm{syst.}}) \times 10^{-10} \; ,$$

consistent with the Muon g - 2 Theory Initiative (2020) average (693.1 \pm 4.0_{tot}) \times 10⁻¹⁰, despite we included 'high' CMD-3 (2023) $\pi^+\pi^-$ data.

• The SM prediction of a_{μ} including our a_{μ} (had, LO) estimate $a_{\mu}^{\text{SM}} = 11\ 659\ 184(4) \times 10^{-10}$ is in $\sim 4.7\sigma$ tension with the experimental value $a_{\mu}^{\text{exp}} = 11\ 659\ 205.9(2.2) \times 10^{-10}$ [FNAL g-2 Coll., Phys. Rev. Lett. 131, 161802 (2023)].

Thank you!

Backup

V.V. Bryzgalov, <u>O.V. Zenin</u> (NRC KI – Il-Estimation of the LO hadronic contributio November 29, 2023 23 / 44

< ∃⇒

< 一型

æ

IHEP PPDS CS total cross section database

(where we store the input data)

- Originates from the PPDS CrossSection database maintained at IHEP (Protvino) since 1980s.
- Implemented from scratch for Unix in 2017-2020 (no code from the old BDMS based version).
- Covers total cross section measurements published since 1947. Contains 22146 data records, each comprising cross section measurements for a single reaction published in a single paper (i.e. one paper may be split into several records).
- The data are encoded in a language with a strict grammar (an automatic protection against meaningless content and input mistakes).
- Flexible query language (not SQL).
- Web-based command line interface http://hera.ihep.su:4200/cs/ with basic plotting.
- Coverage of world data is fragmentary since 1990s, still PPDS CS is actively used to maintain our compilations of e⁺e⁻ → hadrons total cross sections and total (inelastic) cross sections with hadron-hadron beams (cf. the reviews on total cross sections in the Review of Particle Physics before 2023).

▲ Back

PPP bias: pathological examples

A naive construction of the systematic part of the covariance matrix using inputs (biased a priori) from individual experiments leads to PPP bias while fitting correlated data by the least squares method. Generally speaking, the fit can be systematically lower than any of the individual measurements, see the example above. [Yes: the red curve is the global χ^2 minimum with $\chi^2/dof = 1.25$]

What if ... ? $\pi^+\pi^-$ fit dominated by CMD-3:

Einel state	a_{μ} (had, LO) ×1)10	/510-M	-2/2-6
Final state	(exp.) (par.) (rad.)	√ ^s [Gev]	χ / doi
$\pi^{+}\pi^{-}(\gamma)$	529.580 (2.832) (3.1	272) (3.323)	$0.32698 \div 1.937$	1.21
$\pi^{+}\pi^{-}\pi^{0}$	48.481 (0.967) (0.	329) (0.066)	$0.66 \div 1.937$	1.79
$\pi^{+}\pi^{-}2\pi^{0}$	18.778 (0.431) (0.1	509) (0.067)	$0.85 \div 1.937$	1.94
$2\pi^{+}2\pi^{-}$	15.397 (0.181) (0.0	060) (0.043)	$0.6125 \div 1.937$	2.34
$K^{+}K^{-}$	23.211 (0.188) (0.0	072) (0.009)	$0.985 \div 1.937$	1.99
$K_S K_L$	13.188 (0.130) (0.0	000) (0.000)	$1.00371 \div 1.937$	0.95
$\pi^0 \gamma$	4.359 (0.093) (0.0	0.000)	$0.59986 \div 1.38$	1.70
$K_{S}K^{+}\pi^{-} + K_{S}K^{-}\pi^{+}$	1.814 (0.100) (0.0	000) (0.000)	$1.24 \div 1.937$	0.99
$2\pi^{+}2\pi^{-}\pi^{0}$	1.746 (0.043) (0.0	000) (0.009)	$1.0125 \div 1.937$	0.00
$2\pi^{+}2\pi^{0}2\pi^{-}$	1.728 (0.198) (0.0	34) (0.000)	$1.3125 \div 1.937$	1.99
$2\pi^{+}2\pi^{-}3\pi^{0}$	0.099 (0.013) (0.0	002) (0.001)	$1.575 \div 1.937$	0.57
$3\pi^{+}3\pi^{-}$	0.240 (0.014) (0.0	(0.012)	$1.3125 \div 1.937$	0.00
$3\pi^{+}3\pi^{-}\pi^{0}$	0.020 (0.004) (0.0	001) (0.000)	$1.6 \div 1.937$	0.65
$n\gamma$	0.691 (0.051) (0.0	000) (0.000)	$0.6 \div 1.354$	1.36
$n\pi^{+}\pi^{-}$	0.575 (0.019) (0.0	000) (0.000)	$1.15 \div 1.937$	1.18
$K^{+}K^{-}\pi^{0}$	0.202 (0.050) (0.0	000) (0.001)	$1.44 \div 1.937$	0.54
$K^{+}K^{-}\pi^{0}\pi^{0}$	0.100 (0.011) (0.0	000) (0.000)	1.5 ± 1.937	1 32
$K^{+}K^{-}\pi^{+}\pi^{-}$	0.799 (0.033) (0.0	000) (0.000)	$1.4 \div 1.937$	0.00
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	0.129 (0.024) (0.	000) (0.000)	1.4 + 1.007 1.6125 ± 1.937	1.63
KcKrn	0.238 (0.059) (0.	000) (0.000)	1.575 ± 1.937	1.00
K _c K _r π^0	0.839 (0.114) (0.	000) (0.000)	1.076 ± 1.007 1.425 ± 1.937	1.50
$K_c K_r \pi^0 \pi^0$	0.137 (0.043) (0.	000) (0.000)	1.35 ± 1.937	0.00
$K_c K_r \pi^+ \pi^-$	0.166 (0.028) (0.0	000) (0.000)	$1.00 \div 1.007$ $1.425 \div 1.937$	0.00
$K_{c}K^{+}\pi^{-}\pi^{0} \pm K_{c}K^{-}\pi^{+}\pi^{0}$	0.640 (0.044) (0.	000) (0.000)	1.51 ± 1.937	1.08
$K_c K_c \pi^+ \pi^-$	0.066 (0.007) (0.	000) (0.000)	$1.61 \div 1.007$ $1.63 \div 1.937$	1.00
(1(783)n	0.035 (0.002) (0.	000) (0.000)	$1.30 \div 1.007$ $1.34 \div 1.937$	0.85
$\omega(783) < \pi^0 \sim > \pi^0$	0.894 (0.021) (0.	000) (0.000)	0.75 ± 1.937	1.56
$\omega(783) < \pi^+ \pi^- \pi^0 > \pi^+ \pi^-$	0.094 (0.021) (0.0	000) (0.000)	1.15 ± 1.937	1.00
(100) < 1 1 1 × 1 1	0.055 (0.043) (0.	000) (0.000)	1.5 ± 1.937	1.16
d(1020)n	0.067 (0.003) (0.	000) (0.000)	1.56 ± 1.937	0.98
$\pi^{+}\pi^{-}2\pi^{0}n$	0.117 (0.019) (0.	000) (0.000)	1.625 ± 1.937	0.85
$\pi^{+}\pi^{-}3\pi^{0}$	1.067 (0.112) (0.	000) (0.000)	$1.026 \div 1.007$ $1.125 \div 1.937$	0.68
	0.663 (0.075) (0.	000) (0.000)	1.394 ± 1.937	0.82
200	0.030 (0.001) (0.	000) (0.000)	1.889 ± 1.937	1.24
np	0.028 (0.006) (0.	000) (0.000)	1.89 ± 1.937	1.24
2hadron(hadrons)	43 509 (0.722) (0.	S61) (0.000)	1.00 ± 11.001 1.037 ± 11.100	1.25
pOCD	2.065 (0.122) (0.1	102)	> 11 1000	1.00
ChPT $\pi\pi \pi^0 \gamma$	3 364 (0.1	106)	0.2792 ± 0.3270	
<u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	6.495 (0.	(24)	3.0969	
Ψ(2S)	1.631 (0.	157)	3 6861	
Y(1S)	0.054 (0.	102)	9.4604	
$\Upsilon(2S)$	0.021 (0.0	103)	10.0234	
Υ(3S)	0.014 (0.	102)	10.3551	
$\Upsilon(4S)$	0.010 (0.0	01)	10.5594	
	702 440 (2 120) (0.	100) (2.520)	10.0754	
10181	123.440 (3.139) (3.	(22) (3.530)		
< □)		► < =	E 3	$\mathcal{I}_{\mathcal{A}}(\mathbf{v})$

