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Second-order-derivative plus fourth-order-derivative gravity is the ultraviolet completion of second-order-derivative quan-
tum Einstein gravity. While it achieves renormalizability through states of negative Dirac norm, the unitarity violation
that this would entail can be postponed to Planck energies. As we show in this paper the theory has a different problem,
one that occurs at all energy scales, namely that the Dirac norm of the vacuum of the theory is not finite. To establish
this we present a procedure for determining the norm of the vacuum in any quantum field theory. With the Dirac norm of
the vacuum of the second-order-derivative plus fourth-order-derivative theory not being finite, the Feynman rules that are
used to establish renormalizability are not valid, as is the assumption that the theory can be used as an effective theory at
energies well below the Planck scale. This lack of finiteness is also manifested in the fact that the Minkowski path integral
for the theory is divergent. Because the vacuum Dirac norm is not finite, the Hamiltonian of the theory is not Hermitian.
However, it turns out to be PT symmetric. And when one continues the theory into the complex plane and uses the PT
symmetry inner product, viz. the overlap of the left-eigenstate of the Hamiltonian with its right-eigenstate, one then finds
that for the vacuum this norm is both finite and positive, the Feynman rules now are valid, the Minkowski path integral
now is well behaved, and the theory now can serve as a low energy effective theory. Consequently, the theory can now be
offered as a fully consistent, unitary and renormalizable theory of quantum gravity.

P. D. Mannheim, arXiv:2301.13029, Classical and Quantum Gravity 40, 205007 (2023); arXiv:2303.10827 (to appear in
International Journal of Modern Physics D).
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Outline

1. Is ⟨Ω|Ω⟩ finite? How could it not be? Specifying an action and canonical commutators does not fix a

Hilbert space. We need to find a Hilbert space in which the Hamiltonian is self-adjoint. Setting Hij = H∗ji only

makes sense if H is self-adjoint when it acts on the (i, j) basis. Everything depends on boundary conditions.

2. We present a procedure to determine whether or not ⟨Ω|Ω⟩ is finite, and show that it is finite for a

standard second-order derivative bosonic field theory. The procedure enables us to write the quantum field

theory Hamiltonian as a first-quantized derivative operator.

3. We show that ⟨Ω|Ω⟩ is not finite for a fourth-order derivative bosonic field theory, and in the Hilbert

space with the Dirac inner product the Hamiltonian is not self-adjoint.

4. We show that ⟨ΩL|ΩR⟩ = ⟨ΩCPT |Ω⟩ is finite for a fourth-order derivative bosonic field theory, and in

this Hilbert space the Hamiltonian is self-adjoint, with there being no states of negative energy and no states

of negative norm.

5. We show that ⟨Ω|Ω⟩ is finite for fermion theory.

6. We discuss our results from the perspective of path integrals and the Wick rotation to the Euclidean case,

and show that in the fourth-order derivative bosonic field theory case the contribution of the Wick rotation

contour circle at infinity is not only not zero, it is infinite.

7. We discuss our results from the perspective of the Dyson-Wick expansion.

8. We discuss the implications of our results for constructing a consistent theory of quantum gravity.
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1 The hidden assumption of quantum field theory

Consider a free relativistic neutral scalar field with action

IS =

∫
d4x1

2

[
∂µϕ∂

µϕ−m2ϕ2
]
, (1.1)

and wave equation, Hamiltonian, and equal time commutation relation of the form

[∂µ∂
µ +m2]ϕ = 0,

H =

∫
d3x1

2[ϕ̇
2 + ∇̄ϕ · ∇̄ϕ +m2ϕ2],

[ϕ(x̄, t), ϕ̇(x̄′, t)] = iδ3(x̄− x̄′). (1.2)

With ωk = +(k̄2 +m2)1/2 solutions to the wave equation obey

ϕ(x̄, t) =

∫
d3k√

(2π)32ωk
[a(k̄)e−iωkt+ik̄·x̄ + a†(k̄)eiωkt−ik̄·x̄], (1.3)

and with [a(k̄), a†(k̄′)] = δ3(k̄ − k̄′) the Hamiltonian is given by

H =
1

2

∫
d3k[k̄2 +m2]1/2

[
a†(k̄)a(k̄) + a(k̄)a†(k̄)

]
. (1.4)

Given (1.4) we can introduce a no-particle state |Ω⟩ that obeys a(k̄)|Ω⟩ = 0 for each k̄, and can identify it as

the ground state of H .

This procedure does not specify the value of ⟨Ω|Ω⟩.
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For the theory the associated c-number propagator obeys

(∂2t − ∇̄2 +m2)D(x) = −δ4(x), (1.5)

so that

D(x) =

∫
d4k

(2π)4
e−ik·x

(k2 −m2 + iϵ)
. (1.6)

If we identify the propagator as a vacuum matrix element of q-number fields, viz.

D(x) = −i⟨Ω|T [ϕ(x)ϕ(0)]|Ω⟩, (1.7)

then use of the equal commutation relation gives

(∂2t − ∇̄2 +m2)(−i)⟨Ω|T [ϕ(x)ϕ(0)]|Ω⟩ = −⟨Ω|Ω⟩δ4(x). (1.8)

Comparing with (1.5) we see that we can only identify D(x) as the matrix element

−i⟨Ω|T [ϕ(x)ϕ(0)]|Ω⟩ if the vacuum is normalized to one, viz. ⟨Ω|Ω⟩ = 1.

Now if the normalization of the vacuum is finite we of course can always rescale it to one. However, that

presupposes that the normalization of the vacuum is not infinite. We are not aware of any proof in the literature

that the normalization of the vacuum is not infinite (either in this particular case or in general), and taking it

to be finite is a hidden assumption.

So we shall present a procedure for determining whether the normalization of the vacuum state is finite

or infinite. The procedure is based on generalizing to quantum field theory what we know

from quantum mechanics.
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2 The quantum-mechanical simple harmonic oscillator

For a simple harmonic oscillator with Hamiltonian H = 1
2[p

2 + q2] and commutator [q, p] = i, there are two

sets of bases, the wave function basis and the occupation number space basis.

The wave function basis is obtained by setting p = −i∂/∂q in H and then solving the Schrödinger wave

equation Hψ(q) = Eψ(q). In this way we obtain a ground state with energy E0 = 1
2 and wave function

ψ0(q) = e−q
2/2.

For occupation number space we set q = (a + a†)/
√
2 and p = i(a† − a)/

√
2. This yields [a, a†] = 1 and

H = a†a + 1/2. We introduce a no-particle state |Ω⟩ that obeys a|Ω⟩ = 0, with |Ω⟩ being the occupation

number space ground state with energy E0 =
1
2. However, in and of itself this does not fix the norm ⟨Ω|Ω⟩ of

the no-particle state or oblige it to be finite.

To fix the ⟨Ω|Ω⟩ norm we need to relate the ground states of the two bases. With a = (q + ip)/
√
2 we set

⟨q|a|Ω⟩ = 1√
2

(
q +

∂

∂q

)
⟨q|Ω⟩ = 0, (2.1)

and find that ⟨q|Ω⟩ = e−q
2/2. We thus identify ψ0(q) = ⟨q|Ω⟩. We now calculate the standard Dirac norm for

vacuum, and obtain

⟨Ω|Ω⟩ =
∫ ∞

−∞
dq⟨Ω|q⟩⟨q|Ω⟩ =

∫ ∞

−∞
dqψ∗0(q)ψ0(q) =

∫ ∞

−∞
dqe−q

2
=
√
π. (2.2)

We thus establish that the Dirac norm of the no-particle state is finite. And on setting ψ0(q) = e−q
2/2/π1/4 we

normalize it to one.

That we are able to do this is because we know the form of the wave function ψ0(q).
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While this procedure is both straightforward and familiar, it works because both the wave function basis

approach and occupation number basis approach have something in common:

they are both based on an infinite number of degrees of freedom.

For the occupation number basis we can represent the creation and annihilation operators as infinite-

dimensional matrices labeled by |Ω⟩, a†|Ω⟩, a†2|Ω⟩ and so on.

For the wave function basis the coordinate q is a continuous variable that varies between −∞ and ∞.

The two sets of bases are both infinite dimensional, one discrete and the other continuous.

The advantage of the continuous basis is that it enables to us to express the normalization of the vacuum

state as an integral with an infinite range, an integral that is then either finite or infinite.

For field theory we already have an occupation number space basis for the Hamiltonian. So can we write it
as a wave operator?
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3 The quantum field theory oscillator

In the quantum field theory case we do not know the form of the wave function solutions to H|ψ⟩ = E|ψ⟩, since we cannot
realize the canonical commutator [ϕ(x̄, t), ϕ̇(x̄′, t)] = iδ3(x̄− x̄′) as a differential relation. Specifically, we cannot satisfy it by
setting ϕ̇(x̄, t) equal to −i∂/∂ϕ(x̄, t) (though we could introduce a functional derivative ϕ̇(x̄, t) = −iδ/δϕ(x̄, t)).

