Konstantin Postnov Sternberg Astronomical Institute, Moscow U.

24.11.2022

Gravitational wave astronomy and its implications for cosmology

XXXIV International Workshop on High Energy Physics "From Quarks to Galaxies: Elucidating Dark Sides"

Plan

- Introduction
- 10-1000 Hz: ground-based laser interferometers
- LIGO/Virgo 01-03
- Astrophysical implications
- NanoHz: pulsar timing arrays results

Gravitational waves

$$g_{\alpha\beta} = g^{\mathrm{B}}_{\alpha\beta} + h_{\alpha\beta} , \quad R_{\alpha\beta\gamma\delta} = R^{\mathrm{B}}_{\alpha\beta\gamma\delta}$$

$$\Box \bar{h}_{\mu\nu} = -\frac{16\pi G}{c^4} T_{\mu\nu} \quad \partial^{\nu} \bar{h}_{\mu\nu} = 0.$$

GW energy flux

• Energy density

$$t^{00} = \frac{c^2}{16\pi G} \langle \dot{h}_+^2 + \dot{h}_\times^2 \rangle$$

• Power

$$\frac{dE_{\rm GW}}{dt} = \frac{c^3 r^2}{16\pi G} \int d\Omega \,\langle \dot{h}_+^2 + \dot{h}_\times \rangle.$$

• Flux

$$T^{\mathrm{GW}\,0z} \simeq \frac{\pi}{4} \frac{c^3}{G} f^2 h_{\mathrm{amp}}^2 \simeq 300 \frac{\mathrm{ergs}}{\mathrm{cm}^2 \,\mathrm{sec}} \left(\frac{f}{1 \,\mathrm{kHz}}\right)^2 \left(\frac{h_{\mathrm{amp}}}{10^{-21}}\right)^2$$

GW emission

$$\bar{h}_{\mu\nu}(t,\mathbf{x}) = -4\frac{G}{c^2} \int_{\mathcal{V}} \frac{T_{\mu\nu}(t-|\mathbf{x}-\mathbf{x}'|/c,\mathbf{x}')}{|\mathbf{x}-\mathbf{x}'|} d^3\mathbf{x}'$$

• Quadrupole radiation for v/c<<1:

$$h_{jk}^{\rm GW} = 2G\frac{\ddot{\mathcal{I}}_{jk}}{r} \sim G\frac{\omega^2(ML^2)}{r} \sim G\frac{E_{\rm kin}/c^2}{r}$$

$$h_{jk}^{\rm GW} \sim h_+ \sim h_\times \sim 10^{-21} \left(\frac{E_{\rm kin}}{M_\odot c^2}\right) \left(\frac{100 {\rm Mpc}}{r}\right)$$

Astrophysical sources

GW produces tidal field

$$\mathcal{E}_{ij} = R_{i0j0} = -\frac{1}{2}\ddot{h}_{ij}^{\mathrm{TT}}$$

$$h_{ij}^{\mathrm{TT}} \equiv -2\int dt \int dt \,\mathcal{E}_{ij}$$

Laser interferometers

LIGO 1990-2017 ~690 MUSD

Chirp signal from coalescing binary system

GW from inspiraling binary BH

24.11.2022

D. Reitze, 2017

Working GW-interferometers

LIGO Hanford USA

KAGRA Kamioka Japan

> LIGO Livingston USA

Virgo Pisa Italy

35-350 Hz bandpass filter applied

24.11.2022

14

amplitude

Normalized

Binary BHs LIGO/Virgo

GWTC-1 Catalog arXiv:1811.12907

24.11.2022

Chirp signal from inspiraling binaries

Chirp-mass determined inspiraling signal

$$M_{ch} = (\mu^3 M^2)^{1/5}$$
$$h \sim M_{ch}^{5/3} f^{2/3} / r$$

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} = \frac{c^3}{G} \left(\frac{5}{96} \pi^{-8/3} f^{-11/3} \dot{f}\right)^{3/5}$$

Chirp mass determines detection horizon. h_{lim} ~ M^(5/6)

