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Motivations for massive gravity

Cosmic acceleration ⇒ either Λ-term or modification of
gravity

Newton
1

r
→ Yukawa

1

r
e−mr

⇒ gravity is weaker at large distance = cosmic acceleration,
m ∼ 1/(Hubble radius) ∼ 10−33 eV.

Small m is more natural than small Λ.

GW observations ⇒ m < 10−22 eV



Fierz-Pauli massive gravity



Linear massless gravitons – linearized GR

Gµν = κTµν

If gµν = ηµν + hµν and h̃µν = hµν − (h/2)ηµν then

�h̃µν − ∂µ∂αh̃αν − ∂ν∂αh̃αµ + ηµν∂
α∂β h̃αβ = −2κTµν

or
�hµν + . . . = −2κTµν

Gauge invariance hµν → hµν + ∂µξν + ∂νξµ ⇒ allows one to
impose 4 gauge conditions

∂µh̃µν = 0 ⇒ �h̃µν = −2κTµν

and 4 more conditions can be imposed with the residual �ξµ = 0,
there remains ⇒ 10− 4− 4 = 2 DoF.



Linear massive gravitons – Fierz and Pauli /1939/

�φ = 0 ⇒ �φ = m2φ. Similarly for gravitons

�hµν + . . . = m2(hµν − α h ηµν)− 2κTµν

no gauge invariance. Taking the divergence gives 4 constraints

m2(∂µhµν − α∂νh) = 0

Taking the trace gives

2(α− 1)�h = m2(1− 4α) h − 2κT

⇒ for α = 1 one gets the fifth constraint

h = − 2κ

3m2
T

⇒ 10− 5 = 5 DoF=graviton polarizations.
If α 6= 1 ⇒ sixth DoF with negative kinetic energy =ghost .



Summary

The Fierz-Pauli equations

�hµν + . . . = m2(hµν − h ηµν)− 2κTµν

∂µhµν = ∂νh

h = − 2κ

3m2
T

describe massive gravitons with 5=2 tensor+2 vector + 1 scalar
polarizations.

One can think that GR will be recovered if m→ 0. However, only
the 2 vector polarizations decouple for m→ 0 and there remain 2
tensor+ 1 scalar polarizations. The extra scalar polarization
changes the gravity force.



vDVZ problem

No smooth m→ 0 limit



vDVZ discontinuity /1970/

Different tensor structure of the propagator:

GR :
1

k2
Tµν

(
1

2
ηµαηνβ +

1

2
ηναηµβ −

1

2
ηαβηµν

)
Tαβ

FP :
1

k2 + m2
Tµν

(
1

2
ηµαηνβ +

1

2
ηναηµβ −

1

3
ηαβηµν

)
Tαβ

different force between massive particles for m→ 0

VGR = −GM1M2

r
, VFP = −4

3

GM1M2

r
e−mr ,

but the same effect on masseless particles – same light deflection.
Newton’s law is wrong.

/van Dam, Veltman 1970/, /Zakharov 1970/



vDVZ solution

ds2 = −eν(r)dt2 +

(
1 +

rµ′

2

)2

eλ(r)+µ(r)dr2 + r2eµ(r)dΩ2

In GR, µ(r) is a gauge parameter, setting µ = 0 yields

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2

In FP, µ describes the scalar polarization. The FP equations

1

r
λ′ +

1

r2
λ = −m2

2
(λ+ 3µ+ rµ′)

−1

r
ν ′ +

1

r2
λ = −m2(µ+

ν

2
)

m2(
ν ′

2
− λ

r
) = 0

For m = 0 one gets the GR solution: µ is arbitrary,

λ = −ν =
2κM

r
ν + λ = 0

For m 6= 0 one obtains



vDVZ potential

ν = −2C

r
e−mr , λ =

C

r
(1 + mr) e−mr

µ = C
1 + mr + (mr)2

m2r3
e−mr

In the near zone, for r � 1/m, this reduces to

ν = −2C

r
, λ =

C

r
, µ =

C

r(mr)2
∼ 1

r3
,

one has ν + λ 6= 0 . Light bending should be same as in GR,

δφFP =
3C

ρ
= δφGR =

4GM

ρ
⇒ C =

4

3
GM

Newton potential

VFP = −C

r
= −4

3

GM

r



Validity of VdVZ solution

Defining the Schwarzschild radius 2GM = rg , solution applies if

µ ∼ rg
m2r3

� 1 ⇒ r � (mrg )1/3

m

If rg = 3 km=Sun and m = 1/Hubble radius = 10−10Ly then

r � (mrg )1/3

m
≈ 400 Ly

Vainshtein improved this bound by showing that non-linear
corrections to the VdVZ are small if only

r � rV =
(mrg )1/5

m
≈ 400 000 Ly

Vainshtein conjectured that for r < rV the GR is restored because
the scalar polarization is strongly coupled by non-linear effects.



