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Brief history of hairy black holes

@ No-hair conjecture /Ruffini and Wheeler, 1969/: black holes
formed by gravitational collapse are characterized by their
mass, angular momentum, and electric charge = the only
parameters that can survive the collapse = all black holes are
described by the Kerr-Newman metrics.

@ No-hair theorems /Bekenstein, 1972,.../ confirm the
conjecture for a number of special cases. No new black holes
holes for gravitating massive scalar, spinor, of vector fields,
also for a scalar field with a positive potential, etc.

o First explicit counter-example /M.S.V.+ Gal'tsov, 1989/:
static black holes with Yang-Mills hair. Triggered an
avalanche of discoveries of other hairy black holes.
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Black holes with Yang-Millas hair

Non-Abelian Einstein-Yang-Mills black holes

M.S. VolkovandD.V. Gal'tsov
M. V. Lomonosov Moscow State University

(Submitted 7 September 1989)
Pis’ma Zh. Eksp. Teor. Fiz. 50, No. 7,312-315 (10 October 1989)

Solutions of the self-consistent system of Einstein-Yang-Mills equations with the
SU(2) group are derived to describe black holes with a non-Abelian structure of
gauge fields in the external region.

In the case of the electrovacuum, the most general family of solutions describing
spherically symmetric black holes is the two-parameter Reissner—-Nordstrom family,
which is characterized by a mass M and an electric charge Q. It was recently shown
for the Einstein-Yang-Mills systems of equations with the SU(2) group that a corre-
sponding assertion holds when the hold has a nonvanishing color-magnetic charge. In
this case the structure of the Yang-Mills hair is effectively Abelian.' In the present
letter we numerically construct a family of definitely non-Abelian solutions for Ein-
stein-Yang—Mills black holes in the case of zero magnetic charge. These solutions are
characterized by metrics which asymptotically approach the Schwarzschild metric far
from the horizon but are otherwise distinct from metrics of the Reissner—Nordstrom
family. In addition to the complete Schwarzschild metric, the family of solutions is
narametrized bv a diserete value of 7: the number of nodes of the ocance function For a



Zoo of hairy black holes

@ before 2000: Einstein-Yang-Mills black holes and their
generalizations — higher gauge groups, additional fields
(Higgs, dilaton), non-spherical solutions, stationary
generalizations, Skyrme black holes, Gauss-Bonnet, ...
/M.S.V.4+Gal'tsov, Phys.Rep. 319 (1999) 1/

o after 2000: black holes with scalar hair — engineered potential,
spinning clouds of massive complex scalar /Herdeiro-Radu/,
Horndeski black holes, metric-affine theories, higher
dimensions, stringy corrections, hairy black holes with massive
gravitons /Gervalle+M.S.V., 2020/, etc, ...

/M.S.V., 1601.0823/

@ Which of these solutions are physical 7



Present status of hairy black holes

@ All known solutions have been obtained within simplified
theoretical models. They are nice theoretically but their
physical relevance is not obvious.

o To be physically relevant, the solution should be obtained
within the context of the physical theory = Einstein’s gravity
+Standard Model of fundamental interactions
(QCD+electroweak).

o Classical configurations in the QCD sector are destroyed by
large quantum corrections = useless to study. There remains
the gravitating electroweak theory =
Einstein-Weinberg-Salam. This describes the Kerr-Newman
black holes. Does it describe other black holes ?

@ Only unphysical limits of the electroweak theory have been
analyzed in the black hole context, since in the full theory the
spherical symmetry is lost.



Magnetic electroweak black hole /Maldacena 2020/

The U(1) hypermagnetic field near the horizon + electroweak “corona”
made of Z,W,Higgs fields 4 radial magnetic field in the far field. No
symmetry.



Magnetic monopoles in gauge field theories



Dirac monopole /1930/

G
B=-,
p

= V-B#0, nevertheless B =V x A

where the vector potential contais the Dirac string singularity, but
this can be excluded by using two local gauges,

A_ = —P(cos? — 1)dy in northern hemisphere ¢ € [0,7/2+ €)
A; = —P(cos? + 1)dy in southern hemisphere 9 € (7/2 — €, 7]

The two gauges are related in the equatorial region,

A_=AL +d(2Py), i =exp(ie2Pp)_

hence 2eP=necZ = |P = e /n is called "magnetic charge"/
e




Magnetic field produced by a solenoid
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t'Hooft-Polyakov monopole /1974 /

Gauge fiel theory with a triplet Higgs field

A

1
4

L=
4e?

a apv 1 a a aga 2\2
Fa, Fo — 5D, ®°D!o7 — 2 (0707 — &F)

with D,®? = 9, + €, ALDC.
A globally regular solution with a finite energy and magnetic charge

P=1/e = n=2. Enormously popular theoretically, but no
observational evidence: does not belong to the Standard Model.

