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Introduction

<

%)

[}
X\ % [
— O, My God, they have found one more elementary particle.

What we shall do?

— Let us add one more term to the TRUE UNIFIED FIELD
THEORY LAGRANGIAN.
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Introduction

General Relativity (Einstein, Grossmann, Hilbert, 1913 — 1915)
has not introduced new physical constants, maybe only one:
A\ — cosmological constant.

Bigravity (Hassan, Rosen, de Rham, Gabadadze, Tolley, 2010
— 2011) has 6 new constants:

ratio of two gravitational constants Gr/G,, and five constants
of the gravitational potential fy, ..., fs.
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Bigravity: the two lightcones (Fig. by Kocic)




Introduction
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Introduction

Motivation

Phenomenological reasons for inventing bigravity: the problems

of dark energy and dark matter.
Theoretical reasons: curiosity to find the massive spin 2 field

theory.
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Introduction

On the history of bimetric and bigravity theories

Nathan Rosen (1940, and later works) — the problem of
energy-momentum of the gravitational field.

Kraichnan, Gupta, Feynman, Weinberg, Deser .. .,
(1950-1970) - the field theory approach to gravitation theory.
Isham, Salam, Strathdee, (1971) — the fifth force problem (on
interaction of spin-2 mesons with gravity)

Wess, Zumino (1980) — the massive gravity

Damour, Kogan (2002) — gravity in higher dimensions and its
consequences

Hassan, Rosen (2010 — 2011) — no-ghost dRGT potential for
interaction of two metric tensors

Vladimir O. Soloviev Bigravity



Bigravity Lagrangian

The bigravity Lagrangian

Let us take two copies of the GR Lagrangian

2
% = / C"‘&V—ff“”&sﬁ+£%?(¢A,fw> (1)
+/ W gg" R )+ L8 g.),  (2)

they have the two independent diffeomorphysm invariances

X=X M(x), oyt =y (). (3)
But introducing the potential we loose one of them, now only
diagonal diffeomorhysms are allowed

S =S — MM / 20/ =Z U (g, Fur). ()



Bigravity Lagrangian

Invariants for the potential

Take matrix Y = ||g#*f,,||, and consider its invariants:

e = 1,
e = MF+X+A3+ N
= TrY,
e = )1\1)\2 + A3+ A3 + M3+ A+ Ao\

= 3 ((TxY)? — TrY?),

€3 = )\1)\2)\3 + /\2)\3)\4 + )\1)\3)\4 + )\1)\2)\4

1
5 ((TrY)* = 3TeYTrY? + 2TrY?)

€4y = )\1)\2)\3/\4
= detY,
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Bigravity Lagrangian

An example of the potential

The RTG (Relativistic Theory of Gravitation) by A.A. Logunov
and his collaborators is a theory of massive gravity with the
potential

/=gl = (\/_—g (%TrY - 1> - \/—_f) (5)
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Bigravity Lagrangian
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Bigravity Lagrangian

Boulware-Deser ghost

In general case there are 8 degrees of freedom, one more than
required for one massless and one massive field of spin-2 in
4-dimensional spacetime.

Also it has been shown that there is a negative kinetic energy
for one degree of freedom, so it is a ghost. For a long period
of time (1972 - 2010) it was believed that nonlinear massive
gravity (and the bigravity) was impossible to construct.
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Bigravity Lagrangian
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" The dRGT (de Rham, Gabadadze, Tolley) potential
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Bigravity Lagrangian

Fawad Hassan and Rachel Rosen
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Massless and massive fields

Proportional metrics as backgrounds

Let metrics _
f,u,l/ - ng/ﬂ/a (6)
be solutions of the vacuum (no matter) bigravity equations
Guw(8) + VE, =0, Gu(f)+V,, =0 (7
As usual, we have Bianchi identities
ViGE, =0, V(G =0, (8)
and therefore on-shell equations
VeVE =0,  ViVI =0 (9)

It follows from here that ¢ = const.
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Massless and massive fields

Details

All formulas are simple for proportional metrics

fo = g, = Y=|lg7H || =2, X=VY=cl, (10)

Then
Ve, = gulg, Ng=m'By(c), (11)
2
Foo_ _m Bi(c)
Vm/ - f,ul//\f’ Af - ? 3 (12)
where notations are the following
My 2 3
= Bi(c) = Bi + 3Bit1¢ + 3Bitoc” + Pigac.  (13)
g
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Massless and massive fields

Spacetimes of constant curvature

In order to discuss the graviton mass we are to consider small
fields on maximally symmetric space-times. Then for
background proportional metrics we have equations

Gul/(g) + gw//\g =0, GMV(F) + f_;w/\f =0, (14)

and as the Einstein tensor does not change when metric is
multiplied by constant we must have

