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Examples of unfree gauge symmetry
Unimodular Gravity (UG), det g = − 1. Consequences:

▶ Gauge symmetry reduces to the volume preserving diffeomorphisms

δϵ det g = 0 , δϵgµν = ∇µϵν +∇νϵµ ⇒ ∇µϵ
µ = 0 . (1)

▶ Einstein’s equations become traceless, hence they are not transverse.
This makes Λ “integration constant”, not pre-defined parameter:

S =

∫
ddx R ,

δS

δgµν
≡ Rµν − 1

d
gµνR ≈ 0 ; (2)

∇ν δS

δgµν
≡ d − 2

d
∂µR ≈ 0 ⇒ R ≈ Λ = const . (3)

On-shell relation R − Λ ≈ 0 is not a differential consequence of EoM (2),
nor Λ is a charge of any local conserved current.
Volume preserving diffeomorphisms form the subalgebra

δϵ1δϵ2 − δϵ2δϵ1 = δ[ϵ1,ϵ2] , ∇ · ϵ1,2 = 0 ⇒ ∇ · [ϵ1, ϵ2] = 0 . (4)

The subalgebra is singled out by imposing PDE onto the gauge parameters
ϵµ rather than by explicitly separating subset of generators.
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Further examples of unfree gauge symmetry

Generalizations of the UG – Barvinsky, Kamenshchik, et al, 2017–2022.
Starting point: unimodularity condition is replaced by a more general re-
lation, N = N(

∗
g). Consequences: Λ is still an integration constant + new

options to describe “k-essence”.

Higher Spin (HS) Linearised Gravities

▶ Irreducible HS, traceless tensors, E.Skvortsov, M.Vasiliev, 2008:

Tr h̃ = 0 , δϵ̃ h̃µ1...µs = ∂(µ1 ϵ̃µ2...µs ) , Tr ϵ̃ = 0 , ∂ · ϵ̃ = 0 . (5)
▶ “Maxwell-like” HS, tracefull tensors, A.Campoleoni, D.Francia, 2013:

δϵhµ1...µs = ∂(µ1ϵµ2...µs ) , ∂ · ϵ = 0 . (6)

Both models don’t involve auxiliary fields, unlike Fronsdal’s action.

HS gravity models with unfree gauge symmetry admit “global conserved
quantities” being HS analogs of cosmological constant (see V.Abakumova,
SL, PRD, 2020).
Number of these “HS cosmological constants” is growing with spin.
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Cosmological constant analogs for HS gravities

▶ For s = 3, the field equations admit differential consequences:

R̃µ = ∂ν∂λh̃
µνλ , ∂µR̃ν + ∂νR̃µ − 2

d
ηµν∂ · R̃ ≈ 0 ; (7)

Rµ = ∂ν∂λh
µνλ , ∂µRν + ∂νRµ ≈ 0 . (8)

Instead of ∂µR ≈ 0 for UG, for s = 3 we arrive at (conformal) Killing eqs.
The general solution to eqs (7), (8) reads

Rµ = Λµ+Λµνx
ν , R̃µ = Λµ+Λµνx

ν+Λxµ+Λ′
ν(2x

νxµ−δνµxλx
λ) , (9)

where Λµν = −Λνµ,Λ
′
ν ,Λν ,Λ are arbitrary “integration constants”.

▶ For s > 3, the higher Ricci’s Rµ1...µs−2 of the rank s − 2, or traceless
R̃µ1...µs−2 obey (conformal) Killing tensor eqs, as the differential conse-
quences of EoM’s. The rank s−2 (conformal) Killing tensor is decomposed
into the product of s − 2 (conformal) Killing vectors. Therefore, the num-
ber of the “cosmological constants” is 10 × (s − 2) for the “Maxwell-like”
HS theory, and 15 × (s − 2) for the UG-like HS gravity in d = 4.
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Examples of alternative parameterization
Massless spin 2 (d = 4):

∂µϵ
µ = 0 <≈> ϵµ = ∂νϵ

µν , ϵµν = − ϵνµ . (10)
Equivalence is modulo (Hodge dualised) De Rham cohomology.
This form of the volume preserving diffeomorphism is a reducible
gauge symmetry. Gauge transformations of gauge parameters read

δωϵ
µν = εµνλρ∂λωρ , δηω

µ = ∂µη . (11)