Mass-redshift degeneracy

$$\begin{split} f_{0} &= f / (1+z), \ dt_{0} = dt (1+z) \\ \frac{df}{dt} \bigg|_{o} &= \frac{df}{dt} \frac{1}{(1+z)^{2}} \\ M_{ch} \bigg|_{o} &= \left(\frac{5 f_{o}^{-11/3} (df_{o} / dt)}{96 \pi^{8/3}} \right)^{3/5} = M_{ch} (1+z) = > f M_{ch} = inv \\ h_{o} &\sim \frac{M_{ch}}{d_{m}} (\pi f M_{ch})^{2/3} \\ d_{o} &\sim \frac{4 (M_{ch})_{o}}{h_{o}} (\pi f_{o} (M_{ch})_{o})^{2/3} = d_{m} (1+z) \quad \text{Luminosity distance} \end{split}$$

1st cosmological inference

- Coalescing binaries as cosmological "standard sirens" (B. Schutz, 1986)
- Photometric distance from GW signal + independent knowledge of redshift (e.g., from electromagnetic astronomy) → test of cosmological models

Parameters from GW observations

Event	m_1/M_{\odot}	m_2/M_{\odot}	\mathcal{M}/M_{\odot}	$\chi_{ m eff}$	$M_{\rm f}/{ m M}_{\odot}$	a_{f}	$E_{\rm rad}/({\rm M}_{\odot}c^2)$	$\ell_{\text{peak}}/(\text{erg s}^{-1})$	d_L/Mpc	ζ	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01\substack{+0.12\\-0.13}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$3.1^{+0.4}_{-0.4}$	$3.6^{+0.4}_{-0.4} \times 10^{56}$	430^{+150}_{-170}	$0.09\substack{+0.03\\-0.03}$	180
GW151012	$23.3^{+14.0}_{-5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.8}$	$0.67\substack{+0.13 \\ -0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} imes 10^{56}$	1060^{+540}_{-480}	$0.21\substack{+0.09\\-0.09}$	1555
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18^{+0.20}_{-0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74^{+0.07}_{-0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7} \times 10^{56}$	440^{+180}_{-190}	$0.09\substack{+0.04\\-0.04}$	1033
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04^{+0.17}_{-0.20}$	$49.1^{+5.2}_{-3.9}$	$0.66\substack{+0.08\\-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9}\times10^{56}$	960^{+430}_{-410}	$0.19\substack{+0.07 \\ -0.08}$	924
GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03^{+0.19}_{-0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.9^{+0.05}_{-0.1}$	$3.5^{+0.4}_{-1.3}\times10^{56}$	320^{+120}_{-110}	$0.07\substack{+0.02 \\ -0.02}$	396
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	$35.7^{+6.5}_{-4.7}$	$0.36^{+0.21}_{-0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81\substack{+0.07 \\ -0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5}\times10^{56}$	2750^{+1350}_{-1320}	$0.48\substack{+0.19\\-0.20}$	1033
GW170809	$35.2^{+8.3}_{-6.0}$	$23.8^{+5.2}_{-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.16}_{-0.16}$	$56.4^{+5.2}_{-3.7}$	$0.70\substack{+0.08\\-0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9}\times10^{56}$	990^{+320}_{-380}	$0.20\substack{+0.05\\-0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	$25.3^{+2.9}_{-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07^{+0.12}_{-0.11}$	$53.4^{+3.2}_{-2.4}$	$0.72^{+0.07}_{-0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5} imes 10^{56}$	580^{+160}_{-210}	$0.12\substack{+0.03 \\ -0.04}$	87
GW170817	$1.46^{+0.12}_{-0.10}$	$1.27\substack{+0.09\\-0.09}$	$1.186^{+0.001}_{-0.001}$	$0.00^{+0.02}_{-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1\times 10^{56}$	40^{+10}_{-10}	$0.01\substack{+0.00\\-0.00}$	16
GW170818	$35.5^{+7.5}_{-4.7}$	$26.8^{+4.3}_{-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09^{+0.18}_{-0.21}$	$59.8_{-3.8}^{+4.8}$	$0.67\substack{+0.07\\-0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} \times 10^{56}$	1020^{+430}_{-360}	$0.20\substack{+0.07\\-0.07}$	39
GW170823	$39.6^{+10.0}_{-6.6}$	$29.4_{-7.1}^{+6.3}$	$29.3^{+4.2}_{-3.2}$	$0.08^{+0.20}_{-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71^{+0.08}_{-0.10}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9}\times10^{56}$	1850^{+840}_{-840}	$0.34^{\rm +0.13}_{\rm -0.14}$	1651

