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� O, My God, they have found one more elementary particle.
What we shall do?

� Let us add one more term to the TRUE UNIFIED FIELD
THEORY LAGRANGIAN.
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General Relativity (Einstein, Grossmann, Hilbert, 1913 � 1915)
has not introduced new physical constants, maybe only one:
Λ � cosmological constant.

Bigravity (Hassan, Rosen, de Rham, Gabadadze, Tolley, 2010
� 2011) has 6 new constants:
ratio of two gravitational constants Gf /Gg , and �ve constants
of the gravitational potential β0, . . . , β4.
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Bigravity: the two lightcones (Fig. by Kocic)
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Motivation

Phenomenological reasons for inventing bigravity: the problems
of dark energy and dark matter.
Theoretical reasons: curiosity to �nd the massive spin 2 �eld
theory.
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On the history of bimetric and bigravity theories

Nathan Rosen (1940, and later works) � the problem of
energy-momentum of the gravitational �eld.
Kraichnan, Gupta, Feynman, Weinberg, Deser . . .,
(1950-1970) � the �eld theory approach to gravitation theory.
Isham, Salam, Strathdee, (1971) � the �fth force problem (on
interaction of spin-2 mesons with gravity)
Wess, Zumino (1980) � the massive gravity
Damour, Kogan (2002) � gravity in higher dimensions and its
consequences
Hassan, Rosen (2010 � 2011) � no-ghost dRGT potential for
interaction of two metric tensors
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The bigravity Lagrangian

Let us take two copies of the GR Lagrangian

S0 =

∫
d4x

M2
f

2

√
−f f µνR (f )

µν + L(f )
M (ψA, fµν) (1)

+

∫
d4y

M2
g

2

√
−ggµνR (g)

µν + L(g)
M (ϕA, gµν), (2)

they have the two independent di�eomorphysm invariances

xµ → x ′
µ
(xα), yµ → y ′µ(yα). (3)

But introducing the potential we loose one of them, now only
diagonal di�eomorhysms are allowed

S = S0 −m2M2
g

∫
d4z

√
−gU(gµν , fµν). (4)
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Invariants for the potential

Take matrix Y = ||gµαfαν ||, and consider its invariants:

e0 = 1,

e1 = λ1 + λ2 + λ3 + λ4

≡ TrY,

e2 = λ1λ2 + λ2λ3 + λ3λ4 + λ1λ3 + λ1λ4 + λ2λ4

≡ 1

2

(
(TrY)2 − TrY2

)
,

e3 = λ1λ2λ3 + λ2λ3λ4 + λ1λ3λ4 + λ1λ2λ4

≡ 1

6

(
(TrY)3 − 3TrYTrY2 + 2TrY3

)
,

e4 = λ1λ2λ3λ4

≡ detY,
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An example of the potential

The RTG (Relativistic Theory of Gravitation) by A.A. Logunov
and his collaborators is a theory of massive gravity with the
potential

√
−gU =

(√
−g

(
1

2
TrY − 1

)
−

√
−f

)
(5)
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Boulware-Deser ghost

In general case there are 8 degrees of freedom, one more than
required for one massless and one massive �eld of spin-2 in
4-dimensional spacetime.
Also it has been shown that there is a negative kinetic energy
for one degree of freedom, so it is a ghost. For a long period
of time (1972 � 2010) it was believed that nonlinear massive
gravity (and the bigravity) was impossible to construct.
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The dRGT (de Rham, Gabadadze, Tolley) potential

UdRGT =
i=4∑
i=0

βiei(X) X =
√
Y .
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Fawad Hassan and Rachel Rosen
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Proportional metrics as backgrounds

Let metrics
f̄µν = c2ḡµν , (6)

be solutions of the vacuum (no matter) bigravity equations

Gµν(ḡ) + V g
µν = 0, Gµν(f̄ ) + V f

µν = 0. (7)

As usual, we have Bianchi identities

∇µ
gG

g
µν ≡ 0, ∇µ

f G
f
µν ≡ 0, (8)

and therefore on-shell equations

∇µ
gV

g
µν ≡ 0, ∇µ

f V
f
µν ≡ 0. (9)

It follows from here that c = const.
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Details

All formulas are simple for proportional metrics

fµν = c2gµν , → Y = ||g−1f || = c2I, X =
√
Y = c I, (10)

Then

V g
µν = gµνΛg , Λg = m2B0(c), (11)

V f
µν = fµνΛf , Λf =

m2

α2

B1(c)

c3
, (12)

where notations are the following

α =
Mf

Mg
, Bi(c) = βi + 3βi+1c + 3βi+2c

2 + βi+3c
3. (13)
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Spacetimes of constant curvature

In order to discuss the graviton mass we are to consider small
�elds on maximally symmetric space-times. Then for
background proportional metrics we have equations

Gµν(ḡ) + ḡµνΛg = 0, Gµν(f̄ ) + f̄µνΛf = 0, (14)

and as the Einstein tensor does not change when metric is
multiplied by constant we must have

Λg = c2Λf . (15)

This provides the following equation for c :

α2β3c
4+(3α2β2−β4)c3+3(α2β1−β3)c2+(α2β0−3β2)c−β1 = 0.