“Maxwell-like” s = 3 (d = 4):
∂νϵ

µν = 0 , ϵµν = ϵνµ <≈> ϵµν = ∂λ∂ρϵ
µνλρ , (12)

where ϵµνλρ = ϵνµλρ, ϵµνλρ = ϵµνρλ.
Gauge symmetry is reducible,

δωϵ
µνλρ = ∂σω

µνλρσ , δηω
µνλρσ = ∂τη

µνλρστ , (13)
with gauge parameters of the following symmetry type:

→ →
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General setup for unfree gauge symmetry:
modified Noether identities and global conserved quantities

Consider set of fields ϕi (DeWitt condensed labels assumed). EoM’s read
∂iS(ϕ) ≈ 0 . (14)

Proceeding from the observations noticed in the examples, we assume the
action S(ϕ) to obey modified Noether identities:

Γiα∂iS + Γaατa ≡ 0 , (15)
where Γ’s are matrices of differential operators, τ are local quantities.
Operator Γaα has finite kernel,

Γaαua = 0 ⇒ u ∈ K , dimK = k ∈ N . (16)
Elements of K are parameterised by k independent constants ΛI ,

∀U ∈ K ⇒ U = uIΛI , I = 1 . . . k . (17)
The quantities τa are assumed off-shell independent, while on-shell they
reduce to elements of K , because of (15):

Ta(ϕ,Λ) ≡ τa(ϕ)− ua(Λ) ≈ 0, ua(Λ) ∈ K . (18)
These relations can be resolved w.r.t. the constants:

JI (ϕ) ≈ ΛI , (19)
that means JI are the global conserved quantities. The constants Λ are
understood as modular parameters of the fields.

Simon Lyakhovich IHEP–2022 7 / 21



Unfree gauge symmetry specifics:
completion functions and constraints on gauge parameters

The local Λ-dependent quantities Ta(ϕ,Λ) vanish on shell, while they do
not reduce to the linear combinations of EoM’s:

Ta(ϕ,Λ) = τa(ϕ)− ua(Λ) ≈ 0 , Ta ̸= Θi
a∂iS . (20)

These quantities are termed completion functions.

The modified Noether identity (15), Γiα∂iS + Γaατa ≡ 0, means S(ϕ) is
invariant under gauge transformations

δϵϕ
i = Γiαϵ

α , (21)

provided for the gauge parameters ϵα are restricted by equations

Γaαϵ
α = 0 . (22)

With this regard, Γaα are termed gauge parameter constraint operators.
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Unfree gauge symmetry algebra distinctions

Gauge symmetry with unrestricted parameters:

▶ Any on-shell trivial quantity reduces to linear combination of EoM’s;

▶ The gauge parameters are unrestricted.

Commutation relations between gauge transformations, and the higher
structure relations of gauge algebra, are deduced from Noether identities.

Unfree gauge symmetry:

▶ Any on-shell trivial quantity reduces to linear combination of EoM’s
and completion functions Ta(ϕ,Λ);

▶ The gauge parameters ϵα are restricted by the equations Γaαϵ
α = 0.

Structure relations of unfree gauge symmetry algebra follow from modified
Noether identities, and they involve, besides gauge generators and EoM’s,
also completion functions and gauge parameter operators.
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Unfree gauge algebra: structure relations

Proceeding from modified Noether identities, with appropriate regularity
assumptions for the generators and completion functions, we arrive at the
structure relations involving gauge generators completion functions:

Γiα∂iτa = R i
αa∂iS + Rb

αaτb +WabΓ
b
α ; (23)

Γiα∂iΓ
j
β − Γiβ∂iΓ

j
α = Uγ

αβΓ
j
γ + E aj

αβτa + E ij
αβ∂iS + R j

αaΓ
a
β − R j

βaΓ
a
α ; (24)

Γiα∂iΓ
a
β − Γiβ∂iΓ

a
α = Uγ

αβΓ
a
γ + Ra

αbΓ
b
β − Ra

βbΓ
b
α + E ab

αβτb + E ai
αβ∂iS , (25)

where the structure coefficient Wab is on-shell symmetric, and the structure
functions E are antisymmetric, E ij

αβ = −E ji
αβ , E ab

αβ = −E ba
αβ .