arXiv:1811.12907

24.11.2022

Coalescing binaries LIGO/Virgo

Gravitational-Wave Transient Catalog

Detections from 2015-2020 of compact binaries with black holes & neutron stars

Sudarshan Ghonge | Karan Jani

UNIVERSITY®

LIGO

						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Con the second	C. C. C.				
01 2015 - 2016	GN		02 2016 - 2017	-		de la					03a+b 2019 - 2020	
36 31	23 14	14 7.7	• • • • • • • • • • • • • • • • • • •	11 7.6	50 34	35 24	31 25	1.5 1.3	35 27	40 29	88 22	25 18
63 CW150914	36 GW151012	21 GW151226	49 GW170104	18 GW170608	80 GW170729	56 GW170809	53 GW170814	≤ 2.8 GW170817	60 CW170818	65 GW170823	105 GW190403_051519	41 GW190408_181802
30 8.3	• 35 24	48 3 2	41 32	2 1.4	107 77	43 28	23 13	36 18	39 28	37 25	66 41	95 69
37 GW190412	56 GW190413_052954	76 GW190413_134308	70 GW190421_213856	3.2 CW190425	175 GW190426_190642	69 GW190503_185404	35 GW190512_180714	52 GW190513_205428	65 GW190514_065416	59 GW190517_055101	101 GW190519_153544	156 GW190521
42 3 3	• 37 23	69 4 8	57 36	35 24	54 41	67 38	12 8.4	18 13	37 21	13 7.8	12 6.4	• • • • 38 29
71 GW190521_074359	56 GW190527_092055	111 GW190602_175927	87 GW190620_030421	56 GW190630_185205	90 GW190701_203306	99 GW190706_222641	19 GW190707_093326	30 GW190708_232457	55 GW190719_215514	20 GW190720_000836	17 GW190725_174728	64 GW190727_060333
12 8.1	42 29	• 37 27	48 32	23 2.6	• • • • • • • • • • • • • • • • • • •	24 10	44 3 6	35 24	44 24	9.3 2.1	8.9 5	21 16
20 GW190728_064510	67 GW190731_140936	62 GW190803_022701	76 GW190805_211137	26 GW190814	55 GW190828_063405	33 GW190828_065509	76 GW190910_112807	57 GW190915_235702	66 GW190916_200658	11 0 <u>190917_11463</u> 0	13 GW190924_021846	35 GW190925_232845
40 23	81 24	12 7.8	12 7.9	11 7.7	65 47	29 5.9	12 8.3	53 • 24	11 6.7	27 19	12 8.2	25 18
61 GW190926_050336	102 GW190929_012149	19 GW190930_133541	19 GW191103_012549	18 GW191105_143521	107 GW191109_010717	34 GW191113_071753	20 GW191126_115259	76 GW191127_050227	17 GW191129_134029	45 GW191204_110529	19 GW191204_171526	41 GW191215_223052
12 7.7	31 1.2	45 35	49 37	9 1.9	• • 36 28	5.9 1.4	42 33	34 29	10 7.3	• • 38 • 27	51 12	36 27
19 GW191216_213338	32 c.v191219_163120	76 GW191222_033537	82 GW191230_180458	11 GN/200105_162425	61 GW200112_155838	7.2 w200115_0427.9	71 GW200128_022011	60 GW200129_065458	17 GW200202_154313	63 GW200208_130117	61 GW200208_222617	60 GW200209_085452
24 2.8	51 30	38 28	87 G	39 28	40 33	19 14	• • 38 20	28 15	36 14	34 28	13 7.8	34 14
27 GW/200210_092254	78 GW200216_220804	62 GW200219_094415	141 GW200220 061928	64 GW200220 124850	69 GW200224 222234	32 GW200225 060421	56 GW200302 015811	42 GW200306_093714	47 GW200308 173609	59 GW200311 115853	20 GW200316 215756	53 GW200322 091133

24.11.2022

GRAVITATIONAL WAVE MERGER DETECTIONS - SINCE 2015 -

~~ OzGrav

Protvino-2022

ARCIN

23

Statistical properties: summary

- O1+O2+O3: 91 robust (S/N>8) detections
- Isotropic on the sky (2207.05792)
- Signal properties in agreement with GR up to a few % accuracy
- 2 NS+NS mergings, EM from GW 170817
- 4 BH+NS candidates. No electromagnetic signals.