V.V. Bryzgalov, <u>O.V. Zenin</u> (NRC KI – IHEstimation of the LO hadronic contributio

IIL	a (had I	(1) $\times 10^{10}$		-
Final state	<i>α</i> μ(maa, 1	evp) (par) (rad)	$\sqrt{s} [\text{GeV}]$	χ^2/dof
$\pi^{+}\pi^{-}(\gamma)$	502 997 (1.4	29) (1 398) (0 209)	0.3 ± 1.937	1.45
-+	48 481 (0.9	67 (0.781) (0.066)	0.66 ± 1.937	1.79
$\pi^{+}\pi^{-}2\pi^{0}$	18 778 (0.4	31) (0.099) (0.067)	0.85 ± 1.937	1.04
27+27-	15 397 (0.1	81) (0.072) (0.043)	0.6125 ± 1.937	2.34
K+K-	23 211 (0.1	88) (0.073) (0.009)	0.985 ± 1.937	1.99
K_K.	13 188 (0.1	30) (0.000) (0.000)	1.00371 ± 1.937	0.95
$\pi^0 \gamma$	4.359 (0.0	93) (0.041) (0.000)	$0.59986 \div 1.38$	1.70
$K_c K^+ \pi^- + K_c K^- \pi^+$	1.814 (0.1		$1.24 \div 1.937$	0.99
$2\pi^{+}2\pi^{-}\pi^{0}$	1 746 (0.0	43) (0.000) (0.009)	1.0125 ± 1.937	0.00
$2\pi^{+}2\pi^{0}2\pi^{-}$	1.728 (0.1	98) (0.033) (0.000)	$1.3125 \div 1.937$	1.99
$2\pi^{+}2\pi^{-}3\pi^{0}$	0.099 (0.0	(0.003)(0.001)	$1.575 \div 1.937$	0.57
$3\pi^{+}3\pi^{-}$	0.240 (0.0	14)(0.000)(0.012)	$1.3125 \div 1.937$	0.00
$3\pi^{+}3\pi^{-}\pi^{0}$	0.020 (0.0	(0.000)(0.012)	1.6 ± 1.937	0.65
<i>π</i> γ	0.691 (0.0	51)(0.000)(0.000)	$0.6 \div 1.354$	1.36
$n\pi^{+}\pi^{-}$	0.575 (0.0	(0.000)(0.000)(0.000)	$1.15 \div 1.937$	1.18
$K^{+}K^{-}\pi^{0}$	0.202 (0.0	50(0.000)(0.001)	$1.44 \div 1.937$	0.54
$K^{+}K^{-}\pi^{0}\pi^{0}$	0.100 (0.0	(0.000)(0.000)(0.000)	$1.5 \div 1.937$	1.32
$K^{+}K^{-}\pi^{+}\pi^{-}$	0.799 (0.0	33) (0.000) (0.000)	$1.4 \div 1.937$	0.00
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	0.129 (0.0	24) (0.000) (0.000)	$1.6125 \div 1.937$	1.63
KeKin	0.238 (0.0	59) (0.000) (0.000)	$1.575 \div 1.937$	1.31
$K_s K_I \pi^0$	0.839 (0.1	14)(0.000)(0.000)	$1.425 \div 1.937$	1.50
$K_s K_I \pi^0 \pi^0$	0.137 (0.0	43) (0.000) (0.000)	$1.35 \div 1.937$	0.00
$K_s K_I \pi^+ \pi^-$	0.166 (0.0	28) (0.000) (0.000)	$1.425 \div 1.937$	0.00
$K_{s}K^{+}\pi^{-}\pi^{0} + K_{s}K^{-}\pi^{+}\pi^{0}$	0.640 (0.0	44) (0.000) (0.000)	$1.51 \div 1.937$	1.08
$K_S K_S \pi^+ \pi^-$	0.066 (0.0	07) (0.000) (0.000)	$1.63 \div 1.937$	1.37
$\omega(783)n$	0.035 (0.0	02) (0.000) (0.000)	$1.34 \div 1.937$	0.85
$\omega(783) < \pi^0 \gamma > \pi^0$	0.894 (0.0	21) (0.000) (0.000)	$0.75 \div 1.937$	1.56
$\omega(783) < \pi^+\pi^-\pi^0 > \pi^+\pi^-$	0.098 (0.0	05) (0.000) (0.000)	$1.15 \div 1.937$	1.10
$\omega n\pi^0$	0.055 (0.0	43) (0.000) (0.000)	$1.5 \div 1.937$	1.16
$\phi(1020)n$	0.067 (0.0	03) (0.000) (0.000)	$1.56 \div 1.937$	0.98
$\pi^{+}\pi^{-}2\pi^{0}\eta$	0.117 (0.0	19) (0.000) (0.000)	$1.625 \div 1.937$	0.85
$\pi^{+}\pi^{-}3\pi^{0}$	1.067 (0.1	12) (0.000) (0.000)	$1.125 \div 1.937$	0.68
$\pi^{+}\pi^{-}\pi^{0}\eta$	0.663 (0.0	75) (0.000) (0.000)	$1.394 \div 1.937$	0.82
pp	0.030 (0.0	01)(0.000)(0.000)	$1.889 \div 1.937$	1.24
$n\bar{n}$	0.028 (0.0	06) (0.000) (0.000)	$1.89 \div 1.937$	1.24
2hadron(hadrons)	43.509 (0.7	22) (0.779) (0.000)	$1.937 \div 11.199$	1.35
pQCD	2.065	(0.002)	> 11.1990	
ChPT $\pi\pi, \pi^0\gamma$	0.538	(0.013)	$0.2792 \div 0.3000$	
$\Psi(1S)$	6.495	(0.124)	3.0969	
$\Psi(2S)$	1.631	(0.057)	3.6861	
$\Upsilon(1S)$	0.054	(0.002)	9.4604	
$\Upsilon(2S)$	0.021	(0.003)	10.0234	
$\Upsilon(3S)$	0.014	(0.002)	10.3551	
$\Upsilon(4S)$	0.010	(0.001)	10.5794	
Total	694.030 (1.9	69) (1.396) (0.416)		
		, () (0	_	
< □ >	< 🗗 ▶	▲ 문 ► ▲ 문	► E *	$\mathcal{O} \mathcal{O}$

V.V. Bryzgalov, O.V. Zenin (NRC KI – IFEstimation of the LO hadronic contribution