Vainshtein mechanism



Vainshtein solution /1972/

For r � rV one finds the VdVZ with non-linear corrections

ν = −2rg
r

(
1 + c1

rg
m4r5

+ . . .
)
, λ =

rg
r

(
1 + c2

rg
m4r5

+ . . .
)

µ =
rg

m2r3

(
1 + c3

rg
m4r5

+ . . .
)

For rg � rV one finds the GR in the leading order

ν = − rg
r

(
1 + a1 (mr)2

√
r/rg + . . .

)
λ =

rg
r

(
1 + a2 (mr)2

√
r/rg + . . .

)
µ =

√
arg
r

(
1 + a3 (mr)2

√
r/rg + . . .

)
The two must agree for r ∼ rV /checked in 2009/.
The linear VdVZ applies only for r � rV . For r � rV the
non-linear effects confine the extra polarization and restore GR.



Vainshtein scenario

The VdVZ discontinuity is only visible in the linear regime, for

r � rV =
( rg
m4

)1/5

.

For r � rV the scalar graviton is bound by non-linear effects
and does not propagate ⇒ GR is recovered.

For r ∼ rV there is a transition between the two regimes.

The VdVZ problem is cured by the non-linear effects.
This restores GR.



Non-linear Fierz-Pauli



Non-linear Fierz-Pauli

One uses two metrics, the physical one and a flat reference metric,

gµν , fµν = ηAB∂µΦA∂νΦB to build a matrix Ŝ = ĝ−1f̂ to
determine the potential for the physical metric,

U(g , f ) = U
(

[Ŝ ], [Ŝ2], [Ŝ3], det(Ŝ)
)
,

which enters the action

S =
1

κ

∫ √
−g
(

1

2
R −m2 U(g , f )

)
d4x

Theory is not unique. If

U =
1

8

(
[Ĥ2]− [Ĥ]2

)
+O(H3) with Ĥ = Ŝ − 1̂

then for weak fields gµν = ηµν + hµν one has Hµ
ν = hµν and

everything reduces to Fierz-Pauli.



Equations

One can define two energy-momentum tensors

Tµν = 2
∂U

∂gµν
− Ugµν , Tµν = 2

∂U

∂fµν
− Ufµν ,

Diff. invariance of U implies the identity

√
−g ∇µTµν −

√
−η ∂µTµν ≡ 0

The equations are

Gµν = m2Tµν ⇒ ∇µTµν = 0 ⇒ ∂µTµν = 0

there are two conserved tensors.



Theory of Ogievetsky-Polubarinov /1965/

S =
1

κ

∫ √
−g
(

1

2
R(g)−m2 U(g , η)

)
d4x

with U =
1

4n2

(
det(Ŝ)

)−s/2
[Ŝn]

Defining the graviton field hµν via(√
−g√
−η

)s+1

((ĝ−1)n)µν = ηµν + hµν .

the equations, with λ = −s/(2n),

Gµν = m2Tµν → �hµν = m2hµν + non-linear terms

∂µTµν = 0 → ∂µhµν = λ∂νh

look like a non-linear completion of theory of free gravitons,
first field-theory derivation of the Einstein-Hilbert term.
/S.Mukohyama, M.S.V. 2018/



Boulware-Deser problem



Boulware-Deser ghost

There are infinitely many ways to choose the potential for the
theory

S =
1

κ

∫ √
−g
(

1

2
R −m2 U(g , f )

)
d4x

such that

U =
1

8

(
[Ĥ2]− [Ĥ]2

)
+O(H3) with Ĥ = Ŝ − 1̂

All these theories propagate 5 degrees of freedom in the weak field
limit and show the Vainshtein mechanist in the strong field limit,
so that they do not have the VdVZ problem.

However, away from the weak field limit, they show an additional
6-th dynamical mode which is ghost.



