

Recent LHCb results on heavy hadron spectroscopy

Dmitrii Pereima NRC «Kurchatov Institute» (on behalf of the LHCb collaboration)

The research was supported by the Grant Council of the President of the Russian Federation № MK-894.2022.1.2

XXXV International Workshop on High Energy Physics «From Quarks to Galaxies: Elucidating Dark Sides» Protvino, 28 November – 1 December 2023

Outline

Introduction

Conventional spectroscopy:

- observation of new excited Ω_c^0 states;
- observation of new excited Ξ_{b}^{0} states;
- observation of the decay $\Xi_b^- \to \Lambda_b^0 \pi^-$;
- charmonia decays into $K^0_s K^\pm \pi^\mp$;
- study of the new B⁺_c meson decays;

Exotic spectroscopy:

- evidence for the $T^{\theta}_{\psi s1}(4000)^0$ state;
- observation of $T^a_{c\bar{s}0}(2900)^{++}$ and $T^a_{c\bar{s}0}(2900)^0$ states;
- study of the $B^+ \to D_s^+ D_s^- K^+$ decay;
- observation of $P_{\psi s}^{\Lambda}(4338)^0$ state;

Summary and prospects

Introduction

- LHCb detector;
- motivation of heavy hadron spectroscopy;
- event reconstruction and selection.

LHCb detector

patrick.koppenburg@cern.ch 2023-08-16

Features:

- high b-quark production cross-section at the Large Hadron Collider energies;
- rapidity range between 2 < y < 4.5;
- allows to study all kinds of Bmesons: B^{\pm} , B^{0} , B^{0}_{s} , B^{\pm}_{c} , beauty baryons (their excitations), exotic states:
- high track-multipilicty \Rightarrow effective multi-level trigger system;
- proton-proton collision energies and collected luminosities:
 - 2011-2012 (Run 1): $\sqrt{s} = 7, 8$ TeV, $\mathcal{L} \sim 3 \, \text{fb}^{-1}$:

 $\sigma_{h\overline{h}} \approx 280 \mu b;$

2015-2018 (Run 2): √s = 13 TeV,

 $\mathcal{L} \sim 6 \, \text{fb}^{-1}$:

 $\sigma_{h\overline{h}} \approx 500 \mu b.$

LHCb experiment is a very powerful **tool** for heavy hadron spectroscopy \Rightarrow contribute to major part of hadrons discovered at LHC (64 new hadrons).

[https://www.nikhef.nl/~pkoppenb/particles.html]

Motivation

- Study of hadron production provides information for:
 - ✓ quark production mechanisms;
 - hadron formation from quarks (hadronisation);
 - ✓ hadron internal structure.
- Important measurements for quantum chromodynamics (QCD):
 - discrimination among predictions obtained in different QCD approaches.
- Detailed study of hadron properties and decays possible at LHCb:
 - ✓ search for new states;
 - ✓ spin-parity assignments;
 - ✓ polarisation;
 - ✓ amplitude analyses;

✓ branching fractions, lifetimes, masses, widths.

5

Event reconstruction and selection

- well reconstructed and identified tracks;
- primary and secondary vertices separation (requirements on flavour hadron lifetimes);
- daughter tracks originating from the secondary vertex (impact parameter);
- requirements on kinematic parameters;
- background suppression by using multivariate analysis techniques (neural networks, decision trees).

Conventional spectroscopy

- observation of new excited Ω_c^0 states;
- observation of new baryons in $\Xi_b^-\pi^+\pi^-$ and $\Xi_b^0\pi^+\pi^-$ systems;
- observation of the decay $\Xi_b^- \rightarrow \Lambda_b^0 \pi^-$;
- charmonia decays into $K^0_s K^\pm \pi^\mp$
- study of the new B⁺_c meson decays.

[Phys. Rev. Lett. 131 (2023) 131902]

[Phys Rev. Lett. 131 (2023) 171901]

[Phys. Rev. D 108 (2023) 072002]

[Phys. Rev. D 108 (2023) 032010]

[JHEP 07 (2023) 198]

Observation of new excited Ω_c^0 states

Singly charmed baryons consist of one charm quark and two lighter quarks. Such systems provides an ideal testing ground for theories of the strong force provides important insights into the fundamental nature of hadronic matter.