However, we can express the Hamiltonian in terms of creation and annihilation operators. So what we can then do is
reverse engineer what we did in the quantum-mechanical case. For each k̄ we thus introduce

a(k̄) =
1√
2
[q(k̄) + ip(k̄)], a†(k̄) =

1√
2
[q(k̄)− ip(k̄)], (3.1)

so that

[q(k̄), p(k̄′)] = iδ3(k̄ − k̄′), H =
1

2

∫
d3k[k̄2 +m2]1/2[p2(k̄) + q2(k̄)],

ϕ(x̄, t) =
1√
2

∫
d3k√

(2π)32ωk

[
[q(k̄) + ip(k̄)]e−iωkt+ik̄·x̄ + [q(k̄)− ip(k̄)]eiωkt−ik̄·x̄

]
. (3.2)

These q(k̄) and p(k̄) operators need not bear any relation to any physical position or momentum operators. Their only role
here is to enable us to convert the discrete infinite-dimensional basis associated with each a(k̄) and a†(k̄) into a continuous
one. Specifically, we can realize the [q(k̄), p(k̄′)] commutator by p(k̄′) = −i∂/∂q(k̄′), with H then becoming a wave operator.
In this way for each k̄ we obtain a solution to the Schrödinger equation of the form ψ(k̄) = e−q

2(k̄)/2/π1/4. We can define a
no-particle vacuum that obeys a(k̄)|Ω⟩ for each k̄. For each k̄ we have

⟨q(k̄)|a(k̄)|Ω⟩ = 1√
2

[
q(k̄) +

∂

∂q(k̄)

]
⟨q(k̄)|Ω⟩ = 0, (3.3)

so that ⟨q(k̄)|Ω⟩ = e−q
2(k̄)/2/π1/4, and thus

⟨Ω|Ω⟩ = Πk̄

∫
dq(k̄)⟨Ω|q(k̄)⟩⟨q(k̄)|Ω⟩ = Πk̄

∫
dq(k̄)

e−q
2(k̄)

π1/2
= Πk̄1 = 1. (3.4)

Thus the vacuum for the full H obeys ⟨Ω|Ω⟩ = 1, to thus have a finite normalization. In this way we establish that the
vacuum state of the free relativistic scalar field is normalizable.
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Once we are able to show that the vacuum state of the free theory is normalizable, this will remain true in the presence
of interactions if the interacting theory is renormalizable. To see this we note that in developing Wick’s contraction theorem
in quantum field theory one needs to put the time-ordered product of Heisenberg fields ⟨Ω|T [ϕ(x1)...ϕ(xn)]|Ω⟩ into a form
that can be developed perturbatively. To this end one introduces a set of in-fields ϕin(x) that satisfy free field equations
with Hamiltonian Hin. And one also introduces an evolution operator U(t) that evolves the interaction Hamiltonian HI(t)
and fields according to

i
∂U(t)

∂t
= HI(t)U(t), ϕ(x̄, t) = U−1(t)ϕin(x̄, t)U(t). (3.5)

Using these relations we obtain

⟨Ω|T [ϕ(x1)...ϕ(xn)]|Ω⟩ = ⟨Ω|T
[
ϕin(x1)...ϕin(xn) exp

(
−i

∫ t

−t
dt1HI(t1)

)]
|Ω⟩⟨Ω|T

[
exp

(
i

∫ t

−t
dt1HI(t1)

)]
|Ω⟩. (3.6)

After inverting the last term we obtain the standard form for the perturbative Wick contraction procedure, viz.

⟨Ω|T [ϕ(x1)...ϕ(xn)]|Ω⟩ =
⟨Ω|T

[
ϕin(x1)...ϕin(xn) exp

(
−i

∫ t

−t dt1HI(t1)
)]
|Ω⟩

⟨Ω|T
[
exp

(
−i

∫ t

−t dt1HI(t1)
)]
|Ω⟩

. (3.7)

If one starts with (3.7) it would appear that the normalization of the vacuum state is actually irrelevant since it would drop
out of the ratio. And so it would not appear to matter if it did happen to be infinite. However, this is not the case since we

could only go from (3.6) to (3.7) if ⟨Ω|T
[
exp

(
i
∫ t

−t dt1HI(t1)
)]
|Ω⟩ is finite. And it would not be if the vacuum state is not

normalizable. If we expand ⟨Ω|T
[
exp

(
i
∫ t

−t dt1HI(t1)
)]
|Ω⟩ out as a power series in HI the first term is ⟨Ω|Ω⟩ as calculated

in a free theory. Thus, for finiteness we first need this term to be finite and then need the power series expansion in HI to be

renormalizable in order for the interacting ⟨Ω|T
[
exp

(
i
∫ t

−t dt1HI(t1)
)]
|Ω⟩ to be finite too. However, for a nonnormalizable

vacuum the standard Wick expansion and Feynman rules that are obtained from (3.7) are not valid. Since this concern is
of relevance to radiative corrections to Einstein gravity we return to this point below.
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As well as providing a procedure for determining whether or not ⟨Ω|Ω⟩ is finite, since the procedure enables is to express the
free second-order-derivative Hamiltonian H as an ordinary derivative operator, it does so for interactions as well. Specifically,
from (3.2) we can write ϕ(x̄, t) as a derivative operator, viz.

ϕ(x̄, t) =
1√
2

∫
d3k√

(2π)32ωk

[[
q(k̄) +

∂

∂q(k̄)

]
e−iωkt+ik̄·x̄ +

[
q(k̄)− ∂

∂q(k̄)

]
eiωkt−ik̄·x̄

]
. (3.8)

Thus the insertion of (3.8) into an interaction Hamiltonian of the form HI = λ
∫
d4xϕ4(x̄, t) enables us to write HI , and

thus H +HI , as a derivative operator. While this procedure enables us to in principle set up the Schrödinger problem for
H +HI as a wave mechanics problem, it is still quite a formidable one, just as interacting field theories always have been.

Fermions

For fermions we have to deal with anticommutators such as

bb† + b†b = 1. (3.9)

Also, because of the Pauli principle we have

b2 = 0, b†2 = 0. (3.10)

We can represent (3.9) and (3.10) by matrices of the form

b =

(
0 0
1 0

)
, b† =

(
0 1
0 0

)
. (3.11)

Thus, unlike the infinite-dimensional matrix representation of the bosonic a and a† that obey aa† − a†a = 1, the fermionic
b and b† matrices are finite dimensional. Thus with a finite number of degrees of freedom, the fermion vacuum that obeys
b|Ω⟩ = 0 has a finite ⟨Ω|Ω⟩ norm.
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4 Higher-derivative quantum field theories

The action and equation of motion are of the form

IS =
1

2

∫
d4x

[
∂µ∂νϕ∂

µ∂νϕ− (M 2
1 +M 2

2 )∂µϕ∂
µϕ+M 2

1M
2
2ϕ

2

]
,

(∂2t − ∇̄2 +M 2
1 )(∂

2
t − ∇̄2 +M 2

2 )ϕ(x) = 0. (4.1)

The associated propagator is of the form

(∂2t − ∇̄2 +M 2
1 )(∂

2
t − ∇̄2 +M 2

2 )D(x) = −δ4(x),

D(x) = −
∫

d4k

(2π)4
e−ik·x

(k2 −M 2
1 + iϵ)(k2 −M 2

2 + iϵ)
= −

∫
d4k

(2π)4
e−ik·x

(M 2
1 −M 2

2 )

[
1

(k2 −M 2
1 + iϵ)

− 1

(k2 −M 2
2 + iϵ)

]
. (4.2)

This propagator has the following key features:

1. As developed by Pais and Uhlenbeck (1950) it is of the same form as the Pauli-Villars regulator, only as built from one
fourth-order theory rather two second-order ones.

2. At large k2 it behaves as −1/k4, to this make Einstein gravity power-counting renormalizable. (In standard perturbative
quantum Einstein gravity the propagator is the nonrenormalizable 1/(k2 −M 2

1 + iϵ) + 1/(k2 −M 2
2 + iϵ) ∼ 1/k2.)

3. All the poles in the complex k0 plane lie on the real axis, so that all energy eigenvalues of the associated quantum
Hamiltonian are real.

4. The standard Feynman iϵ prescription causes positive energies to propagate forward in time and negative energies to
propagate backward in time, so that the energy spectrum is bounded from below (no instability of the Ostrogradski
type that can occur in higher-derivative theories).

5. Some of the residues at the poles are negative, the unitarity-violating negative norm ghost problem. If we insert∑
|n1⟩⟨n1| −

∑
|n2⟩⟨n2| = I into into D(x) = −i⟨Ω|T [ϕ(x)ϕ(0)]|Ω⟩ we obtain D(x) ∼

∑
|⟨n1|ϕ|Ω⟩|2 −

∑
|⟨n2|ϕ|Ω⟩|2.

Is this too high a price to pay for renormalizability?