(16)
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Minkowski background (1)

We come to the simplest case when both tensors gµν and fµν
have the common �at background

Λf = 0 = Λg , c = 1, ḡµν = ηµν = f̄µν . (17)

It is achieved, for example, if

β1 = β3 = 0, β0 = β4 = −3β2. (18)
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Minkowski background (2)

Linear perturbations hµν and ℓµν are as follows

gµν = ḡµν +
1

Mg
hµν , fµν = ḡµν +

1

Mf
ℓµν , (19)

and for simplest case (β0 = 3, β1 = −1, β2 = 0 = β3, β4 = 1)
we get the following Fierz-Pauli term

−
m2M2

e�
4

[(
hµν
Mg

− ℓµν
Mf

)2

−
(
hµµ
Mg

−
ℓµµ
Mf

)2
]
, (20)

corresponding to variable

vµν = Me�

(
hµν
Mg

− ℓµν
Mf

)
, Me� =

√
M2

g +M2
f . (21)
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More general case

gµν = ḡµν +
1

Mg
hµν , fµν = c2ḡµν +

c

Mf
ℓµν , (22)

Then we get massive Mµν and massless Gµν �uctuations (here
α = Mf /Mg )

Gµν =
1

1+ c2α2
(hµν + cαℓµν) , (23)

Mµν =
1

1+ c2α2
(ℓµν − cαhµν) , (24)

and the Fierz-Pauli mass appears as

m2

FP = m4

(
1

c2M2
f

+
1

M2
g

)
(β1c + 2β2c

2 + β3c
3). (25)
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E�ective Planck mass is

Mp = Mg

√
1+ c2α2 ≡

√
M2

g + c2M2
f . (26)

The linearized equations are

Ēρσ
µνGρσ + ΛgGµν =

1

Mp

(
δT (g)

µν + c2δT (f )
µν

)
, (27)

Ēρσ
µνMρσ + ΛgMµν =

c

Mpα

(
δT (f )

µν − α2δT (g)
µν

)
−

−
m2

FP
2

(Mµν − ḡµν ḡ
ρσMρσ) (28)
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Einstein was the �rst who tried to �nd equation for the
Universe. But he was not brave enough to consider Universe as
a dynamical system.
Alexander Friedmann has predicted the expanding Universe

(1922�2022)

Also: How Friedmann shod Einstein. arXiv:2204.10650
Vladimir O. Soloviev Bigravity
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Friedmann's ansatz

Homogeneous and isotropic Universe may be described as a
spacetime with metric

ds2 = −dt2 + R2(t)

(
dr 2

1− kr 2
+ r 2(dθ2 + sin2 θdϕ2)

)
(29)

where one of the opportunities k = −1, 0,+1 must be chozen.
The matter, i.e. a source of gravitation, is also supposed to be
homogeneous isotropic and at rest. Usually, the ideal �uid is
playing this role

T µ
ν = diag(ρ(t), p(t), p(t), p(t)). (30)
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Friedmann's equations

The main equation is a constraint from the Hamiltonian view,
because it is of the 1st order in time derivatives

3

(
Ṙ

R

)2

+
3k

R2
=

ρ

M2
g

+ Λ ≡ 1

M2
g

(
ρ+M2

gΛ
)
, (31)

therefore the initial data H(t0), ρ(t0), R(t0) must ful�l it.

l.h.s contains the Hubble constant H = Ṙ
R
and the curvature

parameter k . For simplicity we consider only �at space case
when k = 0.
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The 2nd order in time derivative equation is as follows

Ḣ = − 1

M2
g

(ρ+p), (32)

and there is a consequence of the above equations:

ρ̇ = −3H(ρ+p), (33)

which is an energy-momentum conservation law.

Vladimir O. Soloviev Bigravity



Introduction
Bigravity Lagrangian

Massless and massive �elds
Cosmology
Conclusion

Vladimir O. Soloviev Bigravity



Introduction
Bigravity Lagrangian

Massless and massive �elds
Cosmology
Conclusion

Vladimir O. Soloviev Bigravity



Introduction
Bigravity Lagrangian

Massless and massive �elds
Cosmology
Conclusion

Vladimir O. Soloviev Bigravity



Introduction
Bigravity Lagrangian

Massless and massive �elds
Cosmology
Conclusion

Vladimir O. Soloviev Bigravity



Introduction
Bigravity Lagrangian

Massless and massive �elds
Cosmology
Conclusion

Friedmann's ansatz in bigravity

The starting point is two diagonal metrics with the same
curvature parameter, below we will take k = 0

ds2g = −dt2 + R2
g (t)

(
dr 2

1−kr 2
+ r 2(dθ2 + sin2 θdϕ2)

)
,(34)

ds2f = −N(t)2dt2 + R2
f (t)