The five narrow excited Ω_c^0 (ssc) states were observed for the first time in Run 1 data in the $\Xi_c^+(usc)(\rightarrow pK^-\pi^+)K^-$ system.

Based on larger Run 2 data sample (\sqrt{s} = 13 TeV, $\mathcal{L} \sim 6$ fb⁻¹) analysis was repeated

Observation of new excited Ω_c^0 states

- confirm Run 1 results;
- two new broad resonances $\Omega_c(3185)^0$ and $\Omega_c(3327)^0$ are observed for the first time;
- their masses and widths are measured;
- quantum numbers remain to be determined.

Observation of new excited Ξ_{b}^{0} states

Investigation of the $\Xi_b^{0,\pm} \pi^+ \pi^-$ is very interesting since contain still missing unobserved states. The CMS collaboration has reported the observation of the new Ξ_b^- (6100) state in 2021.

The LHCb has performed study of **both**, neutral $\Xi_b^0(usb)$ and charged $\Xi_b^-(dsb)/\Xi_b^+(\overline{dsb})$: $\Xi_b^{0,\pm}\pi^+\pi^-$ systems

10

Observation of new excited Ξ_b^0 states

- the $\Xi_b^-(\Xi_b^0)$ candidates are formed from $\Xi_c^0\pi^-(\Xi_c^+\pi^-)$ and $\Xi_c^0\pi^-\pi^+\pi^-(\Xi_c^+\pi^-\pi^+\pi^-)$ combinations;
- Ξ_c^0 and Ξ_c^+ baryons are reconstructed in the $pK^-K^-\pi^+$ and $pK^-\pi^+$ final state;
- then $\Xi_b^{-,0}$ candidates are combined with another pion to form Ξ_b^{*0} , $\Xi_b^{\prime-}$ and Ξ_b^{*-} candidates.

 $\Xi_b^{*-} p$

 π

 Ξ_b

 K^{-}

 Ξ^{0}

Observation of new excited Ξ_b^0 states

The selected $\Xi_b^{*0}, \Xi_b^{\prime-}$ and Ξ_b^{*-} candidates then finally combined with the second oppositecharged pion. [Phys Rev. Lett. 131 (2023) 171901]

- the Ξ_b^- (6100) confirms previous CMS observation [Phys. Rev. Lett. 126 (2021) 252003];
- new Ξ_b^0 (6087) and Ξ_b^0 (6095) states are observed;
- similarity of decay pattern with c-baryon system suggests P-wave states;
- properties of the Ξ_b^{*0} , $\Xi_b'^-$ and Ξ_b^{*-} baryons are measured with best precision;
- additional studies with more data are required to measure quantum numbers.

Observation of the decay $\Xi_h^- \rightarrow \Lambda_h^0 \pi^-$

A previous LHCb study based on Run 1 data showed and evidence (3.2σ) for the strangenesschanging weak $\Xi_b^- \to \Lambda_b^0 (\to \Lambda_c^+ (\to pK^-\pi^+)\pi^-)\pi^-$ decay \Rightarrow updated with Run 2 sample.

$$r_s \equiv \frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \mathcal{B}(\Xi_b^- \to \Lambda_b^0 \pi^-)$$

The fragmentation fractions ratio (f) measured by LHCb to be $\frac{I_{\Xi_b^-}}{f} = (8.2 \pm 0.7 \pm 0.6 \pm 2.5)\%$

[Phys. Rev. D 99 (2019) 052006]

 π^{-}

100

Observation of the decay $\Xi_b^- \to \Lambda_b^0 \pi^-$

In the updated study Λ_b^0 baryons are reconstructed by using two decay modes and then combined with additional π^- candidate to form Ξ_b^- baryon [Phys. Rev. D 108 (2023) 072002]

Consistent with theory predictions based on papers:

