
Black holes with electroweak hair

Mikhail S. Volkov

Institut Denis Poisson, University of Tours, FRANCE

/R.Gervalle and M.S.V. Nucl.Phys. B 984 (2022) 115937

+ Nucl.Phys. B 987 (2023) 116112 + articles in prepration/

Protvino, 28 Novembre 2023

Mikhail S. Volkov Black holes with electroweak hair



Brief history of hairy black holes

No-hair conjecture /Ruffini and Wheeler, 1969/: black holes
formed by gravitational collapse are characterized by their
mass, angular momentum, and electric charge = the only
parameters that can survive the collapse ⇒ all black holes are
described by the Kerr-Newman metrics.

No-hair theorems /Bekenstein, 1972,.../ confirm the
conjecture for a number of special cases. No new black holes
holes for gravitating massive scalar, spinor, of vector fields,
also for a scalar field with a positive potential, etc.

First explicit counter-example /M.S.V.+ Gal’tsov, 1989/:
static black holes with Yang-Mills hair. Triggered an
avalanche of discoveries of other hairy black holes.
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Figurative representation of a black hole in action. All details of the infalling matter
are washed out. The final configuration is believed to be uniquely determined by
mass, electric charge, and angular momentum. Figure 1
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Black holes with Yang-Millas hair



Zoo of hairy black holes

before 2000: Einstein-Yang-Mills black holes and their
generalizations – higher gauge groups, additional fields
(Higgs, dilaton), non-spherical solutions, stationary
generalizations, Skyrme black holes, Gauss-Bonnet, . . .
/M.S.V.+Gal’tsov, Phys.Rep. 319 (1999) 1/

after 2000: black holes with scalar hair – engineered potential,
spinning clouds of massive complex scalar /Herdeiro-Radu/,
Horndeski black holes, metric-affine theories, higher
dimensions, stringy corrections, hairy black holes with massive
gravitons /Gervalle+M.S.V., 2020/, etc, . . .
/M.S.V., 1601.0823/

Which of these solutions are physical ?



Present status of hairy black holes

All known solutions have been obtained within simplified
theoretical models. They are nice theoretically but their
physical relevance is not obvious.

To be physically relevant, the solution should be obtained
within the context of the physical theory = Einstein’s gravity
+Standard Model of fundamental interactions
(QCD+electroweak).

Classical configurations in the QCD sector are destroyed by
large quantum corrections ⇒ useless to study. There remains
the gravitating electroweak theory =
Einstein-Weinberg-Salam. This describes the Kerr-Newman
black holes. Does it describe other black holes ?

Only unphysical limits of the electroweak theory have been
analyzed in the black hole context, since in the full theory the
spherical symmetry is lost.



Magnetic electroweak black hole /Maldacena 2020/
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The U(1) hypermagnetic field near the horizon + electroweak “corona”

made of Z,W,Higgs fields + radial magnetic field in the far field. No

symmetry.



Magnetic monopoles in gauge field theories



Dirac monopole /1930/

~B =
P~r

r3
, ⇒ ~∇ · ~B 6= 0, nevertheless ~B = ~∇× ~A±

where the vector potential contais the Dirac string singularity, but
this can be excluded by using two local gauges,

A− = −P(cosϑ− 1)dϕ in northern hemisphere ϑ ∈ [0, π/2 + ε)

A+ = −P(cosϑ+ 1)dϕ in southern hemisphere ϑ ∈ (π/2− ε, π]

The two gauges are related in the equatorial region,

A− = A+ + d (2Pϕ) , ψ+ = exp (ie 2Pϕ)ψ−

hence 2eP = n ∈ Z ⇒ P =
n

2e
/n is called ”magnetic charge”/



Magnetic field produced by a solenoid
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t’Hooft-Polyakov monopole /1974/

Gauge fiel theory with a triplet Higgs field

L = − 1

4e2
F a
µνF

aµν − 1

2
DµΦaDµΦa − λ

4

(
ΦaΦa − Φ2

0

)2
with DµΦa = ∂µΦa + εabcA

b
µΦc .