November 29, 2023 27 / 44

A Back

$^+\pi^-(\gamma)$ Experiment	Reference	Observable	\sqrt{s} [6	GeV]	Radiative correction		Mult. factor	Commen	t	Un comment multiplicativ factors ac
BABAR (2012)	PR D86, 032013	σ	0.3 -	- 3.0	ISR, VP			Normalis $\sigma(e^+e^-)$	sation in situ to $\rightarrow \mu^+ \mu^-$) data	for the correction.
BCF (1976)	LNC 15, 393	σ	1.2	- 3	ISR, lep.	VP	1.008			
BES-III (2015)	hepex-150708188	σ	0.6025 -	- 0.8975	ISR, VP					
SLEO-C (2018)	PR D97, 032012	σ	0.300 -	- 1.000	ISR, VP	100	1.002			Journal
MD (1985) MD 2 (2003)	heney-0308008	<i>a</i>	0.6105 -	- 0.82	ISR VP	v r	1.008			abbreviation
MD-2 (2003)	ZETEP 82 841	B	0.0103 -	- 1.38	ISR, VI		1.008			abbreviation
MD-2 (2005) MD-2 (2006)	heney-0610016	л д	0.37 -	- 0.52	ISR		1.000			EPJ Eur. Ph
MD-2 (2006)	hepex-0610021	σ	0.6 -	0.97	ISR. VP					
MD-3 (LOW-2020)	hepex-2302.08834	Formfactor	0.360352 -	0.601222	ISR, VP		1.008			JEIP J.
MD-3 (RHO-2013)	hepex-2302.08834	Formfactor	0.326980 -	-1.060255	ISR, VP		1.008			Theor. Phys.
MD-3 (RHO-2018)	hepex-2302.08834	Formfactor	-0.547784 -	-1.199168	ISR, VP		1.008			LIETDI
M1 (1978)	PL 76B, 512	σ	0.483 -	- 1.096	ISR, lep. '	VP –	1.008			JEIPL
M2 (1989)	PL 220B, 321	σ	1.35 -	- 2.12	ISR, VP		1.008			Letters
TOR (INTO)	111212 1022 172		0.00	0.07	100 100			Combina	tion of 2008, 2010.	
LOE (2010)	JHEF 1803, 173	0	0.32 -	0.97	Ion, vr			2012 run	8	JHEP J. of
								Badiativ	e corrections dis-	Energy Phys.
LYA (1985)	NP B256, 365	σ	0.4 -	1.397	ISR, lep.	VP	1.008	cussed in	BudkerINP-2002-	
								74		LINC Lerre
ND (2006)	hepex-0605013	σ	0.39 -	- 0.97	ISR		1.008			Nuovo Cimen
ND (2021)	JHEP 01 (2021), 113	σ	0.5251 -	-0.8832	ISR		1.008			
EPP-2-TOF (1981)	SJNP 33, 368	σ	0.4 -	0.46	ISR, lep.	VP	1.008			
										Physics
+ - 0										DI Physics I
$\pi \pi^{\circ}$										FL Flysics L
S	D - f	01		<i>E</i> 10	- 3 71	Ra	diative	Mult.	Common t	PR P
sxperiment	Reference	Obser	vabre	$-\sqrt{s}$ [G	evj	cor	rection	factor	Comment	Review
										Review
										PRPL P
BABAR (2005)	PR D70, 072004	σ		0.6125 -	- 4.45	ISF	2			Reports
CMD (1989)	NOVO-89-15	σ		0.84 - 1	L013	ISE	1	1.008		Reports
MD-2 (1995)	BUDKEBINP-95-3	5 0		1.008 -	1.027	ISE	2			SJNP Sov. J.
TMD 2 (1008)	DUDKEDIND 08 3			0.004	1.040	TCE	Š	1.008		Phys
DMD-2 (1996)	bobKEKINF-98-3	-υ σ		0.994 =	1.040	101	ι.	1.008		
JMD-2 (2000)	nepex-0308008	σ		0.78 -	0.80	151	ι			ZETF Zh.
JM1 (1980)	NP B172, 13	σ		0.483 -	1.098	ISF	ł	1.008		Teor Fiz
DM2 (1992)	ZP C56, 15	σ		-1.34 -	2.4	ISF	λ, VP —	1.008		
	PRPL 202, 99	σ		0.66 =	1.38	ISF	1	1.008		ZETFP Pism
ND (1991)			. 0	.98402 -	1.05966	ISE	2			Eksn Teor
ND (1991) SND (2000)	PR D63, 072002									
ND (1991) SND (2000) SND (2002)	PR D63, 072002 hepey-0201040	0		0.08 -	1.38	- ISE	<			
ND (1991) SND (2000) SND (2002) SND (2002)	PR D63, 072002 hepex-0201040 BB D68_052000	σ		0.98 -	1.38	ISE	{ >			ZP Zeitschri
ND (1991) SND (2000) SND (2002) SND (2003)	PR D63, 072002 hepex-0201040 PR D68, 052006	σ		0.98 -	1.38 0.98	ISF	t t			ZP Zeitschri Physik

V.V. Bryzgalov, <u>O.V. Zenin</u> (NRC KI – Il-Estimation of the LO hadronic contributio