Ay = Ay (15)
This provides the following equation for c:

a?B3c*+(30° B—Ba) S +3(a? 1 —B3) *+(a? Bo—3B2)c— 1 = 0.
(16)
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Massless and massive fields

Minkowski background (1)

We come to the simplest case when both tensors g, and £,
have the common flat background

Ar =0 = A, c=1, B = N = Fur. (17)
It is achieved, for example, if

/61 = 63 = O, BO = 54 = _352- (18)
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Massless and massive fields

Minkowski background (2)

Linear perturbations h,, and ¢,,, are as follows

_ 1 _ 1
8w = uw + 7h i = Buw + 77w (19)

M, M

and for simplest case (5o =3, 1 =—1, 5o =0=03, 3 =1)
we get the following Fierz-Pauli term

_széfF E_E_ﬁ 2_ i_g_ﬁ i (20)
4 Mg M Mg  M:) |

corresponding to variable

By L
nu—"/’eff(M”g—MLf)a Mege =/ Mz + M7. (21)

V
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Massless and massive fields

More general case

_ 1 _ C
8w = 8w + thw fu = ng;w + Ll (22)

M¢
g
Then we get massive M, and massless G, fluctuations (here
a = Mr/Mg)
1
6o = T (hwtcatn), (@)
1
My = m(@w—cahuu), (24)
and the Fierz-Pauli mass appears as

1 1
mip = m' <W * W) (Brc +262¢% + f5c®).  (25)
F g
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Massless and massive fields

Effective Planck mass is
M, = MgV1 + c20? = /M2 4 c2M?. (26)

The linearized equations are

= 1
EP Gy + Ng Gy = M, (5T/E§) + 36 Tﬁ?) : (27)
_ C
EfMpo + Ng My, = M (5 T;Ezi) - O‘25T;E§)) -
QY
2

m

— 2P (M — 88" Myo) (28)
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Cosmology
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Cosmology

Einstein was the first who tried to find equation for the
Universe. But he was not brave enough to consider Universe as

a dynamical system.
Alexander Friedmann has predicted the expanding Universe

(1922-2022)

Kak @pugmaH
JAHWTeAHa Nnoakosan

Also: How Friedmann shod Einstein. arXiv:2204:10650
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Cosmology

Friedmann's ansatz

Homogeneous and isotropic Universe may be described as a
spacetime with metric

2

ds® = —dt? + R*(t) (1 drk 2 (d6? + sin29d¢2)> (29)
— kr

where one of the opportunities k = —1,0, +1 must be chozen.

The matter, i.e. a source of gravitation, is also supposed to be
homogeneous isotropic and at rest. Usually, the ideal fluid is
playing this role

T} = diag(p(t), p(1), p(1), p(1)). (30)
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Cosmology

Friedmann's equations

The main equation is a constraint from the Hamiltonian view,
because it is of the 1st order in time derivatives

N\ 2
R 3k p 1 )

= — =L 4N== MZN 1
3(/?) + 53 M§+ Mé(p—i— 2A),  (31)
therefore the initial data H(to), p(to), R(to) must fulfil it.

|.h.s contains the Hubble constant H = % and the curvature
parameter k. For simplicity we consider only flat space case
when k = 0.
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Cosmology

The 2nd order in time derivative equation is as follows

A= (o). (32)

g

and there is a consequence of the above equations:

p = —=3H(p+p), (33)

which is an energy-momentum conservation law.
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Cosmology

YIK 519.62
Kyswenoe A E, Koxsros BB,

MOJIEIHPOBAHNE PA3.TITUHBIX 3TAIIOB PA3BITHA BCEJIEHHOMN
COITACHO YACTHBIM PEIIEHIAM VPABHEHHA PIIIMAHA
MODELING DIFFERENT STAGES OF DEVELOPMENT OF THE LMNVERSE
ACCORDING TO PARTICULAR SOLUTIONS O TIIE ITRICDMANN CQUATION

OUTHAT « TTPORMIO ) 2OCYOAPEMRENNORD VIINECPCLUTME & TTdTiay
Ceiijtin «ECmecmeesiiue i WHATHOLHLIC HaVKI)

AsTopel: Ky:senos Anexcelt Epreepcsny. Konskos Biaamcias Bramamuposmy. cTyasHTs 4
kypca Eaeapsr «ITHGOPMATHKA H BBHIMACIHTEIBHAS TEXEHEA» ] OCYIADCTBEHHOTO VHHECPCHTETA
« Ty tras (eman TpoTsHHn)

Hayamniit pykosoaarean: 3ionnio Tatnam HARDTAENTA, KATTHAAT TEXITHYeckis TAyE,
JoueHl Kadeapsl O0Weo0pasoBaTeubHb AMCHILIEE TOCy LapCIBeEHOIY yausepenrera « Ty OHa»
(nman Iporeaso).