A globally regular solution with a finite energy and magnetic charge
P = 1/e ⇒ n = 2. Enormously popular theoretically, but no
observational evidence: does not belong to the Standard Model.

What is known about monopoles in the Standard Model ?



Electroweak monopoles in flat space



SU(2)×U(1) electroweak theory of Weinberg-Salam

LWS = − 1

4g2
Wa

µνW
aµν− 1

4g ′2
BµνB

µν−(DµΦ)†DµΦ−β
8

(
Φ†Φ− 1

)2
where Higgs is a complex doublet, Φtr = (φ1, φ2),

Bµν = ∂µBν − ∂νBµ , Wa
µν = ∂µW

a
ν − ∂νWa

µ + εabcW
b
µW

c
ν ,

DµΦ =

(
∂µ −

i

2
Bµ −

i

2
τ aWa

µ

)
Φ

Couplins g ′2 = 0.23, g2 = 1− g ′2, β = 1.88. Electron charge
e = gg ′ defines g0 =

√
4πα/(~~~ce2) ⇒ length and mass scales

l 0 =
1

g0Φ0
= 1.5× 10−16 cm, m0 =

~~~
c

g0Φ0 = 128.6 GeV

The Z ,W , Higgs masses expressed in in unites of m0 are
mz = 1/

√
2, mw = gmz, mh =

√
βmz.



Dirac monopole

B = W 3 =
n

2
(cosϑ± 1) dϕ, W 1 = W 2 = 0, Φ =

(
0
1

)
,

A =
1

e
B, ~B =

P~r

r3
, P =

n

2e
=

n

2gg ′
, n ∈ Z

Energy is infinite. Remarque:

Dirac monopole is stable within the U(1) electrodynamics.

It should be unstable within the electroweak theory because
the magnetic field ~B = P~r/r3 becomes very strong as r → 0
and the electroweak vacuum becomes unstable with respect to
condensation. Nobody studied this.



Cho-Maison monopole /1996/

U(1) hypercharge field B = (cosϑ− 1) dϕ as for the Dirac
monopole with n = 2, combined with non-Abelian

W a
µ dxµ = (1− f (r)) εaik

x idxk

r2
, Φ = φ(r)

(
sin ϑ

2 e
−iϕ

− cos ϑ2

)
= extended non-Abelian core with a pointlike U(1) hypermagnetic
charge in the center. Energy is a sum of a divergent U(1) part and
a finite SU(2) part,

E ≡ EU(1) + ESU(2) =
2π

g ′2

∫ ∞
0

dr

r2
+ ESU(2) /ESU(2) = 15.76/

The total magnetic charge

P =
1

e
=

1

gg ′
=

g ′

g
+

g

g ′
≡ PU(1) + PSU(2)

where PU(1) is pointlike and located at the origin and PSU(2) is
distributed over the space.



Nambu monopole
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Summary

Electroweak theory contains two types of static, spherically
symmetric monopole solutions, both with infinite energy:

Pointlike Dirac monopole for any value of the magnetic charge
n = ±1,±2, . . .

Non-Abelian monopole of Cho-Maison for n = ±2 ⇒
superposition of a pointlike hypermagnetic U(1) monopole
and a regular SU(2) field.

New come new results



Part I: Stability of electroweak monopoles

R.Gervalle and M.S.V., Nucl.Phys. B 984 (2022) 115937



Generic perturbations

W a
µ →W a

µ + δW a
µ , Bµ → Bµ + δBµ, Φ→ Φ + δΦ

Linearizing the equations with respect to δW a
µ , δBµ, δΦ, using the

null spacetime tetrad approach and separating the angular variables
in terms of the spin-weighted spherical harmonics, assuming the
e±iωt time dependence, the perturbation equations reduce to(

− d2

dr2
+ Û

)
Ψ = ω2Ψ ,

where Ψ is a 16-component vector and Û is the symmetric 16× 16
matrix. If there are bound states with ω2 < 0 then the background
is unstable.



Stability of Cho-Maison monopole – Jacobi criterion

(
− d2

dr2
+ Û

)