Hamiltonian formulation
The Lagrangian

L =

(
1

2
R −m2 U

)√
−g

after the ADM decomposition

ds2
g = −N2dt2 + γik(dx i + N idt)(dxk + Nkdt)

ds2
f = −dt2 + δikdx

idxk

determines the Hamiltonian

H = πik γ̇ik − L = NµHµ(πik , γik) + m2V(Nµ, γik)

with V =
√
γ N U and

H0 =
1
√
γ

(2πikπ
ik − (πkk )2)− 1

2

√
γR(3), Hk = −2∇(3)

i πik

πik , γik span the phase space of dimension 12. Secondary constrints

−ṗNµ =
∂H
∂Nµ

= Hµ(πik , γik) + m2∂V(Nµ, γik)

∂Nµ
= 0



Degrees of freedom

∂H
∂Nµ

= Hµ(πik , γik) + m2∂V(Nµ, γik)

∂Nµ
= 0

If m = 0 this gives 4 first class constraints Hµ(πik , γik) = 0,
{Hµ,Hν} ∼ Hα, which generate gauge symmetries, one can
impose 4 gauge conditions, there remain

12− 4− 4 = 4 = 2× (2 DoF) ⇒ 2 graviton polarizations

If m 6= 0 this gives 4 equations for laps and shifts whose
solution is Nµ(πik , γik). No constraints arise ⇒ there are

12 = 2× (5 + 1 degrees of freedom)

The energy H = NµHµ + m2V(Nµ, γik) is unbounded below
because the ghost comes back. This stopped all progress for
∼40 years.



Ghost-free massive gravity and
bigravity



Ghost-free massive gravity /2010/
One has

∂H
∂Nµ

= Hµ(πik , γik) + m2∂V(Nµ, γik)

∂Nµ
= 0 (?)

with

V(Nµ, γik) =
1

8

√
−g
(
[H2]− [H]2

)
+ higher order terms

One can choose the higher order terms such that

rank

(
∂2V(Nµ, γik)

∂Nν∂Nµ

)
= 3

⇒ the 4 equations (?) determine only 3 shifts Nk = Nk(πik , γik),
the lapse N remains undetermined, the 4-th equation reduces to a
constraint

C(πik , γik) = 0 ⇒ Ċ = {C,H} ≡ S = 0.

The two constraints C,S remove one DoF, there remain 5.



dRGT theory

Explicitely

S = M2
Pl

∫ (
1

2
R −m2 U

)√
−gd4x

U = b0 + b1

∑
a

λa + b2

∑
a<b

λaλb + b3

∑
a<b<c

λaλbλc + b4λ0λ1λ2λ3

where bk are parameters and λa are eigenvalues of the matrix

γµν =
√

gµαfαν

Theory propagates 5 and not 5+1 degrees of freedom, therefore
called “ghost-free”. /de Rham, Gabadadze, Tolley 2010 (1500
citations)/ However, it is unclear if the 5 degrees of freedom are all
“healthy”. Characteristic surfaces can be locally timelike ⇒
superluminal signals, but it is unclear if this implies aucausality.

Old non Lorenz-invariant models with 5 DoF /Rubakov, Tynakov/



Bigravity

S =
M2

Pl

2κ1

∫
R(g)

√
−gd4x +

M2
Pl

2κ2

∫
R(f )

√
−f d4x

− m2

∫
U
√
−gd4x + Smat[g ,Ψg ] + Smat[f ,Ψf ]

with κ1 + κ2 = 1 and the same potential as before

U = b0 + b1

∑
a

λa + b2

∑
a<b

λaλb + b3

∑
a<b<c

λaλbλc + b4λ0λ1λ2λ3

Both gµν and gµν are dynamical, there are two gravitons, one
massive and one massless. There are 7 =5+2 degrees of freedom.
/Hassan and Rosen 2012/ There are various ways to show that the
8-th mode is excluded /talk of V.Soloviev/. The theory has a
better behaviour as compared to the dRGT massive gravity.



Some applications



Massive gravitons in curved space

C.Mazuet, M.S.V. JCAP (2018)



Massive fields in curved space
How to generalize wave equations to curved space ? Spin-0:
Klein-Gordon equation

(ηµν∂µ∂ν −m2)Φ = 0

generalizes via simply ηµν ⇒ gµν , ∂µ ⇒ ∇µ which yields

(gµν∇µ∇ν −m2)Φ = 0

Similarly for spins 1/2, 1. The procedure fails for 2: the Fierz-Pauli
generalizes to curved space only if Rµν = Λgµν , otherwise it shows
the 6-th polarization. A long standing problem.