Nove

November 29, 2023 28 / 44

7	$\pi^+\pi^-2\pi^0$ Experiment	Reference	Observable	$\sqrt{s} [\text{GeV}]$	Radiative correction	Mult. factor	Comment
	ACO (1976)	PL 63B, 349	σ	0.915 - 1.076	ISR, lep. VP	1.008	
	BABAR (2017)	PR D96, 092009	σ	0.85 - 4.49	ISR		
	CMD-2 (1999)	PL 466B, 392	σ	0.98 - 1.4	ISR	1.008	
	DM2 (1990)	LAL-90-35	σ	1.34 - 2.40	ISR, VP	1.008	
	GG2 (1981)	NP B184, 31	σ	1.44 - 2.20	ISR, lep. VP	1.008	
	M3N (1979)	NP B152, 215	σ	1.35 - 2.125	ISR, lep. VP	1.008	
	MEA (1981)	LNC 31, 445	σ	1.45 - 1.80	ISR, lep. VP	1.008	
	ND (1991)	PRPL 202, 99	σ	0.91 - 1.395	ISR	1.008	
	OLYA (1986)	ZETFP 43, 497	σ	0.97 - 1.4	ISR, lep. VP	1.008	
	SND (2001)	BUDKERINP-2001-34	σ	0.98 - 1.38	ISR	1.008	
_							
•	$2\pi^{+}2\pi^{-}$						
-	Experiment	Reference	Observable	$\sqrt{s} [{ m GeV}]$	Radiative correction	Mult. factor	Comment
	ACO (1976)	PL 63B, 349	σ	0.915 - 1.076	ISB, lep. VP	1.008	
	BABAR (2012)	DD DOF 110000					
	and the second s	PR D85, 112009	σ	0.6125 - 4.4875	ISR		
	CMD (1988)	PR D85, 112009 SJNP 47, 248	$\sigma \sigma$	0.6125 - 4.4875 1.019 - 1.403	ISR ISR, lep. VP	1.016	
	CMD (1988) CMD-2 (2000)	PR D85, 112009 SJNP 47, 248 PL 475B, 190	σ σ	0.6125 - 4.4875 1.019 - 1.403 0.75 - 0.97	ISR ISR, lep. VP ISR	$1.016 \\ 1.016$	
	CMD (1988) CMD-2 (2000) CMD-2 (2000)	PR D85, 112009 SJNP 47, 248 PL 475B, 190 PL 491B, 81	σ σ σ	0.6125 - 4.4875 1.019 - 1.403 0.75 - 0.97 0.984 - 1.060	ISR ISR, lep. VP ISR ISR	$1.016 \\ 1.016 \\ 1.016$	
	CMD (1988) CMD-2 (2000) CMD-2 (2000) CMD-2 (2004)	PK D85, 112009 SJNP 47, 248 PL 475B, 190 PL 491B, 81 PL 595B, 101	σ σ σ σ	$\begin{array}{c} 0.6125-4.4875\\ 1.019-1.403\\ 0.75-0.97\\ 0.984-1.060\\ 0.98-1.38 \end{array}$	ISR ISR, lep. VP ISR ISR ISR	$1.016 \\ 1.016 \\ 1.016 \\ 1.016 \\ 1.016$	
	CMD (1988) CMD-2 (2000) CMD-2 (2000) CMD-2 (2004) CMD-3 (2017)	PL D85, 112009 SJNP 47, 248 PL 475B, 190 PL 491B, 81 PL 595B, 101 PL 768B, 345	σ σ σ σ σ	$\begin{array}{c} 0.6125-4.4875\\ 1.019-1.403\\ 0.75-0.97\\ 0.984-1.060\\ 0.98-1.38\\ 0.92235-1.05995 \end{array}$	ISR ISR, lep. VP ISR ISR ISR ISR ISR	$1.016 \\ 1.016 \\ 1.016 \\ 1.016 \\ 1.016$	
	CMD (1988) CMD-2 (2000) CMD-2 (2000) CMD-2 (2004) CMD-3 (2017) DM1 (1979)	PR D85, 112009 SJNP 47, 248 PL 475B, 190 PL 491B, 81 PL 595B, 101 PL 768B, 345 PL 81B, 389	σ σ σ σ σ σ	$\begin{array}{c} 0.6125 - 4.4875 \\ 1.019 - 1.403 \\ 0.75 - 0.97 \\ 0.984 - 1.060 \\ 0.98 - 1.38 \\ 0.92235 - 1.05995 \\ 0.893 - 1.098 \end{array}$	ISR ISR, lep. VP ISR ISR ISR ISR ISR, lep. VP	1.016 1.016 1.016 1.016 1.016	
	CMD (1988) CMD-2 (2000) CMD-2 (2000) CMD-2 (2004) CMD-3 (2017) DM1 (1979) DM1 (1982)	PR D85, 112009 SJNP 47, 248 PL 475B, 190 PL 491B, 81 PL 595B, 101 PL 768B, 345 PL 81B, 389 PL 109B, 129	σ σ σ σ σ σ σ	$\begin{array}{c} 0.6125 - 4.4875 \\ 1.019 - 1.403 \\ 0.75 - 0.97 \\ 0.984 - 1.060 \\ 0.98 - 1.38 \\ 0.92235 - 1.05995 \\ 0.893 - 1.0998 \\ 1.41 - 2.166 \end{array}$	ISR ISR, lep. VP ISR ISR ISR ISR ISR, lep. VP ISR, lep. VP	1.016 1.016 1.016 1.016 1.016 1.016	
	CMD (1988) CMD-2 (2000) CMD-2 (2000) CMD-2 (2004) CMD-3 (2017) DM1 (1979) DM1 (1982) DM2 (1990)	PR D85, 112009 SJNP 47, 248 PL 475B, 190 PL 491B, 81 PL 595B, 101 PL 768B, 345 PL 81B, 389 PL 109B, 129 LAL-90-35	σ σ σ σ σ σ σ σ	$\begin{array}{c} 0.6125-4.4875\\ 1.019-1.403\\ 0.75-0.97\\ 0.984-1.060\\ 0.98-1.38\\ 0.92235-1.05995\\ 0.893-1.098\\ 1.41-2.166\\ 1.34-2.26 \end{array}$	ISR ISR, lep. VP ISR ISR ISR ISR, lep. VP ISR, lep. VP ISR, VP	1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.016	
	CMD (1988) CMD-2 (2000) CMD-2 (2000) CMD-2 (2004) CMD-3 (2017) DM1 (1979) DM1 (1982) DM2 (1990) GG2 (1980)	PR D85, 112009 SJNP 47, 248 PL 475B, 190 PL 595B, 101 PL 595B, 101 PL 768B, 345 PL 81B, 389 PL 109B, 129 LAL-90-35 PL 95B, 139	σ σ σ σ σ σ σ σ σ σ σ	$\begin{array}{c} 0.6125-4.4875\\ 1.019-1.403\\ 0.75-0.97\\ 0.984-1.060\\ 0.984-1.38\\ 0.92235-1.05995\\ 0.893-1.098\\ 1.41-2.166\\ 1.34-2.26\\ 1.2-2.4 \end{array}$	ISR ISR, lep. VP ISR ISR ISR ISR, lep. VP ISR, lep. VP ISR, VP ISR, lep. VP	$\begin{array}{c} 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\end{array}$	
	CMD (1988) CMD-2 (2000) CMD-2 (2000) CMD-2 (2004) CMD-3 (2017) DM1 (1979) DM1 (1979) DM2 (1990) GG2 (1980) M3N (1979)	PR D85, 112009 SJNP 47, 248 PL 475B, 190 PL 491B, 81 PL 595B, 101 PL 768B, 345 PL 81B, 345 PL 109B, 129 LAL-90-35 PL 95B, 139 NP B152, 215	σ σ σ σ σ σ σ σ σ σ σ σ σ σ	$\begin{array}{l} 0.6125-4.4875\\ 1.019-1.403\\ 0.75-0.97\\ 0.984-1.060\\ 0.988-1.38\\ 0.92235-1.05995\\ 0.803-1.098\\ 1.41-2.166\\ 1.34-2.26\\ 1.2-2.4\\ 1.35-2.125\\ \end{array}$	ISR, lep. VP ISR, lep. VP ISR ISR ISR, lep. VP ISR, lep. VP ISR, lep. VP ISR, lep. VP ISR, lep. VP	$\begin{array}{c} 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\end{array}$	
	CMD (1988) CMD-2 (2000) CMD-2 (2000) CMD-2 (2004) CMD-3 (2017) DM1 (1979) DM1 (1982) DM2 (1990) GG2 (1980) M3N (1979) ND (1991)	PR D85, 112009 SJNP 47, 248 PL 475B, 190 PL 491B, 81 PL 595B, 101 PL 708B, 345 PL 81B, 389 PL 109B, 129 LAL-90-35 PL 95B, 139 NP B152, 215 PRPL 202, 99	σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ	$\begin{array}{l} 0.6125-4.4875\\ 1.019-1.403\\ 0.75-0.97\\ 0.984-1.060\\ 0.98-1.38\\ 0.92235-1.05995\\ 0.893-1.098\\ 1.41-2.166\\ 1.34-2.26\\ 1.2-2.4\\ 1.35-2.125\\ 1.005-1.395\\ \end{array}$	ISR ISR, lep. VP ISR ISR ISR ISR, lep. VP ISR, VP ISR, VP ISR, lep. VP ISR, lep. VP ISR, lep. VP ISR, lep. VP ISR, lep. VP ISR, lep. VP	$\begin{array}{c} 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\end{array}$	
	CMD (1988) CMD-2 (2000) CMD-2 (2000) CMD-2 (2000) CMD-3 (2017) DM1 (1979) DM1 (1982) DM2 (1990) GG2 (1980) M3N (1979) ND (1991) OLYA (1988)	PR D85, 112009 SJNP 47, 248 PL 475B, 190 PL 491B, 81 PL 595B, 101 PL 595B, 101 PL 595B, 101 PL 768B, 345 PL 81B, 389 PL 190B, 129 LAL-90-35 PL 95B, 139 NP B152, 215 PRPL 202, 99 ZETFP 47, 432	σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ	$\begin{array}{l} 0.6125-4.4875\\ 1.019-1.403\\ 0.75-0.97\\ 0.984-1.060\\ 0.98-1.38\\ 0.9235-1.05995\\ 0.893-1.099\\ 1.41-2.166\\ 1.34-2.26\\ 1.2-2.4\\ 1.35-2.125\\ 1.005-1.395\\ 1.051-1.384 \end{array}$	ISR, lep. VP ISR, lep. VP ISR ISR ISR ISR, lep. VP ISR, lep. VP ISR, lep. VP ISR, lep. VP ISR, lep. VP ISR, lep. VP ISR ISR, lep. VP	$\begin{array}{c} 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ 1.016\\ \end{array}$	

V.V. Bryzgalov, <u>O.V. Zenin</u> (NRC KI – Il-Estimation of the LO hadronic contribution