Ψ = ω2Ψ , Ψtr = (Ψ1, . . . ,Ψ16) ≡ Ψk

One sets ω = 0, finds 16 regular at the origin solutions Ψ
(a)
k (r),

and computs the determinant

∆(r) =
∣∣∣Ψ(a)

k (r)
∣∣∣ a, k = 1, . . . , 16

If ∆(r) > 0 then all eigenvalues ω2 > 0. This was checked for the
Cho-Maison monopole in sectors with j = 0, 1, 2, 3, 4. For higher j
the bound states are unlikely dues to the high centrifugal barrier ⇒

The non-Abelian monopole of Cho-Maison is stable with respect to
all small perturbations



Stability of Dirac monopole

One perturbative channe decouples(
− d2

dr2
+

g2

2
− |n|

2r2

)
ψ = ω2ψ if j =

∣∣∣n
2

∣∣∣− 1 , |n| > 1,

solution oscillates infinitely many times for r → 0,

ψ =
√
r cos

(√
2n − 1

2
ln

r

r0

)
⇒ all Dirac monopoles with |n| > 1 are unstable.

The n = 2 Dirac is unstable in the j = 0 sector: not splitting. The
non-Abelian Cho-Maison monopole also has n = 2 and is stable =
it should be remnant of Dirac’s monopole decay.

Dirac monopoles with |n| > 2 decay in sectors with j > 0 and
should condense to non spherically-symmetric non-Abelian states.



Conjecture

Dirac monopoles with |n| ≥ 2 are conjectured to condense to

non-spherically symmetric non-Abelian states. The magnetic charge splits

into the pointlike ng/(2g ′) at the origin and ng ′/(2g) smoothly

distributed in space. The energy is infinite due to the central singularity.

(Perhaps the latter can be shielded by an event horizon?)

/R.Gervalle and M.S.V. Nucl.Phys. B 984 (2022) 115937/



Part II: Non-Abelian multi-monopoles for |n| > 2

/R.Gervalle and M.S.V. Nucl.Phys. B 987 (2023) 116112/



Axial symmetry

Rebbi-Rossi ansatz (even parity), with Ta = τa/2,

W = TaW
a
µdx

µ = T2 (F1 dr + F2 dϑ) +
n

2
(T3 F3 − T1F4 ) dϕ

Bµdx
µ =

n

2
Y dϕ , Φ =

(
φ1
φ2

)
, n ∈ Z,

F1,F2,F3,F4,Y , φ1, φ2 are 7 real-valued functions of r , ϑ.

System of 7 elliptic PDE’s in the domain r ∈ [0,∞),
ϑ ∈ [0, π/2], assuming the invariance under ϑ→ π − ϑ.

For n = ±2 solution is spherically symmetric = the
Cho-Maison monopole. Iteratively increasing n gives
axially-symmetric monopoles.



Energy

Splits into an infinite U(1) part and a finite SU(2) part

E =

∫
T00
√−g d3x =

2πν2

g ′2

∫ ∞
0

dr

r2
+ Ereg.

Figure: Surfaces of constant T00 for n = 10.



Magnetic charge and electric current isosurfaces

Magnetic charge density ρSU(2) (green) and positive Jϕ and
negative Jϕ densities of the azumuthal electric current for the
n = 4 monopole. The magnetic charge forms a ring whose
magnetic field forces the charged W -bosons to Larmore-orbit,
creating two electric currents. These currents create the magnetic
field which squeezes the magnetic charge toward equatorial plane.



Large charge limit

For large n the U(1) field B becomes very strong and drives to
zero all other fields in the central monopole region thus restoring
the full gauge symmetry. This creates the vacuum bubble in the
monopole center.
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Figure: The norm of the Higgs field |Φ| for n = 100.



Large charge monopole, n = 40.