AHBOTAIASA

(' OTKpEITHEM pPETHETOBOID H3MVUCHEE H EOCMOTOTHUSCKOTO KpACHOTO CMeIISHHA B
MOJCTHDPOBAEHE cOCTOAHHA BocIcEHoM cTana NpoodIafaTs TCOPHA HCCTANHOHAPHOTO PACTIHOCEHA.
Beemerman  puavana GLma Tepnoil MOTeTRIo pacmmpaiomaiea Beenemmoff ¢ nolownTentinoh,
HyIeBUE M UIPHUATRIEHON HOCIOAHEOL KPUBU3HOM, OHA HBILLACH  LUSPBBIN OCHOBHBIM Dd3BHIHEM
OQfmeit |'eopan OTHOCHETEIPEOCTE MOCTe DHAINTEAEA, H 10 ¢¢H Ie¢Hb Ha HEE 0CHOBAaHA COBpPEMEHHAA
KOCMOTIOTH.

D JanEOil CTATEe H3YUAKTCA 3TADB H KIRYEBES MePeXoIHbIE MOMEHTE] Da3sBHTHE BeeleHHOI,
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Cosmology

JInst mocTpoeHNs KAkOI M2 KPHRRIX ORITO MOTYAeHO TacTHoe pemmedne no (312, Brnan
11y 0ToOpaKCH KpHBOII CHHCTO [BCTA, a £23- 3CICHOTO. LlomyucHHEI pe3vibTar Ha Pre. 1:
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Puc.1 [lepexon oT 5mox1 JOMIHIPOBAHIAL M3TYUEHNA K YII0Xe JOMHHEHPOBAHHNA BEIIECTBA

TTo ocn OX oTknanmzaeTcet ppend B Ml TeT. ITo ocir OY orknagripaetcs pagunye Beedennodi b
OTHOCHTENBHEIX ennummax (tne 0 — LGomemofi B3prie, | — HacTosmee Bpemsa). Tamxe, Ha Pme.l
OTOBPAKEIA TOUKA Hepecetell] KPHBLIX, B KOTOPON DEIAZL CPABINIINCL 4 MOMENTE BpPEMell
okono 90 000 mer (t = 94300 nmer). MoMeHT mepexona o3HauYaeT PABEHCTBO ILUTOTHOCTEIl 3HepTIH
]IE‘[}%IHTHEHETCKOﬁ i I]t‘.J'LﬂTH]]HCTIiDﬁ MaTepHIL Tonoxenme ,:[ﬂHIICIﬁ TOYKH COOTBETCIBYET
TICPCCCUCHIIO KPIBEIX. BaKHO OTMCTHTS, UTO KPHBEIC CYIICCTBCHHO OTTIYAOTCA - KPIBASL H3TVICHIA
(1)) xpvie maer x mymo, uTo XapakTepusvel mpeoflagamime YALIPAPSTITHRHCTCKHNX HACTHI B
TICPBBIC MIHVTHI TTOCIC bo1pmoro B3peBa.
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Cosmology

Ha Puc. 2 m3o6paken momyueHHslil rpaduk pamiyca Beenerroit ot bonbmioro 3peisa 1o 20
wipa net.  Kprsad MacmTaGHoro hakTopa - CHHIM IBeToM. i HarTAgHOCTH OBLTA MpoBeleHa
KacaTeTbHAg KPACHOTO IBETA 1T WepHas BepTHKATHHAS MIHIA — Hame Bpest (13.7 mpa mer).

18

0 2 0‘00 40‘00 L] D‘DD 8 DIUU 10 :JDU 12 (‘JUD 14 ‘DDD 18 ‘DDU % ‘UDD 20000
Puic. 2 - Tpaduk pamiyca Beenennoii ot boxbimoro B3psisa 10 20 MIpi TeT.

B MOMEHT BpeMeHI MPIMepHO 6 MIPA 1T oTofpakeHa TOUKa Iepernda — MOMEHT Iepexola
0T IHTEHCHBHOTO, HO 3aMeITIOMErocs PACIINPEHIS K PACIMIPEHITIO ¢ YeKopeHmeM. OTpInaTensHoe
VCKOpEHIE COOTBETCTBYeT OTpHIATENBHON BTOPONl NPOI3BOTHON I BEMYKIOMY Ipaduky, a
TOTOKHTETBHOE YCKOPEHIIE — IOTOKHTENbHOIT BTOPOIT PON3BOIHOIL 1T BOTHYTOMY IpadIIKy.
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Cosmology

M3BecTHO, UTO TOUHOE pellleElle ypaBHEHNA (1) MokeT GBITH MOIYIEHO TONBKO AIA YaCTHOTO
ciryuas, Koria siuaigel 02 u {0y paseel Hy.o. [Loc. 86]. Hexold U3 31010, COOIBEICTBYHOILUMU
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HAYIHACT OYCHL GHICTPO BO3pacTaTh OTHOCHICIBHO M0GOIT (DOPMBI MATCPHIL UTO XapaKTCPI3YCTCA
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Cosmology

Friedmann’s ansatz in bigravity

The starting point is two diagonal metrics with the same
curvature parameter, below we will take k =0

dr?