- [JHEP 03 (2016) 028];
- [Phys. Rev. D 105 (2022) 094011];
- [Phys. Lett. B750 (2015) 653];
- [Phys. Rev. D 106 (2022) 093005];
- [Phys. Rev. D 93 (2016) 034020].

$$(\Xi_b^- \to \Lambda_b^0 \pi^-) = (0.89 \pm 0.10 \pm 0.07 \pm 0.29)\%,$$

Due to $f_{\Xi_b^-} / f_{\Lambda_b^0}$ determination 14

Charmonia decays into $K_s^0 K^{\pm} \pi^{\mp}$

A study of the high statistic $B^+ \rightarrow K_s^0 K^+ K^- \pi^+$ and $B^+ \rightarrow K_s^0 K^+ K^+ \pi^-$ is performed. The K_s^0 mesons are reconstructed for two categories:

 K_s^0 decaying **inside** vertex detector (K_{sLL}^0);

[Phys. Rev. D 108 (2023) 032010]

 K_s^0 decaying **outside** vertex detector (K_{sDD}^0);

Charmonia decays into $K^0_s K^\pm \pi^\mp$

2

 $m^2(K_s^0\pi^+)$ [GeV²]

6

 $\kappa(2600)$

 $2662 \pm 59 \pm 201$

 $480 \pm 47 \pm$

10

 $m^2(K_s^0\pi^+)$ [GeV²]

Study of the new B_c^+ meson decays

The B_c^+ meson is a bound state of $\overline{b}c$ quarks, firstly observed by the CDF collaboration in 1998

Unique system:

- only one meson with two heavy guarks of different flavours;
- nonrelativistic system \Rightarrow quarkonium spectrum;
- cannot be produced on B-factories;

 B_c^+

 B_c^+

 B_c^+ meson spectroscopy provide significant information about the dynamics of heavy quarks and contribute to the development of theories to describe the strong interaction.

J/ψ

17

The B_c^+ meson was discovered 25 years ago, but still poorly studied and only few decay modes were observed.

- The B_c^+ spectroscopy aimed on:
- study of production mechanism;
- measurement of properties (lifetime, mass);
- searching for new decay channels.

[Phys. Rev. Lett. 113 (2014) 152003] [JHEP 07 (2020) 123]

[Prog. Theor. Exp. Phys. (2020) 083C01]

$$I(J^P) = 0(0^-)$$

Quantum numbers shown are quark-model predictions.

Mass $m = 6274.47 \pm 0.32$ MeV $m_{B_c^+} - m_{B_s^0} = 907.8 \pm 0.5$ MeV Mean life $\tau = (0.510 \pm 0.009) \times 10^{-12}$ s

 B_c^- modes are charge conjugates of the modes below.