< □ > < 同 >

æ

$\pi^0\gamma$ Experiment	Reference	Observable	\sqrt{s} [GeV]	Radiative correctio	e Mult. Comment n factor
CMD-2 (2005) SND (2000) SND (2016)	PL 605B, 26 EPJ C12, 25 PR D93, 092001	σ σ σ	$\begin{array}{c} 0.59938 - 1.31 \\ 0.98513 - 1.03930 \\ 0.6 - 1.4 \end{array}$	ISR ISR ISR	
$\pi^+\pi^-\pi^0\eta$	Reference Ob	servable \sqrt{s} [G	eV] Radiative correction	Mult. factor	Comment
CMD-3 (2017)	PL 773B, 150	σ 1.4 –	2.0 ISR	0.7708	$\begin{array}{l} \pi^+\pi^-\pi^0\eta\langle\pi^+\pi^-\pi^-\rangle {\rm is}\\ {\rm counted} \mbox{ in the } 2\pi^+2\pi^-2\pi^0\\ {\rm channel, \mbox{ hence the cross}}\\ {\rm section} \mbox{ is multiplied by}\\ 1-{\rm Br}(\eta\to\pi^+\pi^-\pi^0) = 0.7708. \end{array}$
$\pi^+\pi^-2\pi^0\eta$ Experiment	Reference	Observable	$\sqrt{s} \; [\text{GeV}]$	Radiative correction	Mult. Comment factor
BABAR (2018)	PR D98, 112015	σ	1.625 - 4.325	ISR	
$\pi^+\pi^-3\pi^0$ Experiment	Reference	Observable	$\sqrt{s} \; [\text{GeV}]$	Radiative correction	Mult. Comment
BABAR (2018)	PR D98, 112015	σ	1.125 - 4.325	ISR	

æ

< ∃⇒

< 口 > < 同

$2\pi^+2\pi^02\pi^-$							
Experiment	Reference	Observable	$\sqrt{s} [\text{GeV}]$	Radiative correction	Mult. factor	Commen	t
BABAR (2006)	hepex-0602006	σ	1.3125 - 4.4875	ISR	1.145	The m tor acc $2\pi^+2\pi^{-+}$ the exp missing nel: $0.0625\sigma($ $0.145(\sigma(:$ $\sigma(\pi^+\pi^{})$ $t=100^{\circ}$ t=0.1 $t=0.00^{\circ}$ $t=0.00^{$	altiplicative fac- counts for the $2\pi^0$ term in ression for the $\pi^+\pi^-4\pi^0$ chan- $\sigma(\pi^+\pi^-4\pi^0) = 3\pi^+3\pi^-) + 2\pi^+2\pi^-2\pi^0) - + 2\pi^+2\pi^-2\pi^0) - + 6$ (see M. Davier ur. Phys. J C71 15(5)]
CMD (1988)	SJNP 47, 248	σ	1.403	ISR	1.16332	An FSR plied on accountii channels	correction is ap- top of the factor ag for missing 6π
DM2 (1986)	ROMA-THESIS-1986-SCHIC	iPPA σ	1.32 - 2.24	ISR, VP	1.16332	The rac applied questions	liative correction by the authors is able.
$2\pi^+2\pi^-3\tau$	r ⁰						
Experiment	• Reference	Observable	$\sqrt{s} [\text{GeV}]$	Radi: corre	ative ction	Mult. factor	Comment
BABAR (202	21) arxiv:2102.01314	σ	1.575 - 4.47	5 ISR		1.016	
$2\pi^{+}2\pi^{-}\pi^{0}$							
Experiment	Reference	Observable	$\sqrt{s} [{ m GeV}]$	Radiat correct	ive ion	Mult. factor	Comment
BABAR (200 CMD (1988) M3N (1979)	7) PR D76, 092005 SJNP 47, 248 NP B152, 215	$\sigma \\ \sigma \\ \sigma$	$\begin{array}{r} 1.0125-4.4875\\ 1.019-1.403\\ 1.35-2.125\end{array}$	ISR ISR ISR, le	p. VP	1.0 1.016 1.016	

V.V. Bryzgalov, <u>O.V. Zenin</u> (NRC KI – Il-Estimation of the LO hadronic contributio

November 29, 2023 31 / 44

글에 귀절에 드릴

< □ > < 同 >

$3\pi^+3\pi^-$ Experiment	Reference	Observable	$\sqrt{s} [\text{GeV}]$	Radiative correction	Mult. factor	Comment
BABAR (2006)	hepex-0602006	σ	1.3125 - 4.4875	ISR	1.0625	The multiplicative factor accounts for the $3\pi^+3\pi^-$ term in the expression for the missing $\pi^+\pi^+4\pi^0$ channel: $\alpha(\pi^+\pi^-4\pi^0)$ = $0.0625\sigma(3\pi^+3\pi^-)$ + $0.145(\alpha(2\pi^+2\pi^-2\pi^0))$ - $\sigma(\pi^+\pi^-\pi^0)_{\alpha}(\pi^+\pi^-\pi^0))$ $\pm 100\%$ [see M. Davier <i>et</i> <i>al.</i> , Eur. Phys. J C71 (2011) 1515)
CMD (1988)	SJNP 47, 248	σ	1.403	ISR	1.088	FSR correction is applied on top of 1.0625 factor (see above).
CMD-3 (2013) DM1 (1981) DM2 (1986)	PL B723, 82 PL 107B, 145 ROMA-THESIS-1986-SCHIO	σ σ PPA σ	1.45 - 2.455 1.57 - 2.25	ISR ISR, lep. VP ISR, VP	$1.0625 \\ 1.088 \\ 1.088$	
$3\pi^+3\pi^-\pi$ Experiment	τ ⁰ t Reference	Observable	$\sqrt{s} \; [\text{GeV}]$	Radiat correct	tive l tion f	Mult. Comment factor
CMD-3 (20	019) PL 792B, 419	σ	1.60 - 2.007	5 ISR		

V.V. Bryzgalov, O.V. Zenin (NRC KI – Il-Estimation of the LO hadronic contributio November 29, 2023

3

프 문 문 프 문

< □ > < 同 >

$\eta\gamma$ Experiment	Reference	Observab	le 🗸	s [GeV]	Radiative correction	Mult. factor	Comment
ACO (1976) CMD-2 (1995) CMD-2 (2001) SND (2000)	PL 63B, 352 BUDKERINP-95-3 PL 509B, 217 EPJ C12, 25	σ 5 σ σ σ	1.015 1.00 0.6 0.985	25 - 1.02325 08 - 1.027 5 - 1.354 13 - 1.03930	ISR ISR ISR ISR		
$\eta \pi^+ \pi^-$ Experiment	Reference	Observab	ble \sqrt{s}	[GeV]	Radiative correction	Mult. factor	Comment
BABAR (2008) BABAR (2018) CMD-2 (2000) ND (1991) SND (2015)	PR D76, 09200 PR D97, 05200 PL 489B, 125 PRPL 202, 99 PR D91, 05201	5 σ 7 σ σ 3 σ	1.02; 1.1 1.28 1.07 1.22	5 - 2.975 5 - 3.5 5 - 1.38 5 - 1.375 5 - 2.000	ISR ISR ISR ISR ISR	$\begin{array}{c} 0.4440 \\ 0.4440 \\ 0.447552 \\ 0.447552 \\ 0.447552 \\ 0.4440 \end{array}$	
$\phi(1020)\eta$ Experiment	Reference	Observable	\sqrt{s} [GeV]	Radiative correction	Mult. factor	Comment	
BABAR (2008)	PR D77, 092002	σ		ISR, VP	0.168	Measurement $\phi \langle K^+ K^- \rangle \eta \langle$ $\phi \langle K K \rangle \pi^+ \pi^-$ tion is alre- in $K^+ K^- \pi$ $K_S K_L \eta (\pi^+ \pi$ states, heno- the multipli $1 - Br(\phi)$ 1 - 0.492 - 0	in the (2γ) mode. π^0 contribu- ady counted $+\pi^-\pi^0$ and $(-\pi^0)$ final re we apply cative factor -KK) = 0.168.
BABAR (2008)	PR D77, 119902	σ		ISR	0.168	Measured in mode.	$\eta \langle \pi^+ \pi^- \pi^0 \rangle$
CMD-3 (2019)	hepex-1906.08006	σ		ISR	0.168		

V.V. Bryzgalov, <u>O.V. Zenin</u> (NRC KI – Il-Estimation of the LO hadronic contributio