What is known about monopoles in the Standard Model ?



Electroweak monopoles in flat space



SU(2)xU(1) electroweak theory of Weinberg-Salam

1 1
Lws = ——5 W3, W' —
W5 4g2 4g7

2
BWB“”—(D“d))TD“d)—g (o0 1)

where Higgs is a complex doublet, &' = (¢1, ¢2),

Bu = 9.B,—9,B,, Wi, =0,W2— W2+ e WEWE,
i

D& = <au ~5Bu- ;Tawg> ®

Couplins g”> = 0.23, g2 =1 — g’?, 3 = 1.88. Electron charge
e = gg’ defines g, = \/4ma/(hce?) = length and mass scales

Iy =

h
= =15x10"1% cm, mg= — g,®g = 128.6 GeV
200 e 8o

The Z, W, Higgs masses expressed in in unites of mg are

mz == 1/\/51 mw == gmzv mh - \/Bml'



Dirac monopole

B=W3 = g(cosﬁil)dcp, W= w2=o, ¢:<(1)>,
1 - Pr n n
A 25 b= 3 e 2gg ne

Energy is infinite. Remarque:

e Dirac monopole is stable within the U(1) electrodynamics.

@ It should be unstable within the electroweak theory because
the magnetic field B= PF/r3 becomes very strong as r — 0
and the electroweak vacuum becomes unstable with respect to
condensation. Nobody studied this.



Cho-Maison monopole /1996/

U(1) hypercharge field B = (cos? — 1) dp as for the Dirac
monopole with n = 2, combined with non-Abelian
xdxk sin % e~
Wi dxt = (1—f£(r)) €aik— 3 ® = ¢(r) ( —cz:osg )
= extended non-Abelian core with a pointlike U(1) hypermagnetic

charge in the center. Energy is a sum of a divergent U(1) part and
a finite SU(2) part,

27 [ dr
E = Eyq) + Esu(e) = g/2/0 o Esu) /Esu) = 15.76/

The total magnetic charge

1 1 g g_
T w g Ty e
where Py(1) is pointlike and located at the origin and Psy(2) is
distributed over the space.



Nambu monopole
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Electroweak theory contains two types of static, spherically
symmetric monopole solutions, both with infinite energy:

o Pointlike Dirac monopole for any value of the magnetic charge
n==41,+2 ...

@ Non-Abelian monopole of Cho-Maison for n = £2 =
superposition of a pointlike hypermagnetic U(1) monopole
and a regular SU(2) field.

New come new results



Part |: Stability of electroweak monopoles

R.Gervalle and M.S.V., Nucl.Phys. B 984 (2022) 115937



Generic perturbations

Wi — WS+ WS, B, — B, + 6By, S — & +50

Linearizing the equations with respect to dW?2, B, 6, using the
null spacetime tetrad approach and separating the angular variables
in terms of the spin-weighted spherical harmonics, assuming the
et/“t time dependence, the perturbation equations reduce to

d? - 2
<—dr2+U>W:w \U,

where W is a 16-component vector and U is the symmetric 16 x 16
matrix. If there are bound states with w? < 0 then the background
is unstable.



Stability of Cho-Maison monopole — Jacobi criterion

> &
<—dr2+U>\U:w2‘U, \I!“:(\Ul,...,\lllﬁ)ztllk

One sets w = 0, finds 16 regular at the origin solutions \Uia)(r),
and computs the determinant

Ar) = (w‘k"’)(r) ak=1,...,16

If A(r) > 0 then all eigenvalues w? > 0. This was checked for the
Cho-Maison monopole in sectors with j = 0,1,2,3,4. For higher j
the bound states are unlikely dues to the high centrifugal barrier =

The non-Abelian monopole of Cho-Maison is stable with respect to
all small perturbations



Stability of Dirac monopole

One perturbative channe decouples

d? g% |n| 2 n
—_ —_— = f .: ‘*’ —1, ].,
( dr2+ > 2r2>¢ w Y if |j 5 |n| >

solution oscillates infinitely many times for r — 0,

Y = \/r cos <2n—1|nr>
2 14}

= all Dirac monopoles with |n| > 1 are unstable.