Exceptional BHBH mergers

- GW 190814, M₁=26, q=0.112, M₂=2.6 in lower mass gap? NS? Strange quark star? Outlier population? Formation from a triple star? Formation in AGN disk? Primordial BH?
- GW190521 $m_1 = 85^{+21}_{-14} M_{\odot}$ $m_2 = 66^{+17}_{-18} M_{\odot}$ upper mass gap (60-120), large effective spin $\chi_{1,2} \sim 0.1 - 0.9$

(Or even $m_1 = 168^{+15}_{-61} M_{\odot} m_2 = 66^{+33}_{-3} M_{\odot}$??)

Repeated meggers in stellar clusters or AGN disks?? Primordial BH?

• **GW190412** $m_1 = 30.1^{+4.6}_{-5.3} M_{\odot}$ $m_2 = 8.3^{+1.6}_{-0.9} M_{\odot}$ high spin $\chi_1 = 0.44^{+0.16}_{-0.22}$

→ Hierarchical merger?

Simplest scenario: BH+BH from massive star evolution

Astrophysical issues: BH from stellar collapses, binary BH formation

- Mass loss from massive stars
- BH mass gaps (2.5-5, 60-130 M_{sun})
- BH kicks
- BH spins

Other scenarios

Dynamical capture in dens stellar clusters (can produce BH with M>50 and non-parallel BH spins)

 "Exotic" scenarios – primordial BH (Zeldovich,Novikov 1967...Carr 1975... Dolgov&Silk 1993...)

GW190521 as hyperbolic encounter of non-spinning BHs?

Table 1 | Source parameters of GW190521 with median values and 90% credible intervals quoted and natural logarithms reported

Reference ^a	This paper					LVK ⁴	Gayathri et al. ¹⁵	Romero-Shaw et al. ¹⁶
Waveform	TEOBResumS ^{30,31}	TEOBResumS ^{30,31}	TEOBResumSP ^{44b}	NRSur7dq4 (ref. ⁴²)	NRSur7dq4 (ref. ⁴²)	NRSur7dq4 (ref. ⁴²)	NR ⁴⁷	SEOBNRE ⁵²
E _o prior	Unconstrained (UE $_0$)	Constrained (CE_0)	-	-	-	-	-	
Multipoles	(ℓ, m)=(2,2)	(ℓ, m)=(2,2)	$(\ell, m) = (2, 2)$	$(\ell, m) = (2, 2)$	ℓ ≤4	ℓ ≤4	-	-
$m_1(M_{\odot})$	85 ⁺⁸⁸ -22	81 ⁺⁶² _25	90^{+19}_{-14}	102^{+35}_{-23}	84_{-12}^{+17}	85^{+21}_{-14}	102^{+7}_{-11}	92^{+26}_{-16}
$m_2 (M_{\odot})$	59 ⁺¹⁸ -37	52^{+32}_{-32}	66^{+10}_{-8}	64^{+19}_{-25}	71^{+16}_{-18}	66^{+17}_{-18}	102^{+7}_{-11}	69^{+18}_{-19}
$M_{\rm source} (M_{\odot})^{\rm c}$	151^{+73}_{-51}	130 ⁺⁷⁵ -43	156^{+25}_{-15}	164_{-23}^{+40}	153 ⁺²⁹ ₋₁₉	150^{+29}_{-17}	-	-
<i>m</i> ₂ / <i>m</i> ₁ ≤1	$0.69^{+0.27}_{-0.52}$	$0.63^{+0.31}_{-0.43}$	$0.73^{+0.21}_{-0.15}$	$0.62^{+0.32}_{-0.30}$	$0.86^{+0.12}_{-0.30}$	$0.79^{+0.19}_{-0.29}$	-	-
$\chi_{\rm eff}^{\ \ d}$	-	-	$-0.05^{+0.09}_{-0.12}$	$0.01^{+0.24}_{-0.26}$	$-0.03^{+0.25}_{-0.26}$	$0.08^{+0.27}_{-0.36}$	0	$0.0^{+0.2}_{-0.2}$
χ_{p}^{e}	-	-	$0.72^{+0.16}_{-0.22}$	$0.71^{+0.22}_{-0.36}$	$0.79^{+0.16}_{-0.40}$	$0.68^{+0.25}_{-0.37}$	0.7	-
Eccentricity	-	-	-	-	-	-	0.67	0.11 ^f
E ₀ /M	$1.014^{+0.009}_{-0.012}$	$1.014^{+0.010}_{-0.012}$	-	-	-	-	-	-
p_{φ}^{0}	$4.18^{+0.50}_{-0.62}$	$4.24_{-0.37}^{+0.57}$	-	-	-	-	-	-
Luminosity distance D _L (Gpc)	4.7 ^{+4.8} _2.7	$6.1^{+3.3}_{-3.7}$	4.5 ^{+1.2}	$3.9^{+2.3}_{-1.9}$	$4.8^{+2.3}_{-2.2}$	5.3 ^{+2.4} -2.6	$1.84^{+1.07}_{-0.05}$	$_{4}$ 4.1 ^{+1.8} -1.8
SNR _{max}	15.2	15.4	14.7	14.7	14.6	15.4	-	-
log(L) _{max}	123.2	123.0	106.0	107.0	105.6	-	-	-
$\log B_{noise}^{signal}$	84.00±0.18	83.30±0.18	72.95±0.08	74.76±0.11	74.86±0.11	-	-	-