$\mathbf{B}_{c}^{+} \rightarrow \mathbf{J}/\mathbf{\Psi}\mathbf{p}\mathbf{\bar{p}}\pi^{+}$ $\mathbf{H}_{c}^{+} \rightarrow \mathbf{J}/\mathbf{\Psi}\mathbf{p}\mathbf{\bar{p}}\pi^{+}$		$\frac{B_{c}^{+} \text{ DECAY MODES } \times B(\overline{b} \rightarrow B_{c})}{J/\psi(1S)\ell^{+}\nu_{\ell} \text{ anything}} \\ \frac{J/\psi(1S)\mu^{+}\nu_{\mu}}{J/\psi(1S)\pi^{+}\nu_{\tau}} \\ \frac{J/\psi(1S)\pi^{+}}{J/\psi(1S)\pi^{+}\pi^{+}\pi^{-}} \\ \frac{J/\psi(1S)\alpha^{+}\pi^{+}\pi^{-}}{J/\psi(1S)\alpha^{+}\pi^{+}\pi^{-}\pi^{-}} \\ \frac{J/\psi(1S)\mu^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}}{J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}} \\ \frac{J/\psi(1S)\mu^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}}{\mu^{+}} \\ \frac{J/\psi(1S)\mu^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}}{\mu^{+}} \\ \frac{J/\psi(1S)\mu^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}}{\mu^{+}} \\ \frac{J/\psi(1S)\mu^{+}\mu^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}}{\mu^{+}} \\ \frac{J/\psi(1S)\mu^{+}\mu^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}}{\mu^{+}} \\ \frac{J/\psi(1S)\mu^{+}\mu^{+}\mu^{+}\pi^{-}\pi^{-}\pi^{-}}{\mu^{+}} \\ \frac{J/\psi(1S)\mu^{+}\mu^{+}\mu^{+}\pi^{-}\pi^{-}\pi^{-}}{\mu^{+}} \\ \frac{J/\psi(1S)\mu^{+}\mu^{+}\mu^{+}\mu^{-}\pi^{-}\pi^{-}}{\mu^{+}} \\ \frac{J/\psi(1S)\mu^{+}\mu^{+}\mu^{+}\mu^{-}\pi^{-}\pi^{-}}{\mu^{+}} \\ \frac{J/\psi(1S)\mu^{+}\mu^{+}\mu^{+}\mu^{-}\pi^{-}\pi^{-}}{\mu^{+}} \\ \frac{J/\psi(1S)\mu^{+}\mu^{+}\mu^{+}\mu^{-}\pi^{-}\pi^{-}}{\mu^{+}} \\ \frac{J/\psi(1S)\mu^{+}\mu^{+}\mu^{+}\mu^{-}\pi^{-}\pi^{-}}{\mu^{+}} \\ \frac{J/\psi(1S)\mu^{+}\mu^{+}\mu^{+}\mu^{-}\pi^{-}\pi^{-}}{\mu^{+}} \\ \frac{J/\psi(1S)\mu^{+}\mu^{+}\mu^{+}\mu^{-}\mu^{-}\pi^{-}}{\mu^{+}} \\ \frac{J/\psi(1S)\mu^{+}\mu^{+}\mu^{+}\mu^{-}\mu^{-}\mu^{-}}{\mu^{+}} \\ \frac{J/\psi(1S)\mu^{+}\mu^{+}\mu^{+}\mu^{-}\mu^{-}\mu^{-}}{\mu^{+}} \\ \frac{J/\psi(1S)\mu^{+}\mu^{+}\mu^{+}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-$	Fraction (Γ _i /Γ) C seen seen seen seen seen not seen seen seen	P Confidence level (MeV/c) 2372 1932 2370 2341 2350 2169 2203 2300
[JHEP 05 (2014) 148]	[JHEP 07 (2023) 066] [Eur. Phys. J. C (2014) 74:2839]	$\psi(2S)\pi^+$	seen	2051
	$(a) \ 10^5 \qquad \qquad$	$J/\psi(1S)D^{0}K^{+}$	seen	1539
$\mathbf{B}^+ \rightarrow \mathbf{I}/\mathbf{I}\mathbf{I}3\mathbf{\pi}^+2\mathbf{\pi}^-$	$ = 5.4 \text{ fb}^{-1} \qquad = Data \qquad $	$J/\psi(15) D^*(2007)^{\circ} K^+$	seen	1411
$\frac{15}{10} = \frac{16}{10} + 16$	$ = \frac{1}{2} = \frac$	$J/\psi(15)D^*(2010)^*K^{*0}$	seen	919
	$-$ Total fit 10^3 $-$ Fake J/ ψ bkg.	$J/\psi(15)D^+$	seen	1122
ğ 10 - , / !	$ \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	$V_{s}(15)D_{s}^{*+}$	seen	1727
Γ Ε Ι 👖 Τ Τ Τ Ι		$J/\psi(15)D_{5}$	seen	1727
		$J/\psi(15)\rho\rho\pi^{+}$	seen	1791
		$\chi_c^0 \pi^+$	$(2.4^{+0.9}_{-0.8}) \times 10^{-5}$	2205
		$p\overline{p}\pi^+$	not seen	2970
	6200 6300 6400 6500 0 1 2 3 4 5 6 7	$D^{0}K^{+}$	seen	2837
$m_{3/0,3\pi^+2\pi^-}$ [GeV/ c^2]	$m(B_s\pi^+)$ [MeV/ C^2] t_{ps} [ps]			

~90% B_c^+ meson decays discovered by the LHCb. Moreover, the experiment **provides record precision** measurements of the masses and lifetimes of heavy hadrons.