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

K^+K^- Experiment	Reference	Observable	\sqrt{s} [GeV]	Radiative correction	Mult. factor	Comment
BABAR (2013) CMD (1983) CMD-2 (2008) CMD-3 (2017) DMI (1981) MEA (1980) OLYA (1981) SND (2000) SND (2016)	PR D88, 032013 NOVO-83-85 arXiv:0804.0178v1 arXiv:1710.02989 PL 99B, 257 LNC 28, 337 PL 107B, 297 hepex-0009036 PB D04 112006	σ σ σ σ σ σ σ	$\begin{array}{c} 0.985000-5.000000\\ 1.088-1.34\\ 1.01136-1.03406\\ 1.01-1.06\\ 1.4245-2.03\\ 1.425-2.03\\ 1.45-1.52\\ 1.017-1.4\\ 1.01017-1.05966\\ 1.047-2.005\end{array}$	0 ISR, VP ISR ISR ISR, lep. VP ISR, lep. VP ISR ISR ISR ISR	1.008 1.008 1.008 1.008	
3.5D (2010)	TR D54, 112000	U	1.047 - 2.003	1510, 11		
$K^+K^-\pi^0$ Experiment	Reference	Observable	$\sqrt{s} [\text{GeV}] = \begin{bmatrix} F \\ c \end{bmatrix}$	Radiative M correction fa	ult. ctor	Comment
DM2 (1990) DM2 (1991)	LAL-90-71 ZP C52, 227	$\sigma \sigma$	I I	SR, VP 1. SR 1.	008 008	
$V^+V^-\pi^0\pi^0$	1					
K K π π Experiment	Reference	Observa	ble \sqrt{s} [GeV]	Radiative correction	Mult. factor	Comment
BABAR (2012)	PR D86, 01200)8 σ	1.5 - 4.02	ISR		
$K^{+}K^{-}\pi^{+}\pi^{-}$						
Experiment	Reference	Observable	$\sqrt{s} [\text{GeV}]$	Radiative correction	Mult. factor	Comment
BABAR (2012) CMD-3 (2016) DM1 (1981) DM2 (1990)	PR D86, 012008 PL 756B, 153 PL 110B, 335 lal-90-71	σ σ σ σ	$\begin{array}{c} 1.4125-4.9875\\ 1.4349-2.0046\\ 1.45-2.14\end{array}$	ISR ISR, VP ISR, lep. VP ISR, VP		

V.V. Bryzgalov, <u>O.V. Zenin</u> (NRC KI – Il-Estimation of the LO hadronic contribution

э

< ∃→

$K^+K^-\pi^+\pi^-\pi^0$								
Experiment Re	ference	Observable	$\sqrt{s} [\text{GeV}]$	Radiative correction	Mult. factor	Comme	ent	
BABAR (2008) PF	R D77, 119902	σ		ISR	2.19	This fit estimat $\sigma(KK\pi)$ in K^+I inated we find $\sigma(KK\pi)$ $2\sigma(K^+)$ (1 + Bi) $2.19\sigma(I)$	nal state is the $\sigma(KK\pi^+\pi^-\pi^0\gamma)$. As π $K^-\pi^+\pi^-\pi^0$ by ω contri- $t^0\gamma)$ $K^-\pi^+\pi^-\pi^0$ $r(\omega \to \pi^0\gamma)/$ $K^+K^-\pi^+\pi^-$	$ \begin{array}{c} \operatorname{nsed} \operatorname{to} & -\pi^{0}) + \\ -\pi^{0}) + \\ +\pi^{-}\pi^{0} & \operatorname{is dom-bution}, \\ -\pi^{0}) + \\ \simeq & \\) & \sim \\ \operatorname{Br}(\omega \to 3\pi) \end{pmatrix} \simeq \\ \pi^{0}). \end{array} $
KeKr								
Experiment	Referen	ce	Observable	\sqrt{s} [Ge	eV]	Radiative	Mult.	Comment
						conrection	idetti	
BABAR (2014)	PR D89	. 092002	σ	1.08 - 2	2.16	ISR		
CMD (1983)	NOVO-	83-85	σ	1.088 - 1	1.309	ISR, lep. V	Р	
CMD-2 (1995)	BUDKE	RINP-95-35	σ	1.008 - 1	1.027	ISR		
CMD-2 (2001)	hepex-9	906032	σ	1.00402 - 1	1.03965	ISR		
CMD-2 (2003)	PL 5511	3, 27	σ	1.05 - 1	.368	ISR		
CMD-3 (2016) DM1 (1081)	PL 7601 DL 00D	3, 314	σ	1.004058 - 1	0.14	ISR Isr V	D 1.0	
OLVA (1981)	ZETEP	36.91	a a	1.09 - 1	2.19	ISR, lep. V	г 1.0 Р	
SND (2000_charged m	ode) henex-0	00, 31	σ	1.00371 - 1	05966	ISR, icp. 1		
SND (2000, neutral m	ode) hepex-0	009036	σ	1.00371 - 1	1.05966	ISR		
$K_S K_L \pi^0$ Experiment	Reference	Obs	ervable	\sqrt{s} [GeV]	Ra cor	diative ! rection f	Mult. actor	Comment
BABAR (2017)	PR D95, 05	2001	σ	1.425 - 3.97	5 ISI	٦		

글에 귀절에 드릴

< 口 > < 同

$K_S K_L \eta$ Experiment	Reference	Observable	\sqrt{s} [G	eV] I	Radiative correction	Mult. factor	Comment	
BABAR (2017)	PR D95, 052001	σ	1.575 – 3	3.975 I	SR	1.5416	The modes are $KK\pi^+\pi^-$, hence K_SF used to ex $\left(1 - \text{Br}(\eta)\right)$ $2\sigma(K_SK_L)$ $1.5416\sigma(K)$	$KK\eta\langle\pi^+\pi^-\pi^0\rangle$ counted in the π^0 final state, $\zeta_L\eta$ final state is tract $\sigma(KK\eta)$. $\rightarrow \pi^+\pi^-\pi^0) \simeq \eta(-1-0.2292) = {}_SK_L\eta).$
$K_S K_L \pi^0 \pi^0$	1							
Experiment	Reference	Obse	ervable	\sqrt{s} [C	GeV]	Radiative correction	Mult. factor	Comment
BABAR (2017	') PR D95, 05	2001	σ	1.35 -	3.95	ISR		
$K_S K_L \pi^+ \pi^-$	_							
Experiment	Reference	Obse	ervable	\sqrt{s} [C	GeV]	Radiative correction	Mult. factor	Comment
BABAR (2014) PR D89, 09	2009	σ	1.63 -	3.38	ISR		

V.V. Bryzgalov, <u>O.V. Zenin</u> (NRC KI – IH<mark>Estimation of the LO hadronic contributio November 29, 2023</mark>

< 口 > < 同

æ

$K_SK^+\pi^-\pi^0+K_SK^-\pi^+\pi^0$										
	Experiment	Reference	Observable	$\sqrt{s} [\text{GeV}]$	Radiative correction	Mult. factor	Comment			
	BABAR (2017)	PR D95, 092005	σ	1.51 - 3.99	ISR	2.0	The multiplicative factor follows from symmetry re- lation: $\sigma(K^{K} K^{+} \pi^{0} \pi^{-}) = \sigma(K_{S} K^{-} \pi^{0} \pi^{-}) \Rightarrow \sigma(K^{0} K^{+} \pi^{0} \pi^{-}) \Rightarrow \sigma(K^{0} K^{+} \pi^{0} \pi^{-}) \Rightarrow \sigma(K^{0} K^{+} \pi^{-} \pi^{0}) + K_{S} K^{-} \pi^{+} \pi^{0}) = 2\sigma(K_{S} K^{+} \pi^{-} \pi^{0}) + K_{S} K^{-} \pi^{+} \pi^{0})$ Bavier et a. Eur. Phys. J C71 (2011) 1515)]			
	$K_S K^+ \pi^- + \lambda$	$K_S K^- \pi^+$								
	Experiment	Reference	Observable	$\sqrt{s} [\text{GeV}]$	Radiative correction	Mult. factor	Comment			
	BABAR (2008)	PR D77, 092002	σ	1.24 - 4.70	ISR, VP	2.0	The multiplicative factor is derived from symmetry re- lation: $\sigma(K^0K^+\pi^-) + \sigma(\bar{K}^0K^-\pi^+) = 2\sigma(K_SK^+\pi^+K_SK^-\pi^+).$			
	$K_{\alpha}K_{\alpha}\pi^{+}\pi^{-}$									
	Experiment	Reference	Observable	\sqrt{s} [GeV]	Radiative correction	Mult. factor	Comment			
	BABAR (2014)	PR D89, 092009	σ	1.63 - 3.38	ISR	2.0	The multiplicative factor accounts for missing $K_L K_L \pi^+ \pi^-$ channel, $\sigma(K_L K_L \pi^+ \pi^-) = \sigma(K_S K_S \pi^+ \pi^-).$			