^aResults of other analyses⁴¹⁵¹⁶ are included for reference ^bSpin results obtained at a reference frequency of 5Hz ^cTotal mass in the frame of the source ^dEffective spin along the orbital angular momentum ^eEffective precessing spin⁴ ^fLower limit at 10 Hz

1809

а

Gamba+'22, Nat. Ast.

Primordial Black Holes: formation

Zeldovich, Novikov'67, Carr, Hawking'74....

 $\mathcal{T}_{h} = 2t \qquad \mathcal{M}_{h} = m_{R}^{2} t$ $\simeq 2.2 \times 10^{5} M_{0} \frac{t}{1s} \simeq 8M_{\odot} \left(\frac{100 \text{ MeV}}{T_{OCD}}\right)^{2} \left(\frac{40}{9*}\right)^{\frac{1}{2}}$ $\frac{\delta g}{g} \ge$ $\leq \frac{2M}{2}$ Dolgov+KP 2004.1699

Some PBH formation scenarios

- Primordial density fluctuations, $\delta > \delta_c \sim 0.45$ (model-dependent)
- Collapse of scale-invariant fluctuations → power-law mass spectra dn/dM^{-α}, α=2(1+2w)/(1+w) = 2.5 at RD (w=1/3)
- Inflationary models \rightarrow log-normal mass spectrum $\frac{dn}{dM} = \mu^2 \exp\left[-\gamma \ln^2(M/M_{max})\right] \qquad (AD+Silk 1993)$
- QCD phase transition at T=100-200 MeV:

$$M \sim \left(\frac{m_{_{Pl}}}{m_{_p}}\right)^3 m_p \sim M_{_{Ch}} \sim 1 M_{_{\odot}}$$

• Bubble collisions, cosmic strings ...

Example: log-normal PBH mass function GWTC1+GWTC2

 $F(M) = A \exp[-\gamma \ln^2(M/M_0)]$

Astrophysical BHs +PBHs vs GWTC-3

Effective spin – mass ratio correlation

PK, Mitichkin 2211.03142

2d cosmological inference:

- Possibility of primordial binary BHs as (some) LVK GW sources (chirp-masses, effective spin – mass ratio correlation)
- → PBH with masses up 10⁴ M_☉ as seeds for early SMBH formation (Blinnikov+'16; cf. recent JWST results on early galaxies at z~12)

Naidu+'22

Binary NS and multimessenger astronomy

Image credit: LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)

GRB170817A and GW170817

GRB association with NS+NS was predicted by Blinnikov et al. 1984 SvAL

$$L_{\rm iso} = (1.6 \pm 0.6) \times 10^{47} \,{\rm erg}\,{\rm s}^{-1}$$

Fundamental inferences

1) EM and GW speed:

$$\Delta v / v_{\rm EM} \approx v_{\rm EM} \Delta t / D$$

10-s EM delay

$$-3 \times 10^{-15} \leqslant \frac{\Delta v}{v_{\text{EM}}} \leqslant +7 \times 10^{-16}$$

Instantaneous, D>26 Mpc

• 2) Equivalence principle

Shapiro delay

$$\delta t_{\rm S} = -\frac{1+\gamma}{c^3} \int_{r_{\rm e}}^{r_{\rm o}} U(\boldsymbol{r}(l)) dl$$

MW: M=2.5x10¹¹M $_{\odot}$ R<100 kpc

$$-2.6 \times 10^{-7} \leqslant \gamma_{\rm GW} - \gamma_{\rm EM} \leqslant 1.2 \times 10^{-6}$$