Multihadron B_c^+ decays into charmonium (ψ) and light hadrons ($h^{\pm} = \pi^{\pm}, K^{\pm}$), according to the factorisation approach, can be described by the $B_c^{\pm} \rightarrow \psi W^{\pm}$ process, with following W^{\pm} boson transition into light hadrons.

[Z. Phys. C34 (1987) 103; Prog. Part. Nucl. Phys. 21 (1988) 33; Phys. Usp. 38 (1995) 1]

Decay diagrams of studied channels (b) W^+ $w^$ a_1 a_2 a_1 a_1 a_1 a_2 a_1 a_1 a_2 a_1 a_1 a_2 a_1 a_1 a_1 a_2 a_2 a_1 a_2 a_2 a_3 a_1 a_1 a_2 a_1 a_2 a_1 a_2 a_2 a_3 a_1 a_1 a_2 a_2 a_3 a_1 a_1 a_2 a_3 a_3 a_1 a_1 a_1 a_2 a

The model, based on factrorisation approach for the description of studied channels proposed by A. Berezhnoy, A. Luchinsky and A. Likhoded (BLL model).

The model well predicted branching fractions and contributions of intermediate resonances from previous LHCb study of $B_c^{\pm} \rightarrow \psi 3h^{\pm}$ decays. [JHEP 01 (2022) 065]

The prediction power of the BLL model was tested on B_c^+ decays with five $(3\pi^+2\pi^-, K^+K^-\pi^+\pi^-\pi^+)$ and seven $(4\pi^+3\pi^-)$ light hadrons in the final state

• the $B_c^+ \rightarrow J/\psi K^+ K^- \pi^+ \pi^- \pi^+$ decay is observed for the first time;

- the first evidence of the $B_c^+ \rightarrow J/\psi 4\pi^+ 3\pi^-$ decay (secondary vertex with 9 tracks!);
- the $B_c^+ \rightarrow \psi(2S)\pi^+\pi^-\pi^+$ decay is confirmed with $\psi(2S) \rightarrow J/\psi\pi^+\pi^-$ mode;
- the $B_c^+ \rightarrow J/\psi 3\pi^+ 2\pi^-$ decay is confirmed .

To test the BLL model the light hadron systems were investigated

[Phys. Lett. B832 (2022) 137269]

In the $B_c^+ \rightarrow J/\psi K^+ K^- \pi^+ \pi^- \pi^+$ channel the mass combinations of $K^\pm \pi^\mp$ and $K^+ K^-$ systems were studied.

• fit results shows large contributions from intermediate process $B_c^+ \rightarrow J/\psi \overline{K}^{*0} K^+ \pi^- \pi^+$ and $B_c^+ \rightarrow J/\psi K^{*0} K^- \pi^+ \pi^+$ processes;

• the contributions from $B_c^+ \rightarrow J/\psi \phi \pi^+ \pi^- \pi^+$ decays is not seen (agrees with BLL model); [Phys. Lett. B832 (2022) 137269] • the same effects were seen in the $B_c^+ \rightarrow J/\psi K^+ K^- \pi^+$ channel from previous LHCb studies.

Exotic spectroscopy

- evidence for the $T^{\theta}_{\psi s1}(4000)^0$ state;
- observation of $T_{c\overline{s}0}^{a}(2900)^{++}$ and $T_{c\overline{s}0}^{a}(2900)^{0}$ states;
- study of the $B^+ \rightarrow D_s^+ D_s^- K^+$ decay;
- observation of $P_{\Psi s}^{\Lambda}(4338)^0$ state.