6. The residues at the poles are FINITE. This innocuous fact is the key to making sense of this propagator.
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The energy-momentum tensor Tµν, the canonical momenta πµ and πµλ, and the equal-time commutators appropriate to
the higher-derivative theory are given by (Bender and Mannheim 2008)

Tµν = πµϕ,ν + π λ
µ ϕ,ν,λ − ηµνL,

πµ =
∂L
∂ϕ,µ

− ∂λ
(

∂L
∂ϕ,µ,λ

)
= −∂λ∂µ∂λϕ− (M 2

1 +M 2
2 )∂

µϕ,

πµλ =
∂L
∂ϕ,µ,λ

= ∂µ∂λϕ,

T00 =
1
2π

2
00 + π0ϕ̇+ 1

2(M
2
1 +M 2

2 )ϕ̇
2 − 1

2M
2
1M

2
2ϕ

2 − 1
2πijπ

ij + 1
2(M

2
1 +M 2

2 )ϕ,iϕ
,i

=
1

2
ϕ̈2 − 1

2(M
2
1 +M 2

2 )ϕ̇
2 −

...
ϕ ϕ̇− [∂i∂

iϕ̇]ϕ̇− 1
2M

2
1M

2
2ϕ

2 − 1
2∂i∂jϕ∂

i∂jϕ+ 1
2(M

2
1 +M 2

2 )∂iϕ∂
iϕ,

[ϕ(0̄, t), ϕ̇(x̄, t)] = 0, [ϕ(0̄, t), ϕ̈(x̄, t)] = 0, [ϕ(0̄, t),
...
ϕ (x̄, t]) = −iδ3(x). (4.3)

With the use of these commutation relations we find that

D(x) = i⟨Ω|T [ϕ(x)ϕ(0)]|Ω⟩ (4.4)

indeed satisfies the first equation given in (4.2), provided that is that ⟨Ω|Ω⟩ = 1. And if ⟨Ω|Ω⟩ = ∞, then Wick’s
theorem and the associated Feynman rules are not valid.
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To check whether ⟨Ω|Ω⟩ actually is finite, we need to express the scalar field Hamiltonian HS =
∫
d3xT00 in terms of

creation and annihilation operators and then construct an equivalent wave mechanics. Given that the solutions to to the
wave equation are plane waves, we set

ϕ(x̄, t) =

∫
d3k

(2π)3/2

[
a1(k̄)e

−iω1t+ik̄·x̄ + a†1(k̄)e
iω1t−ik̄·x̄ + a2(k̄)e

−iω2t+ik̄·x̄ + a†2(k̄)e
iω2t−ik̄·x̄

]
. (4.5)

where ω1 = +(k̄2 +M 2
1 )

1/2, ω2 = +(k̄2 +M 2
2 )

1/2. Given the commutators in (4.3) we obtain

[a1(k̄), a
†
1(k̄
′)] = [2(M 2

1 −M 2
2 )(k̄

2 +M 2
1 )

1/2]−1δ3(k̄ − k̄′),
[a2(k̄), a

†
2(k̄
′)] = −[2(M 2

1 −M 2
2 )(k̄

2 +M 2
2 )

1/2]−1δ3(k̄ − k̄′),
[a1(k̄), a2(k̄

′)] = 0, [a1(k̄), a
†
2(k̄
′)] = 0, [a†1(k̄), a2(k̄

′)] = 0, [a†1(k̄), a
†
2(k̄
′)] = 0, (4.6)

with the Hamiltonian then taking the form

HS =
1

2

∫
d3k

[
2(M 2

1 −M 2
2 )(k̄

2 +M 2
1 )

[
a†1(k̄)a1(k̄) + a1(k̄)a

†
1(k̄)

]
− 2(M 2

1 −M 2
2 )(k̄

2 +M 2
2 )

[
a†2(k̄)a2(k̄) + a2(k̄)a

†
2(k̄)

] ]
=

∫
d3k

[
2(M 2

1 −M 2
2 )(k̄

2 +M 2
1 )a
†
1(k̄)a1(k̄)− 2(M 2

1 −M 2
2 )(k̄

2 +M 2
2 )a
†
2(k̄)a2(k̄)

+
1

2
(k̄2 +M 2

1 )
1/2δ3(0) +

1

2
(k̄2 +M 2

2 )
1/2δ3(0)

]
, (4.7)

where (2π)3δ3(0) is a quantization box volume V . We note that with M 2
1 −M 2

2 > 0 for definitiveness, we see negative
signs in both HS and the [a2(k̄), a

†
2(k̄
′)] commutator, while noting that despite this the zero-point energy is positive. We

shall see below that the negative sign concerns will be resolved once we settle the issue of the normalization of the vacuum.
To do that we now descend to the quantum-mechanical limit of the theory, the Pais-Uhlenbeck oscillator model.
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5 Higher-derivative quantum mechanics

In order to study the Pauli-Villars regulator, in 1950 Pais and Uhlenbeck (PU) introduced a fourth-order quantum-mechanical
oscillator model with action and equation of motion

IPU =
1

2

∫
dt

[
z̈2 −

(
ω2
1 + ω2

2

)
ż2 + ω2

1ω
2
2z

2
]
,

....
z + (ω2

1 + ω2
2)z̈ + ω1ω2z

2 = 0, (5.1)

where for definitiveness in the following we take ω1 > ω2. This action is just the scalar field theory action

IS =
1

2

∫
d4x

[
∂µ∂νϕ∂

µ∂νϕ− (M 2
1 +M 2

2 )∂µϕ∂
µϕ+M 2

1M
2
2ϕ

2

]
(5.2)

with the spatial dependence frozen out.
As constructed this action possesses three variables z, ż and z̈. This is too many for one oscillator but not enough for

two. The system is thus a constrained system. And so we introduce a new variable x = ż and its conjugate px. And using
the method of Dirac constraints obtain the time-independent Hamiltonian (Mannheim and Davidson 2000, 2005)

HPU =
p2x(t)

2
+ pz(t)x(t) +

1

2

(
ω2
1 + ω2

2

)
x2(t)− 1

2
ω2
1ω

2
2z

2(t), (5.3)

with two sets of canonical equal-time commutators of the form

[z(t), pz(t)] = i, [x(t), px(t)] = i. (5.4)

On setting pz = −i∂z, px = −i∂x the Schrödinger problem for HPU can be solved analytically, with the state with energy
(ω1 + ω2)/2 having a wave function that is of the form (Mannheim 2007)

ψ0(z, x) = exp[12(ω1 + ω2)ω1ω2z
2 + iω1ω2zx− 1

2(ω1 + ω2)x
2]. (5.5)

While this wave function is well behaved at large x, it diverges at large z, and consequently as a wave function it is not
normalizable. The state with energy (ω1 + ω2)/2 is the lowest energy state of an infinite tower of positive energy modes.

However, the state with energy (ω1 − ω2)/2 has a wave function that is of the form (Bender and Mannheim 2008)

ψ′0(z, x) = exp[−1
2(ω1 − ω2)ω1ω2z

2 − iω1ω2zx− 1
2(ω1 − ω2)x

2]. (5.6)

This wave function is well behaved at large x and at large z, and consequently as a wave function it is normalizable. The
state with energy (ω1−ω2)/2 lies in the middle of an infinite tower of positive energy modes and an infinite tower of negative
energy modes - the Ostrogradski instability.
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To relate the ψ0(z, x) wave function to the no-particle vacuum |Ω⟩ we second quantize the theory. And with the wave
equation given in (5.1), and with ż = i[HPU, z] = x, ẋ = px, ṗx = −pz − (ω2

1 + ω2
2)x, ṗz = ω2

1ω
2
2z, we obtain

z(t) = a1e
−iω1t + a†1e

iω1t + a2e
−iω2t + a†2e

iω2t,

pz(t) = iω1ω
2
2[a1e

−iω1t − a†1eiω1t] + iω2
1ω2[a2e

−iω2t − a†2eiω2t],

x(t) = −iω1[a1e
−iω1t − a†1eiω1t]− iω2[a2e

−iω2t − a†2eiω2t],

px(t) = −ω2
1[a1e

−iω1t + a†1e
iω1t]− ω2

2[a2e
−iω2t + a†2e

iω2t],

a1e
−iω1t =

1

2(ω2
1 − ω2

2)

[
−ω2

2z(t)− px(t) + iω1x(t) + i
pz(t)

ω1

]
,

a†1e
iω1t =

1

2(ω2
1 − ω2

2)

[
−ω2

2z(t)− px(t)− iω1x(t)− i
pz(t)

ω1

]
,

a2e
−iω2t =

1

2(ω2
1 − ω2

2)

[
ω2
1z(t) + px(t)− iω2x(t)− i

pz(t)

ω2

]
,

a†2e
iω2t =

1

2(ω2
1 − ω2

2)

[
ω2
1z(t) + px(t) + iω2x(t) + i

pz(t)

ω2

]
, (5.7)

and a Hamiltonian and commutator algebra of the form (Mannheim and Davidson 2000, 2005)

HPU = 2(ω2
1 − ω2

2)(ω
2
1a
†
1a1 − ω2

2a
†
2a2) +

1
2(ω1 + ω2), (5.8)

[a1, a
†
1] =

1

2ω1(ω2
1 − ω2

2)
, [a2, a

†
2] = −

1

2ω2(ω2
1 − ω2

2)
. (5.9)

We note the similarity to (4.7) and (4.6).
The no-particle state |Ω⟩ that both a1 and a2 annihilate is the state with energy (ω1 + ω2)/2. And with its energy being

(ω1 + ω2)/2, we can associate it with ψ0(z, x)e
−i(ω1+ω2)t/2, with the normalization of |Ω⟩ then being given by

⟨Ω|Ω⟩ =
∫ ∞

−∞
dz

∫ ∞

−∞
dx⟨Ω|z, x⟩⟨z, x|Ω⟩ =

∫ ∞

−∞
dz

∫ ∞

−∞
dxψ∗0(z, x)ψ0(z, x) =∞. (5.10)

With ψ0(z, x) diverging at large z, this normalization integral is infinite. Thus we see that through our knowledge of the
form of the ground state wave function ψ0(z, x) we are able to establish that ⟨Ω|Ω⟩ is infinite. By the same token, for the
state |Ω′⟩ that both a1 and a†2 annihilate, the ⟨Ω′|Ω′⟩ norm is finite.
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6 The nonnormalizable vacuum of higher-derivative field theories

On generalizing to each k̄ and setting ω1(k̄) = +(k̄2 +M 2
1 )