Relation (23) means the completion functions are on-shell invariant un-
der unfree gauge variation; (24) demonstrates possible off-shell disclosure
of the composition of gauge transformations, including deviation of the
parameters from the equations restricting them; and relation (25) demon-
strates that equations imposed on gauge parameters are gauge invariant
under unfree gauge variation.
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Faddev-Popov (FP) action for unfree gauge symmetry
Impose independent gauges χI (ϕ), the FP matrix is rectangular,

δεχ
I

δεα
= Γiα(ϕ)∂iχ

I (ϕ) . (26)

The number of gauges plus the number of equations restricting gauge
parameters equals to the number of gauge parameters. The unfree gauge
variation has to be transverse to the gauge condition surface.
FP ghosts are introduced being restricted by the equations

Γaα(ϕ)C
α = 0 , gh(Cα) = 1 , ϵ(Cα) = 1 , (27)

where Γaα(ϕ) are operators of gauge parameter constraints.
Anti-ghosts are introduced for gauges and equations imposed on ghosts:

gh(C̄I ) = gh(C̄a) = −1 , ϵ(C̄I ) = ϵ(C̄a) = 1 , gh(πI ) = ϵ(πI ) = 0 . (28)

The FP path integral is adjusted to the case of unfree gauge symmetry:

Z =

∫
[dΦ] exp

{ i

ℏ
SFP(ϕ)

}
, Φ = {ϕ, πi ,C

α, C̄I , C̄a} , (29)

where the FP action reads

SFP = S(ϕ) + πIχ
I (ϕ) + C̄IΓ

i
α(ϕ)∂iχ

I (ϕ)Cα + C̄aΓ
a
α(ϕ)C

α . (30)

Path integral (29) remains unchanged under variation of gauge χ.
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BV-BRST formalism for unfree gauge symmetry
Starting point of the formalism extension to the unfree gauge symmetry is
the idea that ghosts are constrained

ΓaαC
α = 0 . (31)

This equation is considered on equal footing with the original EoM’s. The
equation is non-Lagrangian, so it has to be assigned with the antifield ξa.
(Non-Lagrangian BV-BRST – P.Kazinski, SL, A.Sharapov, JHEP, 2005.)

Once eq. (31) is ghost number one, the anti-field is ghost number zero!
We equip all the fields, including original ones, ghosts, and antifields ξ
with anti-canonical conjugate. The grading is arranged in the table:

ϕi ξa Cα ϕ∗
i ξ∗a C∗

α

ε 0 0 1 1 1 0
gh 0 0 1 − 1 − 1 − 2
deg 0 1 0 1 1 2

Given the anti-canonical pairs, the anti-bracket reads

(A,B) =
∂RA

∂φI

∂LB

∂φ∗
I

− ∂RA

∂φ∗
I

∂LB

∂φI
, (32)

where φI = (ϕi , ξa,Cα), φ∗
I = (ϕ∗

i , ξ
∗
a ,C

∗
α), and

gh((A,B)) = gh(A) + gh(B) + 1 , ε((A,B)) = ε(A) + ε(B) + 1 . (33)
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BV Master equation
The BV action is defined by the equation

(S ,S) = 0 . (34)

The solution is sought for as the expansion w.r.t. resolution degree

S =
∑
k=0

Sk , gh(Sk) = ε(Sk) = 0 , deg Sk = k . (35)

The boundary condition is defined by the first two orders

S0 = S(ϕ), S1 = τaξ
a + (ϕ∗

i Γ
i
α + ξ∗aΓ

a
α)C

α , (36)

where S is the original action, while S1 includes the basic constituents of
unfree gauge symmetry: completion functions τa, gauge generators Γiα,
and operators of gauge parameter constraints Γaα. The second order reads

S2 =
1
2
(C∗

γU
γ
αβ + ϕ∗

j ϕ
∗
i E

ij
αβ + 2ξ∗aϕ

∗
i E

ia
αβ + ξ∗bξ

∗
aE

ab
αβ)C

αCβ

− ξb(ϕ∗
i R

i
bα + ξ∗aR

a
bα)C

α − 1
2
ξbξaWab .