[Phys. Rev. Lett. 131 (2023) 131901]

[Phys. Rev. Lett. 131 (2023) 041902;
Phys. Rev. D 108 (2023) 012017]
[Phys. Rev. D 108 (2023) 034012;
Phys. Rev. Lett. 131 (2023) 071901]
[Phys. Rev. Lett. 131 (2023) 031901]

Quark model of hadrons

According to the quark model, all conventional hadrons (mesons and baryons) consist of particles with fractional electric charges - quarks and their corresponding antiparticles (antiquarks).

[Phys. Lett. 8 (1964) 214]

A SCHEMATIC MODEL OF BARYONS AND MESONS st

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), (qqq \bar{q}), etc., while mesons are made out of (q \bar{q}), (qq \bar{q} \bar{q}), etc. It is assuming that the lowest

M. Gell-Mann

Exotic hadrons – everything beyond $q\bar{q}$ -meson and qqq-baryon scheme. Could be various multiquark states, hadron molecules, hybrids, etc. First predicted in 1964 by M.Gell-Mann and G. Zweig

[CERN-TH-412]

In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from AAAAA, AAAAAAA, etc., where A denotes an anti-ace. Similarly, mesons could be formed from AA, AAAA etc. For the low mass mesons and baryons we will assume the simplest possibilities, AA and AAA, that is, "deuces and treys".

Evidence for the $T_{\psi s1}^{\theta}(4000)^0$ state

• $T^{\theta}_{\psi s1}(4000)^+$ and $T^{\theta}_{\psi s1}(4220)^+$ $(c\bar{c}u\bar{s})$ are observed in $B^+ \rightarrow J/\psi \varphi K^+$ decays:

- searching for their isospin partners;
- an ideal process for such search is $B^0 \rightarrow J/\psi \varphi K_s^0$ decay due to isospin symmetry;
- simultaneous fit is performed to $B^0 \rightarrow J/\psi \varphi K_s^0$ and the $B^+ \rightarrow J/\psi \varphi K^+$ samples.

Evidence for the $T_{\psi s1}^{\theta}(4000)^0$ state

- evidence of a $J/\psi K_s^0$ structure with a significance of 4σ is performed;
- denoted as $T_{\psi s1}^{\theta}(4000)^0$ ($c\bar{c}d\bar{s}$), which likely to be the isospin partner of $T_{\psi s1}^{\theta}(4000)^+$ ($c\bar{c}u\bar{s}$);
- determined parameters:

State	Mass (MeV)	Width (MeV)	Fit fraction (%)	ΔM (MeV)
$T^{\theta}_{\psi s1}(4000)^0$	$3991^{+12}_{-10}{}^{+9}_{-17}$	$105^{+29}_{-25}{}^{+17}_{-23}$	$7.9\pm2.5^{+3.0}_{-2.8}$	-12^{+11}_{-10}

Observation of $T^a_{c\bar{s}0}(2900)^{++}$ and $T^a_{c\bar{s}0}(2900)^0$ states

First evidence of open-charm tetraquark candidates with four different flavors ($cs\overline{u}\overline{d}$) was done in $B^+ \rightarrow D^+D^-K^+$ channel

- search for tetraquark candidates, with quark component ($c\overline{s}u\overline{d}$) or ($c\overline{s}\overline{u}d$) can be performed in $B^+ \rightarrow D^-D_s^+\pi^+$ and $B^0 \rightarrow \overline{D}^0D_s^+\pi^-$ decays;
- a combined amplitude analysis of the $B^+ \rightarrow D^- D_s^+ \pi^+$ and $B^0 \rightarrow \overline{D}^0 D_s^+ \pi^-$ decays is performed.

Observation of $T^a_{c\bar{s}0}(2900)^{++}$ and $T^a_{c\bar{s}0}(2900)^0$ states

- Full LHCb data:
 - 4009 $B^0 \rightarrow \overline{D}{}^0 D_s^+ \pi^-$ candidates;
 - **3750** $B^+ \rightarrow D^- D_s^+ \pi^+$ candidates;

Signal purity > 90%

100

Candidates / (0.014 GeV)

LHCb

9 fb⁻¹

2.2

(b)

2.4

2.6

2.8

 $M(D_{s}^{+}\pi^{-})$ (GeV)

3.0

3.2

- structure at 2.9 GeV in $D_s^+\pi^{\pm}$ spectra cannot be well described by any known or new $D_s^{*+,0} \rightarrow \overline{D}^{0,-}\pi^+$ resonances;
- two new $D_s^+ \pi^{\pm}$ exotic resonances are included in the fit model.