The solution can be obtained using properties of the dRGT theory,
which yields a new theory. The massive gravitons in an arbitrary
background geometry gµν can be described by a non-symmetric
tensor Xµν which fulfills the equations



Equations: ∆µν +Mµν = 0
with the kinetic term

∆µν =
1

2
∇σ∇µ(Xσν + Xνσ) +

1

2
∇σ∇ν(Xσµ + Xµσ)

− 1

2
�(Xµν + Xνµ)−∇µ∇νX − RσµXσν − Rσν Xσµ

+ gµν
(
�X −∇α∇βXαβ + RαβXαβ

)
and the mass term

Mµν = β1

(
γσµXσν − gµν γ

αβ Xαβ

)
+ β2 {−γαµγβν Xαβ − (γ2)αµ Xαν + γµν γαβ X

αβ

+[γ] γαβ Xαν + ((γ2)αβ X
αβ − [γ] γαβ X

αβ) gµν}
+ β3 |γ|

(
Xµσ(γ−1)σν − [X ](γ−1)µν

)
γµν is algebraically related to the background gµν via

Gµν(g) + β0 gµν + β1([γ] gµν − γµν)

+ β2 |γ|
(
[γ] γµν − γ−2

µν

)
+ β3 |γ| γµν = 0



Constraints

There are 16 equations

Eµν ≡ ∆µν +Mµν = 0

for 16 components of Xµν . Their contractions imply 11
constraints, the number of DoF is 16− 6− 4− 1 = 5.

If Rµν = Λgµν reduce to the Fierz-Pauli – massive gravitons in de
Sitter, Higuchi bound, etc.

Massive gravitons in FRW universe form a stable condensate (Dark
Matter ?).



Bigravity cosmologies

M.S.V. JHEP 01 (2012) 035
K.-i. Maeda, M.S.V. Phys.Rev. D87 (2013) 104009



FLRW ansatz

ds2
g = −dt2 + e2Ω

(
dr2

1− kr2
+ r2dΩ2

)
/k = 0,±1/

ds2
f = −A2dt2 + e2W

(
dr2

1− kr2
+ r2dΩ2

)
This yields solutions approaching de Sitter at late times with

Λg = m2P(b0, b1, b2, b3)

This agrees with observations if either 1/m ∼ RH = 1010Ly or

1

m
∼ 106 km,

κ1

κ2
≈ κ1 ∼

(
Mew

MPl

)2

∼ 10−34 � 1,

where Mew ∼ 100 GeV and MPl ∼ 1019 GeV. Agrees with the
ΛCDM model. Can mimic the dark matter as well.



“Hairy” bigravity black holes

M.S.V. Phys.Rev. D85 (2012) 124043
R.Gervalle, M.S.V. Phys.Rev. D102 (2020) 124040



Schwarzschild vs. hairy black holes

gS
µνdx

µdxν = f Sµνdx
µdxν

= −
(

1− 2M

r

)
dt2 +

dr2

1− 2M/r
+ r2dΩ2

with M in units of (MPl/m)MPl. This solution is stable if M is
large but becomes unstable if M < Mcr = 0.43.

For M = Mcr = 0.43 the solution develops a zero mode, which
indicates an appearance of new “hairy” solutions:

ds2
g = −Q(r)2dt2 +

dr2

N(r)2
+ r2dΩ2 ,

ds2
f = −q(r)2dt2 +

dU(r)2

Y (r)2
+ U(r)2dΩ2.



Asymptotically flat hairy black holes

Gµ
ν(g) = κ1 T

µ
ν(g , f ), κ1 = 10−34;

Gµ
ν(f ) = κ2 T µν(g , f ), κ2 = 1− κ1 ≈ 1

⇒ the physical g-metric is extremely close to Schwarzschild, all the
hair is contained in the f-metric which is directly invisible.

Normally the hairy black holes cannot be distinguished from
Schwarzschild. However, in hole collisions the source Tµ

ν(g , f ) can
become strong enough to overcome the 1034 suppression ⇒ the
hairy features can become visible.

It is possible that “hairy signatures” are contained in GW signals
from black hole mergers. These signatures should be stronger for
small black holes.



Approximation for M for small κ1

M(rH) ≈ rH
2

+ κ1
0.005

(rH)4.6

Assuming κ1 = 10−34, the minimum is

(rH)min ≈ 0.52 km, Mmin ≈ 0.2×M�

⇒ size and mass of the lightest hairy black hole. As for the
heaviest,

(rH)max ∼ 106 km, Mmax ∼ 3× 106M�



Summary

If the bigravity theory indeed describes physics, the astrophysical
black holes cannot be Schwarzschild because it is unstable.

They should be hairy, but the hair is contained in the f-metric not
coupled to matter and not directly seen, while their g-metric is
extremely close to Schwarzschild. Therefore, normally these hairy
black holes should be undistinguishable from the usual GR black
holes. Their mass ranges from ∼ 0.2M� to ∼ 0.3× 106M�.

Then the deviation from GR may become visible in black hole
collisions, which should be visible in signals detected by
LIGO/VIRGO. The effect should be larger for small black holes.