(37)

Master equation (34) identifies all the coefficients in S2 with structure
functions in structure relations (23)-(25) of unfree gauge symmetry alge-
bra.
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Existence theorem and homological perturbation theory

BRST differential s is anti-Hamiltonian vector field for the master action:

sA = (A,S) , s2 = 0 , gh(s) = 1 , ε(s) = 1 . (38)

It can be decomposed w.r.t. resolution degree

s = δ + γ +
(1)
s + . . . , deg δ = − 1 , deg γ = 0 , deg

(1)
s = 1 . (39)

Because of master equation, the first orders are connected by the relations

s2 = 0 ⇒ δ2 = 0 , δγ + γδ = 0 , γ2 + (δ
(1)
s +

(1)
s δ) = 0 , (40)

where Kozul-Tate differntial δ is defined as

δA = − ∂RA

∂ϕ∗
i

∂iS − ∂RA

∂C∗
α

(ϕ∗
i Γ

i
α + ξ∗aΓ

a
α) +

∂RA

∂ξa
ΓaαC

α . (41)

By virtue of Noether identity for unfree gauge symmetry, δ squares to zero

δ2A = − ∂RA

∂C∗
a

(Γjα∂jS + Γaατa) ≡ 0 . (42)

One can verify that δ is acyclic in strictly positive resolution degrees, that
insures existence of solution for s in the deg > 0, Q.E.D.
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Unfree gauge symmetry in Hamiltonian formalism

Hamiltonian action for the theory with primary constraints Tα:

S =

∫
dt
(
pi q̇

i − HT

)
, HT = H + λαTα , (43)

where the role of fields is played by canonical variables qi , pi , and La-
grange multipliers λα. Assume that there are no second-class constraints.
Conservation of Tα leads to secondary constraints τa,

Ṫα ≡ {Tα ,HT} = W β
αTβ(q, p) + Γaατa(q, p) ≈ 0 , (44)

where W , Γ are local differential operators, Γ has finite kernel. Secondary
constraints τ are considered as completion functions, and gauge symmetry
should be unfree. Once the kernel of Γ is finite, completion functions can
be redefined by adding modular parameters Λ to make τ vanishing on-shell

Γaατa = 0 ⇔ τa = Λa , Λa ∈ Ker Γaα : τa 7→ τa − Λa . (45)
Assume no tertiary constraints appear,

τ̇a ≡ {τa ,HT} = W α
a Tα(q, p) +W b

a τb(q, p) ≈ 0 . (46)
(For more general case, see V. Abakumova and SL, PRD, 2020.)
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Termination of the Dirac-Bergmann algorithm means the modified gauge
identities as the EoM’s turn out dependent with their differential conse-
quences and completion functions:

{Tα , qi} δS
δqi

+ {Tα , pi}
δS

δpi
+
(
δβα

d

dt
−W β

α

) δS

δλβ
+ Γaατa ≡ 0 ;

{τa , qi}
δS

δqi
+ {τa , pi}

δS

δpi
−W α

a

δS

δλα
+
(
− δba

d

dt
+W b

a

)
τb ≡ 0 .

(47)
Corresponding unfree gauge symmetry transformations:

δεO(q, p) = {O ,Tα}εα + {O , τa}εa ,
δελ

α = ε̇α +W α
β εβ +W α

a εa .
(48)

Constraints on gauge parameters:(
δab

d

dt
+W a

b

)
εb + Γaαε

α = 0 . (49)

Direct computation confirms that action (43) is invariant under transfor-
mations (48), (49),

δεSH ≡
∫

dt
[(
(δab

d

dt
+W a

b )ε
b+Γaαε

α
)
τa−

1
2
d

dt

(
Tαε

α+τaε
a
)]

= 0 . (50)
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Hamiltonian formalism for Linearised UG (LUG)

SH [h,Π, λ] =

∫
d4x

(
Πij ḣij − H − λiTi

)
, Ti = − 2∂jΠij ,

H = ΠijΠij −
1
2
Π2 +

1
4
(
2∂ ihij∂kh

kj − ∂ih∂
ih − ∂ihjk∂

ihjk
)
,

(51)

where i , j , k = 1, 2, 3, h = ηijhij , Π = ηijΠ
ij , λi = h0i .