1/2, ω2(k̄) = +(k̄2 +M 2
2 )

1/2, we obtain

a1(k̄)e
−iω1(k̄)t =

1

2(M 2
1 −M 2

2 )

[
−ω2

2(k̄)z(k̄, t)− px(k̄, t) + iω1(k̄)x(k̄, t) + i
pz(k̄, t)

ω1(k̄)

]
,

a†1(k̄)e
iω1(k̄)t =

1

2(M 2
1 −M 2

2 )

[
−ω2

2(k̄)z(k̄, t)− px(k̄, t)− iω1(k̄)x(k̄, t)− i
pz(k̄, t)

ω1(k̄)

]
,

a2(k̄)e
−iω2(k̄)t =

1

2(M 2
1 −M 2

2 )

[
ω2
1(k̄)z(k̄, t) + px(k̄, t)− iω2(k̄)x(k̄, t)− i

pz(k̄, t)

ω2(k̄)

]
,

a†2(k̄)e
iω2(k̄)t =

1

2(M 2
1 −M 2

2 )

[
ω2
1(k̄)z(k̄, t) + px(k̄, t) + iω2(k̄)x(k̄, t) + i

pz(k̄, t)

ω2(k̄)

]
. (6.1)

Inverting (6.1) gives

z(k̄, t) = a1(k̄)e
−iω1(k̄)t + a†1(k̄)e

iω1(k̄)t + a2(k̄)e
−iω2(k̄)t + a†2(k̄)

iω2(k̄)t,

pz(k̄, t) = iω1(k̄)ω
2
2(k̄)[a1(k̄)e

−iω1(k̄)t − a†1(k̄)eiω1(k̄)t] + iω2
1(k̄)ω2(k̄)[a2(k̄)e

−iω2(k̄)t − a†2(k̄)eiω2(k̄)t],

x(k̄, t) = −iω1(k̄)[a1(k̄)e
−iω1(k̄)t − a†1(k̄)eiω1(k̄)t]− iω2(k̄)[a2(k̄)e

−iω2(k̄)t − a†2(k̄)iω2(k̄)t],

px(k̄, t) = −ω2
1(k̄)[a1(k̄)e

−iω1(k̄)t + a†1(k̄)e
iω1(k̄)t]− ω2

2(k̄)[a2(k̄)e
−iω2(k̄)t + a†2(k̄)

iω2(k̄)t]. (6.2)

From (6.2) and the commutation relations given in (4.6) it follows that

[z(k̄, t), pz(k̄
′, t)] = δ3(k̄ − k̄′), [x(k̄, t), px(k̄

′, t)] = δ3(k̄ − k̄′),
[z(k̄, t), x(k̄′, t)] = 0, [z(k̄, t), px(k̄

′, t)] = 0, [pz(k̄, t), x(k̄
′, t)] = 0, [pz(k̄, t), px(k̄

′, t)] = 0. (6.3)

Insertion of (6.1) into the Hamiltonian given in (4.7) then yields an equivalent, time-independent Hamiltonian

HS =

∫
d3k

[
p2x(k̄, t)

2
+ pz(k̄, t)x(k̄, t) +

1

2

[
ω2
1(k̄) + ω2

2(k̄)
]
x2(k̄, t)− 1

2
ω2
1(k̄)ω

2
2(k̄)z

2(k̄, t)

]
. (6.4)

For each momentum state we recognize the quantum field theory Hamiltonian HS given in (6.4) as being of precisely the
form of the quantum-mechanical HPU Hamiltonian that is given in (5.3). Thus the frozen out spatial dependence reemerges
as a momentum dependence.
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We can now proceed as in the second-order case and represent the commutators by[
z(k̄, t),−i ∂

∂z(k̄′, t)

]
= δ3(k̄ − k̄′),

[
x(k̄, t),−i ∂

∂x(k̄′, t)

]
= δ3(k̄ − k̄′). (6.5)

With the vacuum obeying a1(k̄)|Ω⟩ = 0, a2(k̄)|Ω⟩ = 0 for each k̄, from (6.1) we obtain

⟨z(k̄), x(k̄)|a1(k̄)|Ω⟩ =
1

2(M 2
1 −M 2

2 )

[
−ω2

2(k̄)z(k̄) + i
∂

∂x(k̄)
+ iω1(k̄)x(k̄) +

1

ω1(k̄)

∂

∂z(k̄)

]
⟨z(k̄), x(k̄)|Ω⟩ = 0,

⟨z(k̄), x(k̄)|a2(k̄)|Ω⟩ =
1

2(M 2
1 −M 2

2 )

[
ω2
1(k̄)z(k̄)− i

∂

∂x(k̄)
− iω2(k̄)x(k̄)−

1

ω2(k̄)

∂

∂z(k̄)

]
⟨z(k̄), x(k̄)|Ω⟩ = 0, (6.6)

for each k̄. From (6.6) it follows that for each k̄ we can identify each ⟨z(k̄), x(k̄)|Ω⟩ with the PU oscillator ground state wave
function ψ0(z(k̄), x(k̄)), which, analogously to (5.5), is given by

ψ0(z(k̄), x(k̄)) = exp[12 [ω1(k̄) + ω2(k̄)]ω1(k̄)ω2(k̄)z
2(k̄) + iω1(k̄)ω2(k̄)z(k̄)x(k̄)− 1

2 [ω1(k̄) + ω2(k̄)]x
2(k̄)]. (6.7)

Consequently, the normalization of the vacuum is given by

⟨Ω|Ω⟩ = Πk̄

∫ ∞

−∞
dz(k̄)

∫ ∞

−∞
dx(k̄)⟨Ω|z(k̄), x(k̄)⟩⟨z(k̄), x(k̄)|Ω⟩

= Πk̄

∫ ∞

−∞
dz(k̄)

∫ ∞

−∞
dx(k̄)ψ∗0(z(k̄), x(k̄))ψ0(z(k̄), x(k̄)). (6.8)

With each ψ0(z(k̄), x(k̄)) diverging at large z(k̄), we thus establish that the Dirac norm of the field theory |Ω⟩
vacuum is infinite. Thus whatever is the normalization of the vacuum in the associated wave-mechanical limit translates
into the same normalization in the quantum field theory.
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The Different Realizations of the Higher-Derivative Theory

(∂2t − ∇̄2 +M 2
1 )(∂

2
t − ∇̄2 +M 2

2 )ϕ(x) = 0,

ϕ(x̄, t) =
1

(2π)3/2

∫
d3k

[
a1(k̄)e

−iω1t+ik̄·x̄ + a†1(k̄)e
iω1t−ik̄·x̄ + a2(k̄)e

−iω2t+ik̄·x̄ + a†2(k̄)e
iω2t−ik̄·x̄

]
. (6.9)

Two Different Creation and Annihilation Realizations

a2(k̄)|Ω⟩ = 0: Energies bounded from below but ⟨Ω|a2(k̄)a†2(k̄)|Ω⟩ is both infinite and negative.

a†2(k̄)|Ω′⟩ = 0: Energies unbounded from below but ⟨Ω′|a†2(k̄)a2(k̄)|Ω′⟩ is both finite and positive.

These two realizations occur in different Hilbert spaces, so in any given Hilbert space only one problem, negative energies
or negative norms but not both. With negative energies being unacceptable (the Ostrogradski instability), we have to work
in Hilbert space with bounded from below energy spectrum and within it we have two problems to solve.

Two Different Feynman Contour iϵ Realizations
Annihilation operators go with the positive frequency modes and the creation operators go with the negative frequency

modes, viz.

D(k) =
1

k2 −M 2
1 + iϵ

− 1

k2 −M 2
2 + iϵ

(6.10)

so that positive frequencies propagate forward in time and negative frequencies propagate backward in time, no Ostrogradski
instability. No negative energies but negative residues.

There is an alternate iϵ prescription of the form

D′(k) =
1

k2 −M 2
1 + iϵ

− 1

k2 −M 2
2 − iϵ

, (6.11)

so that while the positive frequencies associated with the M1 sector propagate forward in time and negative frequencies
propagate backward in time, for the M2 sector positive frequencies propagate backward in time and negative
frequencies propagate forward in time. The energy spectrum is now unbounded from below, but no negative residues.
And now a†2(k̄) annihilates the no-particle state rather then a2(k̄). This realization is not physically acceptable.
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The Takeaway

Write the quantum field theory Hamiltonian in terms of creation and annihilation operators. Change the

basis to analog position and momentum operators. Realize the momentum operators as differential operators

and set up an analog Schrödinger problem. Then check to see whether the wave functions are normalizable.

And if the wave functions are not normalizable?

Then we cannot integrate by parts and throw away surface terms. Then the Hamiltonian is not Her-

mitian or self-adjoint. So we cannot use the Dirac inner product, since

⟨Ω(t)|Ω(t)⟩ = ⟨Ω(t = 0)|eiH†te−iHt|Ω(t = 0)⟩ ≠ ⟨Ω(t = 0)|Ω(t = 0)⟩, (6.12)

to thus not be time independent, and thus not acceptable.

Can we find an inner product that is time independent?