1—kr?
2

a0 (2 ) o

dr
1—kr?

ds? = —N(t)dt? + R2(t) ( + r?(d6? + sin® 9d¢2)) ((35)

the scale factors R, and Ry are different, it is useful to exploit
their ratio as a new variable y = Rf/Rg, the time components
are also different.
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Cosmology

The Friedmann equations in bigravity

The 1st order equations are as follows (k = 0)

3H = 15+ A(), (36)
g
)

3H = L), (37)
f

where we can find dynamical dark energy, i.e. two different
functions of y instead of cosmological constants

N(y) = m? (Bo+ 3By +38y* +Bsy®),  (38)

M2
Ae(y) = m2V§ (% + 3% + 3% + 64) (39)
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Cosmology

There is an additional constraint following from dynamics

Hy = yHs. (40)
To simplify the situation let us put pr = 0 = pyr, then
3H, = M2 &+ N (y), (41)

After combining the above equations we can express pg or Hg
as a function of y. The inverse problem has up to 4 real
solutions because it is necessary to is solve the algebraic
equation in order to find y:

7 <ﬁl #3504 30+ fuy? ) o=y 3hy =y’ = T
y )¢
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Cosmology

One usually treat this as branches related to Big Bang

o Finite branch y — 0 when p, — co. The ratio of scale
factors y is increasing and reaches a constant value when
pe tends to zero.

o Infinite branch y — oo when p, — oo. This ratio is
decreasing up to finite value.

@ Exotic branches for the two other cases. It is possible to
get the evolution equation for variable y

y=(N=y)Hg. (44)

So, we see that y = const in two cases:
© the two metrics are proportional: N =y,
@ cosmology is static: H; = 0 = Hf,
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Cosmology

On the proportional metrics

The bigravity cosmological solution with proportional metrics

g

2
ds? = (—f) ds? Hy = NH¢ = const, (45)

provides de Sitter solutions for both metrics.
It follows also that

pg = —3Hg(pg+ps) = 0. (46)

Then, matter should be dissolved completely or should have
vacuum equation of state.
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Cosmology

Example: calculating the evolution of Universe in

bigravity

We can calculate observables p(t), H(t), A(t) if we find y(t).
First, solve (43) with parameter p for y = y(p)) and choose
the finite branch solution. Next, solve the evolution equation

y = (N —y)Hg, (47)

taking as initial condition y(ty) = y(p(to)). N = N(y) can be
found from the conservation of equation H, = yHr during
evolution, and H,(y) is given by the Friedmann equation.
The age of Universe t; can be found from y(0) = 0.
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Conclusion

What is the best metric for matter?

Is there any combination of g, and f,, which is minimally
coupled to matter?
One proposal was an effective metric

G&fF = (EA + ¢FA)(Eoa+ EF,0), (48)

but it was proved that this theory would not be ghost-free.
Another idea is to get a new (spatial) metric Gj; from the
algebra of Hamiltonian constraints where there is an equation

{R(x), R(y)} = G"(R;(x)d,i(x — ¥) = R;(y)d,i(y — x)), (49)

but it is found that both spatial metrics may appear in the
above formula.
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Conclusion

On study of observational bounds

e A. Caravano, M. Luben, J. Weller
Combining cosmological and local bounds on bimetric
theory. 2101.08791

@ M. Luben, A. Schmidt-May, J. Weller
Physical parameter space of bimetric theory and SN1a
constraints. 2003.03382

@ Marcus Hogas, Edvard Mortsell
Constraints on bimetric gravity. Part |. Analytical
constraints. 2101.08794

@ Marcus Hogas, Edvard Mortsell
Constraints on bimetric gravity. Part II. Observational
constraints. 2101.08795
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Conclusion

" Exclusion plot (Thesis of Marcus Hogas )
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Conclusion

Conclusions

@ Bigravity is motivated theoretically and observationally

@ Bigravity is not so nice as General Relativity and contains
6 arbitrary parameters

@ Bigravity provides solutions for self-accelerated Universe
o Bigravity maybe has relations to dark matter

@ Bigravity survives all the cosmological and local tests (as
also ACDM model does)

@ Bigravity has limits to GR and to dRGT massive gravity

@ But questions prevail over answers
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