Observation of $T^a_{c\bar{s}0}(2900)^{++}$ and $T^a_{c\bar{s}0}(2900)^0$ states

With two additional $D_s^+\pi^\pm$ components, the data is better described

both states prefer J^P = 0⁺ (1⁻ rejected by > 7σ);

• separated fit parameters (mass and width in great agreement); $T^a_{c\bar{s}0}(2900)^0$: $M = 2.892 \pm 0.014 \pm 0.015$ GeV, 80 $\Gamma = 0.119 \pm 0.026 \pm 0.013$ GeV, $T^a_{c\bar{s}0}(2900)^{++}(c\bar{s}u\bar{d})$ is the first doubly- $T^a_{c\bar{s}0}(2900)^{++}$: $M = 2.921 \pm 0.017 \pm 0.020$ GeV, 6.50 $\Gamma = 0.137 \pm 0.032 \pm 0.017$ GeV, • Combined fit parameters (assume both belong to the same isospin triplet) $M = 2.908 \pm 0.011 \pm 0.020$ GeV, Combined significance >90 $\Gamma = 0.136 \pm 0.023 \pm 0.013$ GeV,

Study of the $B^+ \to D^+_s D^-_s K^+$ decay

The family of $B \rightarrow D_{(s)}^{(*)}\overline{D}_{(s)}^{(*)}K^{(*)}$ decays proceeds at the quark level via the Cabibbo-favored $\overline{b} \rightarrow c\overline{cs}$ transition. Such decays provide an excellent laboratory for investigations of open- and hidden-charm meson spectroscopy, covering both conventional and **exotic states**.

Near threshold enhancement in $D_s^+ D_s^-$ mass spectra \Rightarrow amplitude analysis is performed [Phys. Rev. D 108 (2023) 034012; Phys. Rev. Lett. 131 (2023) 071901] 90 8 LHCb LHCb - Data 80 9 fb⁻¹ Candidates / (4 MeV) 9 fb⁻¹ — Fit 70 $N = 360 \pm 22$ $\cdots B^+ \rightarrow D_s^+ D_s^- K^+$ $n(D_s^-K^+)^2$ [GeV²] 60 NEW! ····· Background 50 S 40 30 Yield / 20 10 5200 5250 5300 5350 16 18 20 22 $m(D_s^+D_s^-K^+)$ [MeV] $m(D_{s}^{+}D_{s}^{-})^{2}$ [GeV²]

Study of the $B^+ \to D^+_s D^-_s K^+$ decay

• Baseline model:

[Phys. Rev. D 108 (2023) 034012; Phys. Rev. Lett. 131 (2023) 071901]

- X₀(4140) (to describe the dip at 4.14 GeV via interference);
- non-resonant;
- new X(3960) state (to describe the near-threshold enhancement);
- ψ(4260), ψ(4660).

- X(3960) state threshold enhancement:
 - $J^{PC} = 0^{++}$ preferred over 1⁻⁻ and 2⁺⁺ by 9.3 σ and 12.3 σ ;
- X₀(4140) dip at 4.14 GeV via interference:
 - $J^{PC} = 0^{++}$ preferred over 1^{--} and 2^{++} by 3.5 σ and 4.2 σ ;
 - the dip can be also described by $J/\psi \varphi \leftrightarrow D_s^+ D_s^-$ scattering;
- X(3960) state could be the same as $\chi_{c0}(3930)$ observed in D⁺D⁻? • $\frac{\Gamma(X \rightarrow D^+D^-)}{\Gamma(X \rightarrow D_s^+D_s^-)} = 0.29 \pm 0.09 \pm 0.10 \pm 0.08;$
 - $\overline{\Gamma(X \rightarrow D_s^+ D_s^-)} = 0.29 \pm 0.09 \pm 0.10 \pm 0.08;$ • incompatible with the suppression of ss pair from vacuum (w.r.t
 - $u\bar{u}$ or $d\bar{d}$) and the smaller phase-space volume of $D_s^+D_s^-$;
 - possible exotic candidate with minimal quark content ($c\overline{c}s\overline{s}$).