As shown in Mannheim 2018 the most general inner product that one could use is the overlap of the left and

right eigenstates of the Hamiltonian (the largest set of eigenstates that a Hamiltonian can have), i.e., states

that satisfy

−i ∂
∂t
⟨L(t)| = ⟨L(t)|H, i

∂

∂t
|R(t)⟩ = H|R(t)⟩, (6.13)

⟨L(t)|R(t)⟩ = ⟨L(t = 0)|eiHte−iHt|R(t = 0)⟩ = ⟨L(t = 0)|R(t = 0)⟩, (6.14)

to thus be time independent. This is also the same as

⟨RCPT (t)|R(t)⟩ = ⟨L(t)|R(t)⟩. (6.15)

Fine, but is this inner product finite and is it positive?
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7 How to obtain a normalizable vacuum

In analyzing the second-order plus fourth-order scalar field theory we note that with a conventional Hermitian

field ϕ(x), and thus with a†1(k̄) and a
†
2(k̄) being the Hermitian conjugates of a1(k̄) and a2(k̄), the a

†
2(k̄)a2(k̄)

product would be positive definite and the energy spectrum ofHS as given in (4.7) would initially be unbounded

from below, this being the familiar Ostrogradski instability of higher-derivative theories with Hermitian fields.

However, from (4.6) we see that ⟨Ω|a2(k̄)a†2(k̄)|Ω⟩ would be negative. This would imply the presence of

ghost states of negative norm, with it then not being the case that a product such as a2(k̄)a
†
2(k̄) could be

positive definite. If one accepts this then matrix elements of the −2(M 2
1 −M 2

2 )(k̄
2 +M 2

2 )a
†
2(k̄)a2(k̄) term in

HS would be compensated for by the ghost signature, and the energy spectrum of HS would then be bounded

from below.

While this takes care of the unboundedness of the energy spectrum, it does so at a high price, namely the pres-

ence of unitarity-violating ghost states. But if a†2(k̄) is the Hermitian conjugate of a2(k̄) then ⟨Ω|a2(k̄)a†2(k̄)|Ω⟩
would have to be positive. Thus despite the dagger notation a†2(k̄) could not be the Hermitian conjugate of

a2(k̄).

Hence our starting assumption that ϕ(x) is Hermitian could not be valid. Consequently,

the Hamiltonian that is built out of the ϕ(x) field could not be Hermitian either. And in fact we have actually

established that it is not, since the diverging of ψ0(z(k̄), x(k̄)) at large z(k̄) means that in an integration

by parts we could not drop surface terms, with the presence of such surface terms preventing Hermiticity or

self-adjointness. With the eigenstates of the Hamiltonian not being normalizable, there not only are negative

norm states present, they are infinitely negative.
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Surprisingly, it is this very inability to drop surface terms in an integration by parts that actually saves the

theory (Bender and Mannheim 2008). Specifically, we have seen that we are working with a Hamiltonian HS

(and likewise HPU) that is not Hermitian. However, all the energy eigenvalues associated with HS and HPU

are real. Now Hermiticity is only sufficient for real eigenvalues, with the necessary condition (Bender and

Mannheim 2012, Mannheim 2018) being that the Hamiltonian have an antilinear symmetry. The theory thus

falls into the class of PT theories (P is the linear parity operator and T is the antilinear time reversal operator)

developed by Bender and collaborators (Bender and Boettcher 1998, Bender 2007, Bender 2019).

Critical to the PT program is that the wave functions be normalizable in some domain in the complex plane,

a domain known technically as a Stokes wedge. Since the wave functions are not normalizable with real z or

real z(k̄), we have to continue z and z(k̄) into the complex plane in order to make them normalizable. Then

the theory is well-defined, with, as we discuss below, the domain of the measure needed for the path integral

accordingly also having to be continued into the complex plane in order to make it be well-defined too (Bender

and Mannheim 2008, Mannheim 2018). For the particular case of ψ0(z, x) and ψ0(z(k̄), x(k̄)), replacing z by

−iz and z(k̄) by −iz(k̄) would then make both ψ0(z, x) and ψ0(z(k̄), x(k̄)) normalizable. (We have no need

to modify x or x(k̄) since the wave functions already are well behaved when these quantities become large.)

To achieve the continuation of z or z(k̄) at the level of operators we effect similarity transformations as they

preserve both energy eigenvalues and canonical commutators. We introduce

S(PU) = eπpzz/2, S(S) = eπ
∫
d3xπ0(x̄,t)ϕ(x̄,t)/2, (7.1)

and obtain

S(PU)zS(PU)−1 = −iz ≡ y, S(PU)pzS(PU)
−1 = ipz ≡ q,

S(S)z(k̄)S(S)−1 = −iz(k̄) ≡ y(k̄), S(S)pz(k̄)S(S)
−1 = ipz(k̄) ≡ q(k̄). (7.2)
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7.1 The PU case

For the PU oscillator this leads to

S(PU)HPUS(PU)
−1 = H̄PU = 1

2p
2
x(t)− iq(t)x(t) + 1

2

(
ω2
1 + ω2

2

)
x2(t) + 1

2ω
2
1ω

2
2y

2(t),

[y(t), q(t)] = i, [x(t), px(t)] = i. (7.3)

With p and q being taken to be PT even and y and x being taken to be PT odd (Bender and Mannheim 2008),

the PT invariance of H̄PU and of the [y, q] = i and [x, px] = i commutators follows. Now when a Hamiltonian

is not Hermitian the action of it to the right and the action of it to the left are not related by Hermitian

conjugation. Thus in general one must distinguish between right and left eigenstates, both for the vacuum

and the states that can be excited out of it. Thus we represent the [y, q] = i and [x, px] = i commutators by

q = −i
−→
∂y , px = −i

−→
∂x when acting to the right, and by q = i

←−
∂y , px = i

←−
∂x when acting to the left. This then

leads to right and left ground state wave functions of the form (Bender and Mannheim 2008)

ψR0 (y, x) = exp[−1
2(ω1 + ω2)ω1ω2y

2 − ω1ω2yx− 1
2(ω1 + ω2)x

2],

ψL0 (y, x) = exp[−1
2(ω1 + ω2)ω1ω2y

2 + ω1ω2yx− 1
2(ω1 + ω2)x

2], . (7.4)

Given these wave functions the vacuum normalization is given by (Bender and Mannheim 2008)

⟨ΩL|ΩR⟩ =
∫ ∞

−∞
dy

∫ ∞

−∞
dx⟨ΩL|y, x⟩⟨y, x|ΩR⟩ =

∫ ∞

−∞
dy

∫ ∞

−∞
dxψL0 (y, x)ψ

R
0 (y, x)

=

∫ ∞

−∞
dy

∫ ∞

−∞
dx exp[−(ω1 + ω2)ω1ω2y

2 − (ω1 + ω2)x
2] =

π

(ω1ω2)1/2(ω1 + ω2)
, (7.5)

with the vacuum state thus being normalizable. In the following we shall understand the wave functions to

have been normalized to one, so that
∫
dydxψL0 (y, x)ψ

R
0 (y, x) = 1 and ⟨ΩL|ΩR⟩ = 1.
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With the above PT assignments and with ẏ = i[H̄PU, y] = −ix, ẋ = px, ṗx = iq−(ω2
1+ω

2
2)x, q̇ = −ω2

1ω
2
2y,

we set

y(t) = −ia1e−iω1t + a2e
−iω2t − iâ1eiω1t + â2e

iω2t,

x(t) = −iω1a1e
−iω1t + ω2a2e

−iω2t + iω1â1e
iω1t − ω2â2e

iω2t,

px(t) = −ω2
1a1e

−iω1t − iω2
2a2e

−iω2t − ω2
1â1e

iω1t − iω2
2â2e

iω2t,

q(t) = ω1ω2[−ω2a1e
−iω1t − iω1a2e

−iω2t + ω2â1e
iω1t + iω1â2e

iω2t],

a1e
−iω1t =

1

2(ω2
1 − ω2

2)

[
−iω2

2y(t)− px(t) + iω1x(t) +
q(t)

ω1

]
,

â1e
+iω1t =

1

2(ω2
1 − ω2

2)

[
−iω2

2y(t)− px(t)− iω1x(t)−
q(t)

ω1

]
,

ia2e
−iω2t =

1

2(ω2
1 − ω2

2)

[
iω2

1y(t) + px(t)− iω2x(t)−
q(t)

ω2

]
,

iâ2e
+iω2t =

1

2(ω2
1 − ω2

2)

[
iω2

1y(t) + px(t) + iω2x(t) +
q(t)

ω2

]
. (7.6)

In (7.6) we have introduced a1, a2, â1 and â2, with the four creation and annihilation operators obeying

PTa1TP = a1, PTa2TP = −a2, PT â1TP = â1, PT â2TP = −â2, so as to enforce the PT assignments of

y, x, px and q. Comparing with (5.7) we have (a1, a2, a
†
1, a
†
2)→ (a1, ia2, â1, iâ2).
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With (7.3) and (7.6) the Hamiltonian is given by

H̄PU = 2(ω2
1 − ω2

2)
(
ω2
1â1a1 + ω2

2â2a2
)
+ 1

2(ω1 + ω2), (7.7)

and the operator commutation algebra is given by

[a1, â1] =
1

2ω1(ω2
1 − ω2

2)
, [a2, â2] =

1

2ω2(ω2
1 − ω2

2)
,

[a1, a2] = 0, [a1, â2] = 0, [â1, a2] = 0, [â1, â2] = 0. (7.8)

With the PT assignments of a1, a2, â1 and â2, we confirm the PT invariance of (7.7) and (7.8). In (7.7) and

(7.8) the relative signs are all positive (we take ω1 > ω2 > 0 for definitiveness), so these equations define a

standard positive energy, positive norm, two-dimensional harmonic oscillator system. Given the creation and

annihilation operators the left and right vacua are defined by

⟨ΩL|â1 = 0, ⟨ΩL|â2 = 0, a1|ΩR⟩ = 0, a2|ΩR⟩ = 0. (7.9)

By exciting modes out of the left and right vacua we can build excited states that have positive norm (Bender

and Mannheim 2008), viz. ⟨nL|mR⟩ = δnm, and obey a completeness relation∑
|nR1 ⟩⟨nL1 | +

∑
|nR2 ⟩⟨nL2 | = I. (7.10)

(i.e., not
∑
|n1⟩⟨n1| −

∑
|n2⟩⟨n2| = I .)