V.V. Bryzgalov, <u>O.V. Zenin</u> (NRC KI – Il-Estimation of the LO hadronic contributio

November 29, 2023

э

$\omega(783) < \pi^0$	$\gamma > \pi^0$						
Experiment	Reference	Observable	\sqrt{s} [GeV] Re co	diative rrection	Mult. factor	Comment
CMD-2 (2003)	hepex-0304009	σ	0.92 - 1.3	38 IS	R		
CMD-2 (2004)	PL 580B, 119	σ	0.60 - 0.9	97 IS	R		$\omega (\pi^+ \pi^- \pi^0) \pi 0$ measure- ment scaled by $Br(\omega \rightarrow$
DM2 (1990)	LAL-90-35	σ	1.34 - 2.4	10 IS	R, VP	0.098	$\pi^0 \gamma)/Br(\omega \rightarrow \pi^+\pi^-\pi^0)$, where the latter branching is the one used in the original paper.
KLOE (2008)	arXiv:0807.4909	σ	1.00010 - 1.0)2995 IS	R		
ND (1986)	PL 174B, 453	σ	1.02 - 1.3	39 IS	R	0.087	
SND (2000)	BUDKERINP-2000-3	ι5 σ	0.92 - 1.3	18 IS	R		
SND (2000)	NP B569, 158	σ	0.984 - 1.0	060 IS	R		
SND (2011)	JETPL 94, 734	σ		IS	R		2009 data
SND (2016)	PR D94, 112001	σ		IS	R		Reprocessed 2010-2011 data, 2012 data added.
$\omega(783) < \pi^+$ Experiment	$\pi^-\pi^0>\pi^+\pi^-$ Reference	Observable	$\sqrt{s} [\text{GeV}]$	Radiative	e M n fi	Ault. actor	Comment
BABAR. (2008)	PR D76, 092005	σ	1.15 - 2.525	ISR	0	.13380	$\begin{array}{l} \omega \left(\pi^+\pi^-\pi^0\right)\pi^+\pi^- {\rm contribution} \ {\rm is already \ contribution} \ {\rm is already \ contribution} \ {\rm time \ low \ \ low \ $
CMD-2 (2000)	PL 489B, 125	σ	1.285 - 1.38	ISR	0	.1509	
CMD-2 (2000) DM1 (1981)	PL 489B, 125 PL 106B, 155	σ	1.285 - 1.38 1.4425 - 2.145	ISR ISR, lep.	VP = 0	.1509 .1509	
CMD-2 (2000) DM1 (1981) DM2 (1992)	PL 489B, 125 PL 106B, 155 ZP C56, 15	$\sigma \sigma \sigma$	1.285 - 1.38 1.4425 - 2.145 1.34 - 2.4	ISR ISR, lep. ISR, VP	VP 0 0	.1509 .1509 .1509	,

V.V. Bryzgalov, O.V. Zenin (NRC KI – Il-Estimation of the LO hadronic contribution

November 29, 2023

38 / 44

э

$\omega(783)\eta$						
Experiment	Reference	Observable	$\sqrt{s} \; [\text{GeV}]$	Radiative correction	Mult. factor	Comment
CMD-3 (2017)	PL 773B, 150	σ	1.4 - 2.0	ISR	0.107	$\begin{split} & \omega \langle \pi^+ \pi^- \pi^0 \rangle \eta \text{ is counted in} \\ & 2\pi^+ 2\pi^- 2\pi^0 \text{ and } \pi^+ \pi^- \pi^0 \eta \\ & \text{channels, hence this channels, used to derive only } \sigma (\omega (\text{non} - 3\pi)\eta) \\ & = \left(1 - \text{Br}(\omega \to \pi^+ \pi^- \pi^0)\right) \times \\ & \sigma(\omega \eta) = 0.107 \sigma(\omega \eta). \end{split}$
SND (2016)	PR D94, 092002	σ	1.36 - 2.00	ISR	0.107	
$\omega \eta \pi^0$						
Experiment	Reference	Observable	$\sqrt{s} [\text{GeV}]$	Radiative correction	Mult. factor	Comment
SND (2016)	PR D94, 032010	σ		ISR	0.792	$\begin{split} &\eta\langle\pi^+\pi^-\pi^0\rangle\omega\langle\pi^+\pi^-(\pi^0)\rangle\pi 0\\ &\text{final states are counted}\\ &\text{in the } 2\pi^+2\pi^-(2,3)\pi^0\\ &\text{channel, hence the multi-}\\ &\text{plicative factor } 1-\text{Br}(\eta\rightarrow \pi^+\pi^-\pi^0)\text{Br}(\omega\rightarrow \pi^+\pi^-(\pi^0)) \text{ is applied.} \end{split}$

< 口 > < 同

æ

$par{p}$ Experiment	Reference	Observable	\sqrt{s} [Ge	V]	Radiative correction		Mult. factor	Comment	
BABAR (2013) CMD-3 (2016) DM1 (1979) DM2 (1983)	PR D87, 092005 PL 759B, 634 PL 86B, 395 NP B224, 379	σ σ σ	1.877 - 4 1.9 - 2 1.937 - 2 2.0 - 2.2	.500 .0 .135 375	ISR ISR ISR, lep. ISR, VP	VP	1.008 1.008	Radiative Radiative tematics?	correction? correction? sys-
$nar{n}$ Experiment	Reference	Obse	ervable	\sqrt{s}	[GeV]	Ra coi	diative rection	Mult. factor	Comment
Fenice (1998) SND (2011) SND (2012)	NP B517, 3 PR D90, 1120 PR D90, 1120	107 107	$\sigma \sigma \sigma$	1.9 1.8 1.9	9 - 2.44 9 - 2.00 0 - 1.98	ISI ISI ISI	R, VP R R		

프 문 문 프 문

Image: Image:

2hadron(hadrons)										
Experiment	Reference	Observable	$\sqrt{s} [\text{GeV}]$	Radiative correction	Mult. factor	Comment				
AMY (1990)	PR D42, 1339	R	50.0 - 61.40	ISR, VP						
ARGUS (1991)	ZP C54, 13	R	9.360 - 0.000511	ISR, VP						
BES (1999)	PRL 84, 594	R	2.60 - 5.0	ISR, VP						
BES (2001)	hepex-0102003	R	2.0 - 4.80	ISR, VP						
BES (2006)	hepex-0612054	R	3.6500 - 3.8720	ISR, VP						
BES (2009)	arXiv:0903.0900	R	2.60 - 3.65	ISR, VP						
CELLO (1987)	PL 183B, 400	R	14.0 - 46.60	ISR, VP						
CLEO (1984)	PR D29, 1285	R	10.490 - 10.49	ISR, VP						
CLEO (1997)	PR D57, 1350	R	10.520 - 10.52	ISR. VP						
Crystal Ball (1988)	ZP C40, 49	R	9.390 - 9.460	ISR. VP						
Crystal Ball (1990)	SLAC-PUB-5160	R	5.0 - 7.40	ISR. VP						
CUSB (1982)	PRL 48, 906	R	10.430 - 11.090	ISR. VP						
DASP (1980)	ZP C4, 87	R	12.0 - 31.250	ISR. VP						
DASP (1982)	PL 116B, 383	B	9.510 - 9.51	ISB. VP						
DESY-Hamburg-Heidelberg-MPI (1980)	ZP C6, 125	\overrightarrow{B}	9.450 - 10.040	ISB. VP						
JADE (1987)	PBPL 148.67	\tilde{B}	12.0 - 46.470	ISB. VP						
KEDR (2018)	PL 788B, 42	R	1.841 - 3.7201	ISR. VP						
LENA (1982)	ZP C15 299	B	7.440 - 9.4150	ISB VP						
Mark-II (1979)	SLAC-219	B	3.670 - 3.8720	ISB. VP						
Mark-II (1990)	PB D43, 34	\overrightarrow{B}	29.0 - 29.	ISB. VP						
MABK-J (1979)	PL 85B, 463	\tilde{B}	31.570 - 31.57	ISB. VP						
MABK-J (1982)	PL 108B 63	B	34.850 - 34.85	ISB. VP						
MARK-1 (1986)	PB D34 681	R	12.0 - 46.470	ISR VP						
MD-1 (1993)	ZP C70 31	R	7.30 - 10.290	ISR VP						
SLAC-PEP-MAC (1985)	PR D31 1537	R	29.0 - 29	ISR VP						
SLAC-SPEAR (1977)	PRL 39 526	R	3 5980 - 3 8860	ISR VP						
SLAC-SPEAR (1986)	SLAC-PUB-4160	R	3.670 - 4.4960	ISR VP						
TASSO (1984)	PL 138B 441	R	41.450 - 44.20	ISR VP						
TASSO (1984)	ZP C22 307	R	12.0 - 41.40	ISR VP						
TASSO (1990)	ZP C47, 187	R	14.030 - 43.70	ISR VP						
TOPAZ (1990)	DI 224B 525	P	50.0 - 61.40	ISR VP						
TOPAZ (1990)	PL 204B, 323	л. 	57 270 - 59 840	ISR, VI						
TOPAZ (1993) TOPAZ (1993)	DI 247D 171	J	57 770 57 77	ICD						
VENUS (1987)	PL 198B 570	R	50.0 - 52.0	ISR VP						
VENUS (1997) VENUS (1990)	DI 946D 907	n p	62.60 64.0	ISD, VP						
VENUS (1990)	FL 240D, 297	n	03.00 - 04.0	ion, vP						

V.V. Bryzgalov, <u>O.V. Zenin</u> (NRC KI – Il-Estimation of the LO hadronic contribution

프 () () ()

< □ > < 同 >

3

CMD-3 VS CMD-2 F. Ignatov (CMD-3 Coll.), $e^+e^- \rightarrow \pi^+\pi^-$ at CMD-3, 6th Plenary Workshop on the Muon g-2 Theory Initiative, Sep 4-8, 2023 I. Logashenko (CMD-3 Coll.), CMD-2 vs. CMD-3 and future plans at VEP2000, ibid.:

- $\bullet~\sim3-5\%$ discrepancy with SND (VEPP-2M) and SND2k (VEPP-2000). No discrepancy between the latter. SND2k will process full statistics soon.
- ullet \sim 5% discrepancy with ISR experiments: BaBar, BES-III, CLEO, KLOE.
- Most of experiments claim 0.5–1.0% systematics

CMD-3 vs CMD-2:

- Similarities: Z-chamber, analysis strategy.
- Differences: drift chamber (DC), calo., readout electronics, DC resolution, CMD-3 statistics is 30 × CMD-2, analysis implementation. "CMD-2 and CMD-3 are very different realization of the same-type measurement" [I. Logashenko]
- Momentum resolution: $\sim 1.3\%$ (CMD-3) vs $\sim 3\%$ (CMD-2) at p = 400 MeV.

Possible unaccounted sources of systematics for CMD-2 and CMD-3:

- Cosmics (counted as π^{\pm}): unlikely, CMD-2 1994/95/98 data consistent.
- Detector efficiencies: unlikely, good agreement between different CMD-2 runs, same for CMD-3.
- Trigger efficiency: unlikely, same reason
- $\blacktriangleright \pi/\mu/e$ separation missing systematics?
- Event separation: systematics underestimated in CMD-2?
- Fiducial volume: θ-dependence of efficiency in CMD-2 not studied; CMD-3 compares Z-chamber vs LXe calorimeter, θ-distribution analyzed.
- No plans to reanalyze CMD-2 data.

CMD-3 will collect dedicated data for additional systematics study in ~1 year:

- Select E_{c.m.} points around 700 MeV (largest discrepance of CMD-3 vs others)
- Data with Csl calo only (CMD-2 like)
- Data with lower lumi. and shorter bunches effects of z cut and cosmics
- Data with higher amplitudes in the drift chamber (with lower beams) fiducial volume systematics
- Data with full beams and no collisions beam-induced backgrounds
- Different triggers

• Major upgrade of CMD-3 by 2028: the goal is $\sim 0.2 - 0.3\%$ accuracy in $\sigma(\pi\pi)$

▲ back

(日) (周) (王) (王)

$a_{\mu}(had, LO)$ from lattice

• (Euclidean)time-momentum representation for a_{μ} (had, LO) [1]:

$$a_{\mu}(\mathrm{had},\mathrm{LO}) = \alpha_0^2 \int\limits_{0}^{\infty} dt \, \mathcal{K}(t) \mathcal{G}_{1\gamma \mathrm{I}}(t) \, ,$$

where $G_{1\gamma I}(t)$ is the <u>1-photon-irreducible</u> part of the two-point function

$$G(t) = \frac{1}{3e^2} \sum_{\mu=1,2,3} \int d^3x \left\langle J_{\mu}(t,\vec{x}) J_{\mu}(0,0) \right\rangle \,,$$

with the quark EM current

$$\begin{aligned} J_{\mu} &= e \left[\frac{2}{3} \bar{u} \gamma_{\mu} u - \frac{1}{3} \bar{d} \gamma_{\mu} d - \frac{1}{3} \bar{s} \gamma_{\mu} s + \frac{2}{3} \bar{c} \gamma_{\mu} c + \dots \right] \\ \text{and the weight function:} \end{aligned}$$

$$\begin{split} \mathcal{K}(t) &= \int\limits_{0}^{\infty} \frac{dQ^2}{m_{\mu}^2} \omega \left(\frac{Q^2}{m_{\mu}^2}\right) \left[t^2 - \frac{4}{Q^2} \sin^2\left(\frac{Q5}{2}\right)\right] \,,\\ \text{with } \omega(r) &= \left[r + 2 - \sqrt{r(r+4)}\right]^2 / \sqrt{r(r+4)}. \end{split}$$

Lattice calculation of G(t) gives [1]:

 $a_{\mu}(had, LO) = 707.5(2.3)_{stat}(5.0)_{sys}$

- Reaching the sub-percent precision is a huge challenge:
 - Choosing an optimum lattice spacing
 - Numerical noise reduction for large t separations in the G(t) correlator
 - QED and strong-isospin breaking
 - Infinite volume and continuum extrapolations

See [1] for details.

For a review see Section 3 in T. Aoyama et al, Phys. Rept. 887 (2020) 1.

For recent updates see the HVP lattice section of Sixth Plenary Workshop of the Muon g-2 Theory Initiative.

Image: A matrix

▲ back

2023 43/44

- A 🗐 🕨

The source code

```
git clone https://glab.ihep.su/zenin_o/compas_users.git
cd compas_users/
git checkout master
cd ee/
cat README
# Good luck!
#
# Yes, the input cross section data are already checked into the tree.
# Just use this as a starting point.
```

Browse the code online at https://glab.ihep.su/zenin_o/compas_users/

Questions, bugreports: zenin o@ihep.ru

▲ back