Observation of $P_{\Psi s}^{\Lambda}(4338)^0$ state

The mass of pentaquarks is found to be close to charm-baryon and charm-meson threshold. Their interpretation as hadronic molecular-state is one of the popular theories.

• the $B^+ \rightarrow J/\psi\Lambda p$ is an ideal channel to search pentaquark candidates related to the thresholds of: $\Xi_c^+ D^-$, $\Lambda_c^+ D_s^-$ and $\Lambda_c^+ \overline{D}^0$, $\Sigma_c \overline{D}^{(*)}$ at the same time; $J/\psi\Lambda$ $J/\psi p$ $J/\psi p$ B^+ $W^+ \xrightarrow{c} C_{cs}$ J/ψ

ū

32

large statistic ~4400 events (full Run 1 and Run 2 data) with 93% purity;

six-dimensional fit is performed.

Observation of $P^{\Lambda}_{\psi s}(4338)^0$ state

• start from the K^* model: $K^*_{2,3,4}$ can't describe the data well;

• nominal model with non-resonant $\Lambda \overline{p}$, $J/\psi \overline{p}$ and $P^{\Lambda}_{\psi s}$ component significantly improved the fit.

The $P_{\psi s}^{\Lambda}(4338)^0$ state is **observed for the first time** (significance > 10 σ w.r.t. null hypo):

quark component: (ccuds);

Breit-Wigner mass and width are determined;

- first observation of a hidden-charm pentaquark candidate with strangeness
- J^P = 1/2⁻ is preferred;

 $M_{P_{\psi s}^{\Lambda}} = 4338.2 \pm 0.7 \pm 0.4 \text{ MeV}$ $\Gamma_{P_{\psi s}^{\Lambda}} = 7.0 \pm 1.2 \pm 1.3 \text{ MeV}^{2}$

- close to $\Xi_c^+ D^-$ threshold and J^P consistent with S-wave $\Xi_c \overline{D}$ molecular state;
- most precise single measurement to date of the B⁻ mass. $M_{B^-} = 5279.44 \pm 0.05 \pm 0.07$ MeV ₃₃

Summary and prospects

The most recent interesting results are presented:

- new conventional hadrons are observed: $\Omega_c(3185)^0$, $\Omega_c(3327)^0$, Ξ_b^0 (6087), Ξ_b^0 (6095);
- first observation of the $\Xi_b^- \rightarrow \Lambda_b^0 \pi^-$ decay;
- charmonia decays into $K_s^0 K^{\pm} \pi^{\mp}$ final state are studied;
- four B⁺_c meson decays into charmonia and multihadron final states are studied;
- new tetraquark candidates: $T_{\psi s1}^{\theta}(4000)^0$, $T_{c\bar{s}0}^a(2900)^{++}$, $T_{c\bar{s}0}^a(2900)^0$, X(3960);
- new pentaquark candidate: $P_{\psi s}^{\Lambda}(4338)^{0}$.

Higher statistics in upgrade and improved trigger efficiency for all-hadronic final states boosts hadron spectroscopy studies at LHCb:

- search for more conventional excited states;
- evidence ⇒ observation of some hadrons/decay modes;
- search for new decay modes of observed exotic hadrons;
- determine J^P and other properties of multiquark states;
- precise measurements of properties of heavy flavour hadrons;
-and many other unique studies.

Stay tuned and follow for the news on the LHCb website https://lhcb.web.cern.ch/

Thank you!

The research was supported by the Grant Council of the President of the Russian Federation № MK-894.2022.1.2