The n = 2 Dirac is unstable in the j = 0 sector: not splitting. The
non-Abelian Cho-Maison monopole also has n = 2 and is stable =
it should be remnant of Dirac’'s monopole decay.

Dirac monopoles with |n| > 2 decay in sectors with j > 0 and
should condense to non spherically-symmetric non-Abelian states.



Dirac monopoles with |n| > 2 are conjectured to condense to
non-spherically symmetric non-Abelian states. The magnetic charge splits
into the pointlike ng/(2g’) at the origin and ng’/(2g) smoothly
distributed in space. The energy is infinite due to the central singularity.
(Perhaps the latter can be shielded by an event horizon?)

/R.Gervalle and M.S.V. Nucl.Phys. B 984 (2022) 115937/



Part II: Non-Abelian multi-monopoles for |n| > 2

/R.Gervalle and M.S.V. Nucl.Phys. B 987 (2023) 116112/



Axial symmetry

Rebbi-Rossi ansatz (even parity), with T, = 7,/2,

W =T, Widx* = Ty (Fidr+F>dd)+ g (T3 F3 — T1Fs ) d

@2

Fi,Fo, F3, F4, Y, ¢1, ¢ are 7 real-valued functions of r, .

B.dx" = nggo, ¢:<¢1>, nez,

o System of 7 elliptic PDE'’s in the domain r € [0, c0),
9 € [0,7/2], assuming the invariance under ¥ — 7 — ¥.

@ For n = £2 solution is spherically symmetric = the
Cho-Maison monopole. lteratively increasing n gives
axially-symmetric monopoles.



Splits into an infinite U(1) part and a finite SU(2) part

2 2 e’}
E:/Toox/—gd3x: = / ar
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Figure: Surfaces of constant Tgog for n = 10



Magnetic charge and electric current isosurfaces

Magnetic charge density ps/(2) (green) and positive J,, and
negative J, densities of the azumuthal electric current for the

n = 4 monopole. The magnetic charge forms a ring whose
magnetic field forces the charged W-bosons to Larmore-orbit,
creating two electric currents. These currents create the magnetic
field which squeezes the magnetic charge toward equatorial plane.



Large charge limit

For large n the U(1) field B becomes very strong and drives to
zero all other fields in the central monopole region thus restoring
the full gauge symmetry. This creates the vacuum bubble in the

monopole center.

Figure: The norm of the Higgs field |®| for n = 100.



Large charge monopole, n = 40.

The vacuum bubble contains the U(1) hypermagnetic field of the
pointlike charge Py(1) = ng/(2g’). Outside the massive fields condense
to a ring of magnetic charge Psy(2) = ng’/(2g) squeezed between two
superconducting electric currents. Still farther away there remains only
the field of the Dirac monopole of charge Py(1) + Psu(2) = n/(2e). The
energy is infinite due to the central pointlike charge. Perhaps the latter
can be shielded by an event horizon 7



Part |ll: Black holes with electroweak hair



Einstein-Weinberg-Salam theory

_ L

£2/€

R + Lws

with

1 1 B 2
Lws =4 3 Wi W" B B" ~(D,®) D" o— 2 (chcb - 1)
the length scale and mass scale are electroweak, same as before:

lg =1.5 x 107%® cm and mg =128.6 GeV. The couplings

8rG B2
g2 =077, g2 =023, B—188, x— 14 0 _ 542 %103,




Equations to solve

Electroweak:
VHB,, = g é (o1D,® — (D, ®)'d),

D'W;, = g2 5 (¢17°D,® - (D,9)'7°0),

D,D"® — g (¢Td — 1) =0,
Einstein:
Gw = KkTw where k ~ 10733 s very small and
Tw = g12 W, W27+ ;25,“, B,” + 2D, ®'D,y® + g L

=30 coupled equations. A simple solution:



Magnetically charged Reissner-Nordstrom

Same electroweak fields as for the Dirac monopole,

B:W3:g(cosz9i1)d<p, Wi=w2=0 o= <(1)>

and the RN metric,

d 2
ds® = —N(r) dt? + o + r? (d192 + sin® ﬂdgo2) ,
N(r)
2M Q2 5  KN?
Ni=1-=—"—+"% @ =g% nel

The event horizon is at ry = M + VM2 — Q2.