(
dr 2

1−kr 2
+ r 2(dθ2 + sin2 θdϕ2)

)
,(35)

the scale factors Rg and Rf are di�erent, it is useful to exploit
their ratio as a new variable y = Rf /Rg , the time components
are also di�erent.
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The Friedmann equations in bigravity

The 1st order equations are as follows (k = 0)

3H2
g =

ρg
M2

g

+ Λg (y), (36)

3H2
f =

ρf
M2

f

+Λf (y), (37)

where we can �nd dynamical dark energy, i.e. two di�erent
functions of y instead of cosmological constants

Λg (y) = m2
(
β0 + 3β1y + 3β2y

2 + β3y
3
)
, (38)

Λf (y) = m2
M2

g

M2
f

(
β1
y 3

+ 3
β2
y 2

+ 3
β3
y

+ β4

)
(39)
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Introduction
Bigravity Lagrangian

Massless and massive �elds
Cosmology
Conclusion

There is an additional constraint following from dynamics

Hg = yHf . (40)

To simplify the situation let us put ρf = 0 = pf , then

3H2
g =

ρg
M2

g

+ Λg (y), (41)

3H2
f = Λf (y), (42)

After combining the above equations we can express ρg or Hg

as a function of y . The inverse problem has up to 4 real
solutions because it is necessary to is solve the algebraic
equation in order to �nd y :

M2
g

M2
f

(
β1
y

+ 3β2 + 3β3y + β4y
2

)
−β0−3β1y−3β2y

2−β3y 3 =
ρg

m2M2
g

.

(43)
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One usually treat this as branches related to Big Bang

Finite branch y → 0 when ρg → ∞. The ratio of scale
factors y is increasing and reaches a constant value when
ρg tends to zero.

In�nite branch y → ∞ when ρg → ∞. This ratio is
decreasing up to �nite value.

Exotic branches for the two other cases. It is possible to
get the evolution equation for variable y

ẏ = (N − y)Hg . (44)

So, we see that y = const in two cases:

1 the two metrics are proportional: N = y ,

2 cosmology is static: Hg = 0 = Hf ,

Vladimir O. Soloviev Bigravity



Introduction
Bigravity Lagrangian

Massless and massive �elds
Cosmology
Conclusion

On the proportional metrics

The bigravity cosmological solution with proportional metrics

ds2f =

(
Rf

Rg

)2

ds2g , Hg = NHf = const, (45)

provides de Sitter solutions for both metrics.
It follows also that

ρ̇g = −3Hg (ρg+pg ) = 0. (46)

Then, matter should be dissolved completely or should have
vacuum equation of state.
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Example: calculating the evolution of Universe in

bigravity

We can calculate observables ρ(t), H(t), Λ(t) if we �nd y(t).
First, solve (43) with parameter ρ for y = y(ρ)) and choose
the �nite branch solution. Next, solve the evolution equation

ẏ = (N − y)Hg , (47)

taking as initial condition y(t0) = y(ρ(t0)). N = N(y) can be
found from the conservation of equation Hg = yHf during
evolution, and Hg (y) is given by the Friedmann equation.
The age of Universe t0 can be found from y(0) = 0.

Vladimir O. Soloviev Bigravity



Introduction
Bigravity Lagrangian

Massless and massive �elds
Cosmology
Conclusion

What is the best metric for matter?

Is there any combination of gµν and fµν which is minimally
coupled to matter?
One proposal was an e�ective metric

Ge�µν = (EA
µ + ξFA

µ )(EνA + ξFνA), (48)

but it was proved that this theory would not be ghost-free.
Another idea is to get a new (spatial) metric Gij from the
algebra of Hamiltonian constraints where there is an equation

{R(x),R(y)} = G ij(Rj(x)δ,i(x − y)−Rj(y)δ,i(y − x)), (49)

but it is found that both spatial metrics may appear in the
above formula.
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On study of observational bounds

A. Caravano, M. Luben, J. Weller
Combining cosmological and local bounds on bimetric
theory. 2101.08791

M. Luben, A. Schmidt-May, J. Weller
Physical parameter space of bimetric theory and SN1a
constraints. 2003.03382

Marcus Hogas, Edvard Mortsell
Constraints on bimetric gravity. Part I. Analytical
constraints. 2101.08794

Marcus Hogas, Edvard Mortsell
Constraints on bimetric gravity. Part II. Observational
constraints. 2101.08795
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Exclusion plot (Thesis of Marcus Hogas )
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Conclusions

Bigravity is motivated theoretically and observationally

Bigravity is not so nice as General Relativity and contains
6 arbitrary parameters

Bigravity provides solutions for self-accelerated Universe

Bigravity maybe has relations to dark matter

Bigravity survives all the cosmological and local tests (as
also ΛCDM model does)

Bigravity has limits to GR and to dRGT massive gravity

But questions prevail over answers

Vladimir O. Soloviev Bigravity


	Introduction
	Bigravity Lagrangian
	Massless and massive fields
	Cosmology
	Conclusion