Conservation of primary constraints Ti leads to the secondary ones,
Ṫi = {Ti ,H} = − ∂iτ0 = 0 , τ0 ≡ ∂ i∂jhij − ∂i∂

ih − Λ = 0 . (52)
The secondary constraints are conserved by virtue of the primary ones:

τ̇0 = {τ0,H} = − ∂ iTi . (53)
Unfree gauge symmetry transformations read
δεhij = ∂iεj+∂jεi , δεΠ

ij = − ∂ i∂jε0+ηij∂k∂
kε0 , δελ

i = ε̇i+∂ iε0 . (54)
Gauge variation of the action:

δεSH ≡
∫

d4x
(
(ε̇0 + ∂iε

i )τ0 − ∂0(Tiε
i + τ0ε

0)
)
. (55)

So, gauge parameters have to obey equation
ε̇0 + ∂iε

i = 0 . (56)
(For analogue in the non-linear UG, see I.Karataeva and SL, PRD, 2022.)
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Hamiltonian BFV-BRST formalism
To avoid technical complexities, we restrict consideration by simplified in-
volution relations

{Tα,H} = V a
ατa , {τa,H} = V α

a Tα ,

{Tα,Tβ} = {Tα, τa} = {τa, τb} = 0.
(57)

with structure coefficients V a
α, V α

a being constants.
Complete BRST-charge reads

Q = TαC
α + τaC

a + παP
α (58)

Given the gauge conditions,
λ̇α − χα = 0 , (59)

the gauge fermion is introduced,
Ψ = C̄αχ

α + λαP̄α , (60)
and gauge-fixed Hamiltonian is defined by the usual rule,

HΨ = H+ {Q,Ψ} = H − PαV
α
a C a − PaV

a
αC

α + Tαλ
α + παχ

α

+PαP
α + Cα{χα,Tβ}Cβ + Cα{χα, τa}C a . (61)

The grading is arranged in the table:

Cα Pα C a Pa λα πα Pα Cα

ε 1 1 1 1 0 0 1 1
gh 1 − 1 1 − 1 0 0 1 − 1
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Hamiltonian BFV-BRST in UG
The complete BRST charge reads

Q =

∫
d3x

(
TiC

i + τC − P iC
j∂jC

i − P∂i (C
iC )

+P i (−
∗
g)− 1 ∗

g ijC∂jC + πiP
i
)
, Ti = − 2

∗
g ij

(
∂kΠ

kj +
∗
ΓjklΠ

kl
)
,

τ = H − Λ = − 1
∗
g
GijklΠ

ijΠkl +
∗
R − Λ , Λ = const .

(62)

Introduce the gauge fermion

Ψ =

∫
d3x

(
C iχ

i + PiN
i
)
, χi = (− ∗

g)− 1∂j
∗
g ji + N j∂jN

i . (63)

The complete gauge-fixed BRST-invariant Hamiltonian reads

HΨ = H+ {Q,Ψ} =

∫
d3x

{
H + TiN

i + πiχ
i − P∂iC

i

−P i (−
∗
g)− 1 ∗

g ij∂jC + P∂i (CN
i ) + P i (∂jC

iN j − C j∂jN
i )

−C i (−
∗
g)− 1(2∂j ∗g ij

∗
∇kC

k + ∂j(
∗
∇jC i +

∗
∇iC j)

)
+C i (−

∗
g)− 1(∂j ∗g ij(− ∗

g)− 1ΠC − 2∂j((−
∗
g)− 1ΠijC )

+ ∂j(
∗
g ij(− ∗

g)− 1ΠC )
)
+ C i (∂jN

iP j + N j∂jP
i ) + P iP

i
}
.

(64)
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Summary of results
▶ Besides action and gauge generators, the unfree gauge symmetry

algebra has two more principal constituents: operators of gauge pa-
rameter constraints and completion functions;

▶ Noether identities are modified involving these constituents. This
results in modification of structure relations of gauge algebra;

▶ Modified Noether identities result in the “global conserved quantities”
in any model with unfree gauge symmetry;

▶ The modification is found for the FP ansatz that accounts for the
constraints imposed on the gauge parameters. This has consequences
in the models, including UG;

▶ The BV-BRST field-antifield formalism is worked out that accounts
for the unfree gauge symmetry;

▶ The unfree gauge symmetry transformations are described in terms of
general constrained Hamiltonian formalism. The volume preserving
diffeomorphisms are constructed in Hamiltonian form of UG;

▶ Hamiltonian BFV-BRST formalism is worked out for the systems with
unfree gauge symmetry. Being applied to the UG, it results in previ-
ously uknown ghost vertices.
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FEEL FREE WITH UNFREE GAUGE SYMMETRY!

THANK YOU FOR ATTENTION!

sll@phys.tsu.ru
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