This solution is stable at large ry but becomes unstable at small ry




Stability of Reissner-Nordstrom

The same instability as for the Dirac monopole: for
’j =|n|/2—-1, |n| >1) ‘ one obtains the one-channel problem

(—j; + N(r) [g; - 2':'4) ¥(r) = w?y(r)

with dr, = dr/N(r). In flat space N(r) = 1 and there are infinitely
many bound states with w? < 0 = Dirac monopoles are unstable.

In curved space N(r) <1 = a finite number of bound states if
riy < rY and no bound states if ryy > r% . For ry = rY the first
bound state appears as a static zero mode p(r) which
approximates the W-condensate = black hole hair.



Perturbative black hole hair

Values r%(n) for which the zero mode appears

n 2 4 6 10 20 40 100 200
r,f_), 089 | 147 | 193 | 269 | 412 | 6.19 | 10.33 | 15.03

The mode is maximal at the horizon and proportional to Yjm(¥, ¢)
with j = |n/2| — 1, describes the W-current tangential to the
horizon. This current produce magnetic and Z-fluxes orthogonal to
the horizon= vortices of finite length =corona. Schematically,




Non-perturvative solutions

Hairy black holes cannot be spherically symmetric for |n| > 2 but
can be axially symmetric:

dr?

ds?> = —e?YN(r) dt? + > 2V <
(r) NG

+ r2dy? + €% r?sin? 19d<p2) ,

W = TaWZdXM =1T5 (Fl dr+ F» dﬁ) + 5 (T3 F3—T1F4 ) ng
n
B =2 Ydp, 0= (i;) T,=1,/2,

where U, k, w, F1, Fo, F3, F4, Y, ¢1, ¢2 are 10 real functions of r, 1
and N(r) =1 — ry/r where ry is the black hole “size”.

10 coupled PDE's to solve. For n = +2 the solution is spherically
symmetric. Iteratively increasing n gives axially-symmetric black
holes. For ry ~ r,(_), they are slightly hairy, more hair grows as ry
decreases.



Decreasing the horizon size ry
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Hairy solutions are less energetic than the RN of the same size.
Their minimal size is also smaller, as Py(1) < P = Py(1) + Psu(e)-
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Extreme limit

@ As ry approaches the lower bound ry — r,r_,nin, the horizon
becomes degenerate and the temperature vanishes.

@ The extreme hairy black hole contains inside only a part of
the magnetic charge, Py1) = ng/(2g’), and is smaller than
the extreme RN black hole containing inside the total charge

P =n/(2gg").

o Close to the horizon the hypermagnetic field B o< |n|/r? is
very strong and drives to zero the SU(2) and Higgs fields.
This creates a bubble of symmetric phase where the geometry
is the extreme RN-de Sitter for the charge Py(1) = ng/(2g’)
and cosmological constant A = k/3/8. The horizon size

rmin _ \/E|n|
H — 2\[3'/

K Mair ™~ ‘n‘



Horizon size vs hair size
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Structure of extreme solutions

@ Inside the central bubble: a tiny RNdS black hole supporting
the hypermagnetic field of charge Py(1) = ng/(2g’) which
suppresses the other fields and restores the full electroweak

symmetry:
n
B= 5,2 W7 =0, &=0, RNdS geometry
@ Bubble wall = hair: a condensate of massive W, Z, ® carrying

the magnetic charge Psy(o) = ng'/(2g).
o Far field region: All massive fields vanish, there remains radial
magnetic field of charge Py(1) + Psu(2).

r 0
L Z=W=0 &=
2e r3’ 0, <1>

o Bubble=hair size, energy, and quadrupole moments:

B=

fhair ~ V10l, Muair ~ 100>, Qws ~ n?, Qa ~ kQws



Extreme black hole for n = 40.

At the center — a tiny extreme RNdS black hole surrounded by the
vacuum bubble. Outside the bubble — a condense of the massive fields
forming rings. Far away — the radial magnetic field.



Increasing the magnetic charge n

@ Maximal charge n: The minimal value of the event horizon
rif™ oc \/k |n| increases with n faster than the maximal value

rif® o< y/n. The two merge for |n ~ 1/k ~ 10%2|. Then

rH~lem, M= Myay & Msyo)+iiges ~ 107 kg,

typical for planetary size black holes = very very large for
hairy black holes.

o For a given n there should be also |n| different non-axially
symmetric hairy black holes with symmetries of Yj, (¥, ¢),
J=1n/2| —1 = CORONA. Their number is the same as the
black hole entropy S ~ r2 ~ |n| = /also entropy?/.



Conclusion

Solutions describing black hole with electroweak hair are
constructed. They can be large and perhaps
astrophysically relevant