Even though these norms are all positive, the insertion of (7.10) into −i⟨ΩL|T [y(t)y(0)]|ΩR⟩ (corresponding
to +i⟨ΩL|T [z(t)z(0)]|ΩR⟩) generates the relative minus sign in the nonrelativistic limit of the −[1/(k2−M 2

1 )−
1/(k2 −M 2

2 )]/(M
2
1 −M 2

2 ) propagator given in (4.2), viz. −[1/(ω2 − ω2
1)− 1/(ω2 − ω2

2)]/(ω
2
1 − ω2

2). We thus

establish the consistency and physical viability of the similarity transformed PU oscillator theory.
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7.2 Transforming to a Hermitian Hamiltonian

While not obeying H∗ij = Hji in the basis of its eigenfunctions, the H̄PU Hamiltonian given in (7.3) is self-

adjoint and has all eigenvalues real. In addition its eigenspectrum is complete (a complete set of polynomial

functions of x and y times the ground state wave functions given in (7.4)(Bender and Mannheim 2008). Thus

by a similarity transformation H̄PU can be brought to a basis in which H∗ij = Hji. (In general if H ′ = H ′† then

under a similarity but not unitary transformation of the form H ′ = SHS−1 we have SHS−1 = S−1†H†S†,

i.e, H† = S†SH(S†S)−1, with the relation H ′ = H ′† not being invariant under a non-unitary similarity

transformation.) As shown in (Bender and Mannheim 2008) for HPU we introduce

Q = αpxq + αω2
1ω

2
2xy, α =

1

ω1ω2
log

(
ω1 + ω2

ω1 − ω2

)
, (7.11)

with the requisite transformation then being given by

e−Q/2yeQ/2 = y cosh θ + i(ω1ω2)
−1px sinh θ,

e−Q/2xeQ/2 = x cosh θ + i(ω1ω2)
−1q sinh θ,

e−Q/2peQ/2 = px cosh θ − i(ω1ω2)y sinh θ,

e−Q/2qeQ/2 = q cosh θ − i(ω1ω2)x sinh θ,

e−Q/2H̄PUe
Q/2 = H̄ ′PU =

p2x
2
+

q2

2ω2
1

+
1

2
ω2
1x

2 +
1

2
ω2
1ω

2
2y

2, (7.12)

where θ = αω1ω2/2 = arc sinh[ω2/(ω
2
1 − ω2

2)
1/2]. We recognize H̄ ′PU as being a fully acceptable standard,

positive norm two-dimensional oscillator system, one for which we can use the Dirac inner product. Moreover,

by the analysis given for the harmonic oscillator in Sec. 2, it follows that in this basis the Dirac norm of the

vacuum is finite. Similarly, by extension, following an analogous transformation for each k̄, so is the vacuum

Dirac norm of the second-order-derivative plus fourth-order derivative scalar field theory.
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In addition we note that with its phase being −Q/2 rather than −iQ/2, the e−Q/2 operator is not unitary.
The transformation from H̄PU to H̄ ′PU is thus not a unitary transformation, but is a transformation from a

skew basis with eigenvectors |n⟩ to an orthogonal basis with eigenvectors

|n′⟩ = e−Q/2|n⟩, ⟨n′| = ⟨n|e−Q/2. (7.13)

Then since ⟨n′|m′⟩ = δmn, the eigenstates of H̄ obey

⟨n|e−Q|m⟩ = δmn,
∑
n

|n⟩⟨n|e−Q = I,

H̄ =
∑
n

|n⟩En⟨n|e−Q, H̄|n⟩ = En|n⟩, ⟨n|e−QH̄ = ⟨n|e−QEn. (7.14)

We thus recognize the inner product as being not ⟨n|m⟩ but ⟨n|e−Q|m⟩, with the conjugate of |n⟩ being
⟨n|e−Q. This state is also the PT conjugate of |n⟩, so that the inner product is the overlap of a state with its

PT conjugate rather than that with its Hermitian conjugate, just as we had noted earlier. And as such this

inner product is positive definite since ⟨n′|m′⟩ = δmn is. The PU oscillator theory (and by analog the scalar

quantum field theory) is thus a fully viable unitary theory. Thus starting from HPU given in (5.3) we only

need make two similarity transformations, viz. (7.2) and (7.12), in order to be able to establish that the theory

is free of negative norm states, and has a vacuum with a finite and positive norm. From the form given in

(7.12) for H̄ ′PU it follows that all the operators in it are observable quantum operators, with all experimental

measurements then only involving the real quantities that are their eigenvalues.
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7.3 The relativistic case

For S(S)HSS(S)
−1 = H̄S we introduce creation and annihilation operators for ϕ̄ = S(S)ϕS(S)−1 = −iϕ(x)

of the form

ϕ̄(x) =

∫
d3k

(2π)3/2

[
−ia1(k̄)e−iω1(k̄)t+ik̄·x̄ + a2(k̄)e

−iω2(k̄)t+ik̄·x̄ − iâ1(k̄)eiω1(k̄)t−ik̄·x̄ + â2(k̄)e
iω2(k̄)t−ik̄·x̄

]
.

(7.15)

Comparing with (4.5) we have (a1(k̄), a2(k̄), a
†
1(k̄), a

†
2(k̄)) → (a1(k̄), ia2(k̄), â1(k̄), iâ2(k̄)). Unlike y(t), ϕ̄(x)

is PT even. The PT even Hamiltonian and PT -preserving commutation relations are given by (Bender and

Mannheim 2008)

S(S)HSS(S)
−1 = H̄S =

1

2

∫
d3k

[
2(M 2

1 −M 2
2 )(k̄

2 +M 2
1 )
[
â1(k̄)a1(k̄) + a1(k̄)â1(k̄)

]
+ 2(M 2

1 −M 2
2 )(k̄

2 +M 2
2 )
[
â2(k̄)a2(k̄) + a2(k̄)â2(k̄)

] ]
, (7.16)

and

[ ˙̄ϕ(x̄, t), ϕ̄(0)] = 0, [ ¨̄ϕ(x̄, t), ϕ̄(0)] = 0, [
...
ϕ̄ (x̄, t), ϕ̄(0)] = iδ3(x),

[a1(k̄), â1(k̄
′)] = [2(M 2

1 −M 2
2 )(k̄

2 +M 2
1 )

1/2]−1δ3(k̄ − k̄′),
[a2(k̄), â2(k̄

′)] = [2(M 2
1 −M 2

2 )(k̄
2 +M 2

2 )
1/2]−1δ3(k̄ − k̄′),

[a1(k̄), a2(k̄
′)] = 0, [a1(k̄), â2(k̄

′)] = 0, [â1(k̄), a2(k̄
′)] = 0, [â1(k̄), â2(k̄

′)] = 0. (7.17)

With all relative signs being positive (we take M 2
1 > M 2

2 for definitiveness), there are no states of negative

norm or of negative energy. The discussion completely parallels that of the PU oscillator model given above.
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We introduce

y(k̄, t) = −ia1(k̄)e−iω1(k̄)t + a2(k̄)e
−iω2(k̄)t − iâ1(k̄)eiω1(k̄)t + â2(k̄)e

iω2(k̄)t,

x(k̄, t) = −iω1(k̄)a1(k̄)e
−iω1(k̄)t + ω2(k̄)a2(k̄)e

−iω2(k̄)t + iω1(k̄)â1(k̄)e
iω1(k̄)t − ω2(k̄)â2(k̄)e

iω2(k̄)t,

px(k̄, t) = −ω2
1(k̄)a1(k̄)e

−iω1(k̄)t − iω2
2(k̄)a2(k̄)e

−iω2(k̄)t − ω2
1(k̄)â1(k̄)e

iω1(k̄)t − iω2
2(k̄)â2(k̄)e

iω2(k̄)t,

q(k̄, t) = ω1(k̄)ω2(k̄)[−ω2(k̄)a1(k̄)e
−iω1(k̄)t − iω1(k̄)a2(k̄)e

−iω2(k̄)t + ω2(k̄)â1(k̄)e
iω1(k̄)t + iω1(k̄)â2(k̄)e

iω2(k̄)t],

(7.18)

with H̄S then taking the form

H̄S =

∫
d3k

[
p2x(k̄, t)

2
− iq(k̄, t)x(k̄, t) + 1

2

[
ω2
1(k̄) + ω2

2(k̄)
]
x2(k̄, t) +

1

2
ω2
1(k̄)ω

2
2(k̄)y

2(k̄, t)

]
. (7.19)

Introducing left and right vacua that obey

⟨ΩL|â1(k̄) = 0, ⟨ΩL|â2(k̄) = 0, a1(k̄)|ΩR⟩ = 0, a2(k̄)|ΩR⟩ = 0 (7.20)

for all k̄, we find that

⟨ΩL|H̄S|ΩR⟩ =
∫
d3k

[
1

2
(k̄2 +M 2

1 )
1/2 +

1

2
(k̄2 +M 2

2 )
1/2

]
δ3(0),

⟨ΩL|ΩR⟩ = Πk̄

∫ ∞

−∞
dy(k̄)