The vacuum bubble contains the U(1) hypermagnetic field of the

pointlike charge PU(1) = ng/(2g ′). Outside the massive fields condense

to a ring of magnetic charge PSU(2) = ng ′/(2g) squeezed between two

superconducting electric currents. Still farther away there remains only

the field of the Dirac monopole of charge PU(1) + PSU(2) = n/(2e). The

energy is infinite due to the central pointlike charge. Perhaps the latter

can be shielded by an event horizon ?



Part III: Black holes with electroweak hair



Einstein-Weinberg-Salam theory

L =
1

2κ
R + LWS

with

LWS = − 1

4g2
Wa

µνW
aµν− 1

4g ′2
BµνB

µν−(DµΦ)†DµΦ−β
8

(
Φ†Φ− 1

)2
the length scale and mass scale are electroweak, same as before:
l 0 =1.5× 10−16 cm and m0 =128.6 GeV. The couplings

g2 = 0.77, g ′2 = 0.23, β = 1.88, κ =
8πGΦ2

0

c4
= 5.42× 10−33.



Equations to solve

Electroweak:

∇µBµν = g ′2
i

2
(Φ†DνΦ− (DνΦ)†Φ),

DµWa
µν = g2 i

2
(Φ†τ aDνΦ− (DνΦ)†τ aΦ),

DµD
µΦ− β

4
(Φ†Φ− 1)Φ = 0,

Einstein:

Gµν = κTµν where κ ∼ 10−33 is very small and

Tµν =
1

g2
Wa

µσW
a σ
ν +

1

g ′ 2
BµσB

σ
ν + 2D(µΦ†Dν)Φ + gµνLWS

=30 coupled equations. A simple solution:



Magnetically charged Reissner-Nordstrom

Same electroweak fields as for the Dirac monopole,

B = W 3 =
n

2
(cosϑ± 1) dϕ, W 1 = W 2 = 0, Φ =

(
0
1

)
,

and the RN metric,

ds2 = −N(r) dt2 +
dr2

N(r)
+ r2

(
dϑ2 + sin2 ϑ dϕ2

)
,

N(r) = 1− 2M

r
+

Q2

r2
, Q2 =

κn2

8e2
, n ∈ Z.

The event horizon is at rH = M +
√
M2 − Q2.

This solution is stable at large rH but becomes unstable at small rH



Stability of Reissner-Nordstrom

The same instability as for the Dirac monopole: for

j = |n|/2− 1, |n| > 1) one obtains the one-channel problem(
− d2

dr2?
+ N(r)

[
g2

2
− |n|

2r2

])
ψ(r) = ω2ψ(r)

with dr? = dr/N(r). In flat space N(r) = 1 and there are infinitely
many bound states with ω2 < 0 ⇒ Dirac monopoles are unstable.

In curved space N(r) ≤ 1 ⇒ a finite number of bound states if
rH < r0H and no bound states if rH > r0H . For rH = r0H the first
bound state appears as a static zero mode ψ0(r) which
approximates the W -condensate = black hole hair.



Perturbative black hole hair

Values r0H(n) for which the zero mode appears

n 2 4 6 10 20 40 100 200

r0H 0.89 1.47 1.93 2.69 4.12 6.19 10.33 15.03

The mode is maximal at the horizon and proportional to Yjm(ϑ, ϕ)
with j = |n/2| − 1, describes the W-current tangential to the
horizon. This current produce magnetic and Z-fluxes orthogonal to
the horizon= vortices of finite length =corona. Schematically,



Non-perturvative solutions

Hairy black holes cannot be spherically symmetric for |n| > 2 but
can be axially symmetric:

ds2 = −e2UN(r) dt2 + e2k−2U
(

dr2

N(r)
+ r2dϑ2 + e2w r2 sin2 ϑdϕ2

)
,

W = TaW
a
µdx

µ = T2 (F1 dr + F2 dϑ) +
n

2
(T3 F3 − T1F4 ) dϕ

Bµdx
µ =

n

2
Ydϕ , Φ =

(
φ1
φ2

)
Ta = τa/2 ,

where U, k ,w ,F1,F2,F3,F4,Y , φ1, φ2 are 10 real functions of r , ϑ
and N(r) = 1− rH/r where rH is the black hole “size”.

10 coupled PDE’s to solve. For n = ±2 the solution is spherically
symmetric. Iteratively increasing n gives axially-symmetric black