∫ ∞

−∞
dx(k̄)⟨ΩL|y(k̄), x(k̄)⟩⟨y(k̄), x(k̄)|ΩR⟩

= Πk̄

∫ ∞

−∞
dy(k̄)

∫ ∞

−∞
dx(k̄)ψL0 (y(k̄), x(k̄))ψ

R
0 (y(k̄), x(k̄)) = Πk̄1 = 1. (7.21)
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We thus confirm that the vacuum normalization is both finite and positive, while the vacuum energy has

the conventional zero-point infinity associated with an infinite number of modes. (This infinity occurs because

H̄S contains an infinite number of modes and not because ⟨ΩL|ΩR⟩ itself is infinite.) We thus establish the

consistency and physical viability of the similarity transformed higher-derivative scalar field theory. And we note

that even though all the norms are positive, the insertion of (7.10) into −i⟨ΩL|T [ϕ̄(x)ϕ̄(0)]|ΩR⟩ (corresponding
to +i⟨ΩL|T [ϕ(x)ϕ(0)]|ΩR⟩) generates the relative minus sign in −[1/(k2 −M 2

1 )− 1/(k2 −M 2
2 )]/(M

2
1 −M 2

2 )

(Bender and Mannheim 2008). Thus with one similarity transform into an appropriate Stokes wedge we solve

both the vacuum normalization problem and the negative norm problem.

At this point we can see the key aspect of our study. Ordinarily in quantum field theory it is taken as a
given that one should use the Dirac inner product ⟨Ω|Ω⟩, viz. ⟨ΩR|ΩR⟩, for the vacuum. And also it is taken
as a given that this inner product is finite. In this paper we have provided a procedure for checking whether
this is in fact the case, and presented a second-order plus fourth-order derivative model in which it explicitly
is not finite. For this particular model we have found a different inner product, viz. ⟨ΩL|ΩR⟩, that is finite.
(For a Hamiltonian that is Hermitian |ΩR⟩ = |Ω⟩, ⟨ΩL| = ⟨Ω|.) And thus in general one has to determine
whether or not ⟨ΩR|ΩR⟩ is finite on case by case basis. We now discuss our findings from the perspective of
path integrals.
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8 Path integrals and the normalization of the vacuum

The Minkowski path integral associated with the field theory action given in (4.1) is of the form

PI(MINK) =

∫
D[ϕ]D[σµ] exp

[
i

2

∫ ∞

−∞
d4x

[
∂νσµ∂

νσµ −
(
M 2

1 +M 2
2

)
σµσ

µ +M 2
1M

2
2ϕ

2
]]
, (8.1)

where σµ = ∂µϕ. Since the theory is fourth order we need four pieces of information to solve the equations of motion.
The pieces that are the most convenient for path integral purposes are two initial and two final conditions, hence the path
integral measure is over both ϕ and σµ.

In order to damp out oscillations we choose the Feynman iϵ prescription in which we replace M 2
1 and M 2

2 by M 2
1 − iϵ,

M 2
2 − iϵ. For the path integral this yields

PI(MINK) =

∫
D[ϕ]D[σµ] exp

[
1

2

∫ ∞

−∞
d4x

[
i∂νσµ∂

νσµ − i
(
M 2

1 +M 2
2

)
σµσ

µ + iM 2
1M

2
2ϕ

2

− 2ϵσµσ
µ + (M 2

1 +M 2
2 )ϵϕ

2
]]
. (8.2)

With ϕ and σµ being taken to be real and with σµσ
µ being taken to be timelike on every path, the σµ path integration is

damped but the ϕ path integration is not. Consequently, as integrated with a real measure the path integral does not exist.
Now the path integral is used to generate time-ordered Green’s functions such as D(x) = i⟨Ω|T [ϕ(x)ϕ(0)]|Ω⟩ (hence the iϵ
prescription). And thus these Green’s functions will not be finite, with the vacuum in which the Green’s function matrix
elements are evaluated thus not being normalizable.

Study of the Minkowski path integral thus gives us an alternate way to determine whether or not ⟨Ω|Ω⟩
is finite: the path integral with a real measure either exists or does not exist.

For the unconventional iϵ prescription in which we replace M 2
1 and M 2

2 by M 2
1 − iϵ, M 2

2 + iϵ the path integral takes the
form

PI(MINK) =

∫
D[ϕ]D[σµ] exp

[
1

2

∫ ∞

−∞
d4x

[
i∂νσµ∂

νσµ − i
(
M 2

1 +M 2
2

)
σµσ

µ + iM 2
1M

2
2ϕ

2 − (M 2
1 −M 2

2 )ϵϕ
2
]]
, (8.3)

and has no damping on the σµ path integration at all. The unconventional iϵ prescription for the Feynman contour that
leads to an unbounded from below energy spectrum thus cannot be associated with a well-defined path integral, and we
cannot consider it further.
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Thus the only Feynman iϵ prescription that can be relevant is the standard one with M 2
1 − iϵ, M 2

2 − iϵ. However even
with this choice the ϕ path integration is not damped if ϕ is real. It becomes damped if we do not require ϕ to be real, but
instead take it to be pure imaginary (though (Im[ϕ])2 > (Re[ϕ])2 would suffice). With ϕ̄ = −iϕ we replace (8.2) by

PI(MINK) =

∫
D[ϕ̄]D[σµ] exp

[
1

2

∫ ∞

−∞
d4x

[
i∂νσµ∂

νσµ − i
(
M 2

1 +M 2
2

)
σµσ

µ − iM 2
1M

2
2 ϕ̄

2

− 2ϵσµσ
µ − (M 2

1 +M 2
2 )ϵϕ̄

2
]]
. (8.4)

With ϕ̄ and σµ being taken to be real and with σµσ
µ being taken to be timelike on every path, the path integral is now well

defined and the theory is consistent. (In a study of quantum gravity ’t Hooft 2011 has also suggested that the path integral
measure be continued into the complex domain.)

This puts us into a domain in the complex plane (known as a Stokes wedge) in which the path integral is now fully
defined, and now the vacuum state is normalizable. This completely parallels the discussion of ψ0(z, x) that we gave above.

The higher-derivative quantum scalr field theory has two distinct realizations, the Ostrogradski one and
the Feynman iϵ prescription. Now it cannot be the case that one and the same path integral has two totally
different realizations, and so we need differentiate between them. This is done by having them be defined
with differing variables. Thus for Ostrogradski realization ϕ is real, while for the Feynman iϵ prescription
ϕ is pure imaginary. These two options for ϕ then lead to two completely different theories. However in
the end in the Feynman iϵ prescription case we still end up with a real ϕ̄ = −iϕ, just as needed to make the
path integral exist, and to obtain a real output classical theory. The classical variables are the eigenvalues
of the quantum operators once the quantum operators are self-adjoint, and these classical variables are real
because of the PT symmetry of the quantum theory.
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The Euclidean Path Integral

Our concerns here could be missed in a Euclidean time path integral approach. Specifically, if we disperse

in t (assuming of course that we can, i.e., that the Cauchy-Riemann equations for complex t are obeyed), we

can write ∫ ∞

−∞
+

∫ i∞

∞
+

∫ −i∞

i∞
+

∫ −∞

−i∞
= pole terms plus cut contributions, (8.5)

i.e., along the real axis, then upper-half-plane quarter circle, then down the imaginary axis, and then lower-

half-plane quarter circle. Assuming no pole, cut or circle contributions, and on setting τ = it and letting I

denote the action we obtain

I(MINK, z, x) ≡
∫ ∞

−∞
dt ≡ −

∫ −i∞

i∞
dt ≡ I(EUCL, z, x),

P I(EUCL, z, x) =

∫
D[ϕ]D[σµ] exp

[
−1
2

∫ ∞

−∞
dτd3x

[
∂νσµ∂

νσµ −
(
M 2

1 +M 2
2

)
σµσ

µ +M 2
1M

2
2ϕ

2
]]
.

(8.6)

where now σµσ
µ is spacelike.
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Given the overall minus sign that multiplies the Euclidean action on every path, we see that the Euclidean

path integral is well behaved (Hawking and Hertog 2002). However, the Minkowski time path integral with a

real measure is not.

Thus we conclude that the pole and/or cut and/or circle contributions are not only

not ignorable, they generate an infinite contribution. Hence their contribution in a Wick

rotation cannot be ignored and the Euclidean time path integral does not correctly describe

the situation, and thus we see that even if finite, a Euclidean time path integral approach is

only valid if the vacuum state of the theory (as determined in a Minkowski time analysis)

is normalizable. Otherwise the Wick contour rotation fails.
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9 Implications for radiative corrections in quantum Einstein gravity

As a quantum theory the standard second-order-derivative Einstein gravitational theory with its 1/k2 propagator is not
renormalizable. Since graviton loops generate higher-derivative gravity terms, one can construct a candidate theory of
quantum gravity by augmenting the Einstein Ricci scalar action with a term that is quadratic in the Ricci scalar. This gives
a much studied quantum gravity action of the generic form

IGRAV =

∫
d4x(−g)1/2

[
6M 2Rα

α + (Rα
α)

2
]
, (9.1)

and it can be considered to be an ultraviolet completion of Einstein gravity. This same action also appears in Starobinsky’s
inflationary universe model.

On adding on a matter source with energy-momentum tensor Tµν, variation of this action with respect to the metric
generates a gravitational equation of motion of the form

−6M 2Gµν + V µν = −1
2
T µν. (9.2)

Here Gµν and Vµν are of the form

Gµν = Rµν − 1

2
gµνgαβRαβ,

V µν = 2gµν∇β∇βRα
α − 2∇ν∇µRα

α − 2Rα
αR

µν +
1

2
gµν(Rα

α)
2. (9.3)

If we now linearize about flat spacetime with background metric ηµν and fluctuation metric gµν = ηµν + hµν, to first
perturbative order we obtain

δGµν =
1

2
(∂α∂

αhµν − ∂µ∂αhαν − ∂ν∂αhαµ + ∂µ∂νh)−
1

2
ηµν

(
∂α∂

αh− ∂α∂βhαβ
)
,

δVµν = [2ηµν∂α∂
α − 2∂µ∂ν][∂β∂

βh− ∂λ∂κhλκ], (9.4)

where h = ηµνhµν. On taking the trace of the fluctuation around a background (9.2) we obtain

[M 2 + ∂β∂
β]
(
∂λ∂

λh− ∂κ∂λhκλ
)
= − 1

12
ηµνδTµν. (9.5)
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In the convenient transverse gauge where ∂µh
µν = 0, the propagator for h is given by

D(h, k2) = − 1

k2(k2 −M 2)
=

1

M 2

(
1

k2
− 1

k2 −M 2

)
. (9.6)

As we see, in this case the 1/k2 graviton propagator for h that would be associated with the Einstein tensor δGµν alone
is replaced by a D(h, k2) = [1/k2 − 1/(k2 − M 2)]/M2 propagator. And now the leading behavior at large momenta is
−1/k4. In consequence, the theory is thought to be renormalizable (Stelle 1977). But since ⟨Ω|Ω⟩ is not finite the proof of
renormalizability has a flaw in it. Fortunately, the flaw is not fatal, and we rectify it below.

We recognize D(h, k2) as being of the same form as the second-order plus fourth-order scalar field theory propagator that
was given in (4.2), with ϕ being replaced by h and with M 2

1 = M 2, M 2
2 = 0. We can thus give h an equivalent effective

action of the form

Ih =
1

2

∫
d4x

[
∂µ∂νh∂

µ∂νh−M 2∂µh∂
µh

]
. (9.7)

The action given in (9.7) thus shares the same vacuum state normalization and negative norm challenges as the scalar field
action given in (4.1).

Thus if, as is conventional, we take h to be Hermitian we would immediately encounter the negative norm problem
associated with the relative minus sign in (9.6). However, since M 2 is Planck scale in magnitude, this difficulty can be
postponed until observations can reach that energy scale. However, the lack of normalizabilty of the vacuum state
has consequences at all energies and cannot be postponed at all. Specifically, with ⟨Ω|Ω⟩ being infinite we cannot
even identify the propagator as i⟨Ω|T [h(x)h(0)]|Ω⟩ since in analog to (1.8) it will obey

(∂2t − ∇̄2)(∂2t − ∇̄2 +M 2)D(h, x) = −⟨Ω|Ω⟩δ4(x). (9.8)

Consequently, we cannot make the standard Wick contraction expansion. And the Feynman rules that
are used presupposing that ⟨Ω|Ω⟩ is finite are therefore not valid. The effective field theory approach to
gravity also fails, because even at energies with k2 ≪M 2 the vacuum is still not normalizable.
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However, as noted above, we can resolve all of these concerns by dropping the requirement that h be Hermitian, and
transform it to ih̄, where h̄ is self-adjoint in its own eigenstate basis. Then, with the theory being recognized as a PT
theory, vacuum state normalization and negative-norm problems are resolved and the theory is consistent. Moreover, the
propagator is given by −i⟨ΩL|T [h̄(x)h̄(0)]|ΩR⟩ (corresponding to +i⟨ΩL|T [h(x)h(0)]|ΩR⟩). And with the propagator still
being given by (9.6) as it satisfies (∂2t − ∇̄2 +M 2)(∂2t − ∇̄2)[−i⟨ΩL|T [h̄(x)h̄(0)]|ΩR⟩] = −δ4(x), all the steps needed to prove
renormalizability are now valid. Consequently, the theory can now be offered as a fully consistent, unitary and renormalizable
theory of quantum gravity, and can thus serve as the ultraviolet completion of Einstein gravity

In that case the only concern is that even though the M 2 field now has a finite, positive norm, it still remains in the
spectrum and would eventually have to be observed. Also of course the theory shares the dark matter and dark energy
problems of its now bona fide low energy effective Einstein theory.

As can be seen from (9.7), the only reason that there is anM 2 term at all is because we are considering an action that has
both second-order and fourth-order terms. With a pure fourth-order theory there would be no dimensionful parameter in
the action and the theory would be scale invariant. If like the gauge theories of SU(3)× SU(2)× U(1) this scale symmetry
is also local, we would be led to conformal gravity, a metric theory of gravity in which the action is left invariant under local
changes of the metric of the form gµν(x) → e2α(x)gµν(x), where α(x) is a local function of the coordinates. The conformal
gravity theory has been advocated and explored in (Mannheim 2006, Mannheim 2017) and references therein. And ’t Hooft
(’t Hooft 2015) has also argued that there should be an underlying local conformal symmetry in nature.
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In the conformal gravity theory an action that is to be a polynomial function of the metric has the unique form

IW = −αg

∫
d4x (−g)1/2CλµνκC

λµνκ ≡ −2αg

∫
d4x (−g)1/2

[
RµκR

µκ − 1

3
(Rα

α)
2

]
, (9.9)

where αg is a dimensionless gravitational coupling constant, and Cλµνκ is the conformal Weyl tensor. The perturbative
propagator has a −1/k4 behavior at all k2, and with its large k2 behavior the theory is renormalizable (Fradkin and Tseytlin
1985). With a −1/k4 propagator it would initially appear that there would be two massless particles at k2 = 0. However,
we cannot use the partial fraction decomposition given in (9.6) as a guide since its 1/M2 prefactor is singular in the M 2 → 0
limit. Because of this singular behavior the M 2 = 0 Hamiltonian becomes of nondiagonalizable Jordan-block form and only
has one massless eigenstate, with the other would-be massless eigenstate becoming nonstationary (Bender and Mannheim
2008).

Thus the propagator should be constructed not as the M 2 → 0 limit of the ghost-like but actually ghost-free (9.6), but
instead as the manifestly ghost-free limit

− 1

(k2 + iϵ)2
= − lim

M2→0

d

dM 2

(
1

k2 −M 2 + iϵ

)
, (9.10)

a limit that shows that there is only one k2 = 0 pole not two. With the Hamiltonian not being diagonalizable, it could not
be Hermitian. It does however have a PT symmetry, with is ground state being normalizable. Conformal gravity is thus a
fully consistent theory of quantum gravity, one which despite its fourth-order character possesses no states of negative norm,
and only one massless particle, not two.
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10 Final Comments

For a quantum field theory to be physically relevant it must be formulatable in a Hilbert space with an inner product that is
time independent, finite and nonnegative. However, in and of itself, specifying an action and a set of canonical commutators
is not enough to either fix the Hilbert space or specify the appropriate inner product. Ordinarily, one supplements these
requirements with the additional (generally regarded as self-evident) requirements that the fields and the Hamiltonian of
the theory be Hermitian, and that the inner product be the standard, presumed finite, Dirac ⟨n|n⟩ one. However, this is not
automatic for any theory, and so one needs to check on a case by case basis. And we have presented a procedure for doing
so. The procedure is based on using the occupation number space representation to construct an equivalent wave mechanics
representation, from which we can check for the normalizability of the vacuum state, and accordingly of the states that can
be excited out of it. An alternative but equivalent approach is to check whether or not the Minkowski time path integral
with a real measure exists. If it does not, then the standard Dirac inner product is not finite.

Using the occupation number space representation procedure we have found a case, a second-order plus fourth-order scalar
field theory, in which the standard Dirac inner product ⟨n|n⟩ actually is not finite. In this example the Minkowski time path
integral with a real measure diverges even though the Euclidean time path integral does not. Even though contributions
from the Wick rotation contour are ordinarily ignored, in this case they cannot be. Thus the use of a Euclidean time path
integral can be misleading. And even if the Euclidean time path integral is well behaved, it only gives a good description of
the theory if the Minkowski time path integral is well behaved too. Since ⟨Ω|Ω⟩ is not finite, use of the standard Feynman
rules is not valid, with these rules not only leading to states with negative norm, they lead to states with infinite negative
norm. This lack of finiteness means that the Hamiltonian is not self-adjoint when acting on these particular states.

However, the Hamiltonian of the second-order plus fourth-order scalar field theory is PT symmetric, so we can use the
techniques of the PT symmetry program and continue the fields and the Hamiltonian in this theory into the complex plane.
There is then a domain in the complex plane in which one can define an appropriate time-independent, positive and finite
inner product, viz. the ⟨L|R⟩ overlap of left-eigenstates and right-eigenstates of the resulting Hamiltonian, with the resulting
vacuum state then being normalizable, and with there being no states with negative or infinite ⟨L|R⟩ norm. In this complex
domain it is the Euclidean time path integral that diverges while the Minkowski time path integral does not. So again
there are contributions from the Wick rotation contour. In this complex domain the second-order plus fourth-order
scalar field theory is fully consistent, unitary and renormalizable, with this analysis being relevant for the
construction of a consistent quantum theory of gravity.
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