holes. For rH ≈ r0H they are slightly hairy, more hair grows as rH
decreases.



Decreasing the horizon size rH
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ADM mass

− g00 = 1− 2M

r
+ . . . ,

M =
kHAH

4π
+

κ

4π

∫
r>rH

(2T0̂0̂ + T )
√−g d3x

Hairy solutions are less energetic than the RN of the same size.
Their minimal size is also smaller, as PU(1) < P = PU(1) + PSU(2).

8

10

12

14

15.76

rexH 0.1 0.3 0.5 0.7 0.8983

M
h

rH

Hairy
RN

10.27

14

18

10.27 15 20 25 30

M
/
M

P
l

rH/LPl

Hairy
RN



Extreme limit

As rH approaches the lower bound rH → rmin
H , the horizon

becomes degenerate and the temperature vanishes.

The extreme hairy black hole contains inside only a part of
the magnetic charge, PU(1) = ng/(2g ′), and is smaller than
the extreme RN black hole containing inside the total charge
P = n/(2gg ′).

Close to the horizon the hypermagnetic field B ∝ |n|/r2 is
very strong and drives to zero the SU(2) and Higgs fields.
This creates a bubble of symmetric phase where the geometry
is the extreme RN-de Sitter for the charge PU(1) = ng/(2g ′)
and cosmological constant Λ = κβ/8. The horizon size

rmin
H =

√
κ|n|

2
√

2g ′
≪ rhair ∼

√
|n|



Horizon size vs hair size
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horizon region size is parametrically small
as compared to the hair region size

The hair decoples from the horizon and
lives in flat geometry and reduces to the
flat space monopole solution



Structure of extreme solutions

Inside the central bubble: a tiny RNdS black hole supporting
the hypermagnetic field of charge PU(1) = ng/(2g ′) which
suppresses the other fields and restores the full electroweak
symmetry:

B =
n

2r2
, W a

µ = 0, Φ = 0, RNdS geometry

Bubble wall = hair: a condensate of massive W ,Z ,Φ carrying
the magnetic charge PSU(2) = ng ′/(2g).

Far field region: All massive fields vanish, there remains radial
magnetic field of charge PU(1) + PSU(2),

~B =
n

2e

~r

r3
, Z = W = 0, Φ =

(
0
1

)
Bubble=hair size, energy, and quadrupole moments:

rhair ∼
√
|n|, Mhair ∼ 10|n|3/2, QWS ∼ n2, QG ∼ κQWS



Extreme black hole for n = 40.

At the center – a tiny extreme RNdS black hole surrounded by the

vacuum bubble. Outside the bubble – a condense of the massive fields

forming rings. Far away – the radial magnetic field.



Increasing the magnetic charge n

Maximal charge n: The minimal value of the event horizon

rmin
H ∝ √κ |n| increases with n faster than the maximal value

rmax
H ∝ √n. The two merge for n ∼ 1/κ ≈ 1032 . Then

rH ≈ 1 cm, M ≈ MU(1) ≈ MSU(2)+Higgs ≈ 1025 kg,

typical for planetary size black holes ⇒ very very large for
hairy black holes.

For a given n there should be also |n| different non-axially
symmetric hairy black holes with symmetries of Yjm(ϑ, ϕ),
j = |n/2| − 1 ⇒ CORONA. Their number is the same as the
black hole entropy S ∼ r2H ∼ |n| = /also entropy?/.



Conclusion

Solutions describing black hole with electroweak hair are
constructed. They can be large and perhaps

astrophysically relevant