Cf. from Cassini mission: $2.1 + -2.3 \times 10^{-5}$

ApJL, 848, L13, 2017

24.11.2022

• 3) Number of additional dimensions

$$h \propto rac{1}{d_L^{\gamma}}$$
 $\gamma = rac{D-2}{2}$

H_0 prior	γ	D
$\rm km~s^{-1}~Mpc^{-1}$		
$H_0 = 73.24 \pm 1.74$ [22]	$1.01\substack{+0.04 \\ -0.05}$	$4.02\substack{+0.07 \\ -0.10}$
$H_0 = 67.74 \pm 0.46$ [21]	$0.99\substack{+0.03\\-0.05}$	$3.98\substack{+0.07 \\ -0.09}$

FIG. 1. Posterior probability distribution for the number of spacetime dimensions, D, using the GW distance posterior to GW170817 and the measured Hubble velocity to its host galaxy, NGC 4993, assuming the H_0 measurements from [21] (blue curve) and [22] (green curve). The dotted lines show

arXiv:1801.08160

Parameters from GW signal

	Low-spin priors $(\chi \le 0.05)$	High-spin priors $(\chi \le 0.89)$
Primary mass m_1	$1.36-1.60 M_{\odot}$	$1.36-2.26 M_{\odot}$
Secondary mass m_2	$1.17 - 1.36 M_{\odot}$	$0.86-1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002} M_{\odot}$	$1.188^{+0.004}_{-0.002} M_{\odot}$
Mass ratio m_2/m_1	0.7–1.0	0.4-1.0
Total mass m _{tot}	$2.74^{+0.04}_{-0.01}M_{\odot}$	$2.82^{+0.47}_{-0.09}M_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot} c^2$	$> 0.025 M_{\odot} c^2$
Luminosity distance $D_{\rm L}$	40^{+8}_{-14} Mpc	40^{+8}_{-14} Mpc
Viewing angle Θ	≤ 55°	$\leq 56^{\circ}$
Using NGC 4993 location	$\leq 28^{\circ}$	$\leq 28^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800	≤ 700
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800	≤ 1400

Optical and IR observations of kilonova

Spectrum of a Kilonova

Binary NS as main production channel for r-elements

Joint GW+kilonova analysis

Table 1: Key Properties of GW170817									
	Property	Value	Reference						
Chirp	mass, \mathcal{M} (rest frame)	$1.188^{+0.004}_{-0.002} M_{\odot}$	1						
F	First NS mass, M_1	$1.36 - 1.60 M_{\odot}$ (90%, low spin prior)	1						
Se	econd NS mass, M_2	$1.17 - 1.36 M_{\odot}$ (90%, low spin prior)	1						
Total bina	ary mass, $M_{\text{tot}} = M_1 + M_2$	$pprox 2.74^{0.04}_{-0.01} M_{\odot}$	1						
Observer ang	the relative to binary axis, $\theta_{\rm obs}$	$11 - 33^{\circ}$ (68.3%)	2						
Blue k	${ m KN}$ ejecta ($A_{ m max} \lesssim 140$)	$pprox 0.01 - 0.02 M_{\odot}$	e.g., 3,4,5						
Red K	IN ejecta $(A_{\rm max} \gtrsim 140)$	$pprox 0.04 M_{\odot}$	e.g., 3,5,6						
Light r	-process yield $(A \lesssim 140)$	$pprox 0.05 - 0.06 M_{\odot}$							
Heavy r	-process yield $(A \ge 140)$	$\approx 0.01 M_{\odot}$							
	Gold yield	$\sim 100-200 M_{\oplus}$	8						
	Uranium yield	$\sim 30-60 M_\oplus$	8						
Kinetic e	energy of off-axis GRB jet	$10^{49} - 10^{50} \text{ erg}$	e.g., 9, 10, 11, 12						
	ISM density	$10^{-4} - 10^{-2} \text{ cm}^{-3}$	e.g., 9, 10, 11, 12						

(1) LIGO Scientific Collaboration et al. 2017c; (2) depends on Hubble Constant, LIGO Scientific Collaboration et al. 2017d; (3) Cowperthwaite et al. 2017; (4) Nicholl et al. 2017; (5) Kasen et al. 2017; (6) Chornock et al. 2017; (8) assuming heavy r-process (A > 140) yields distributed as solar abundances (Arnould et al., 2007); (9)Margutti et al. 2017; (10) Troja et al. 2017; (11) Fong et al. 2017; (12) Hallinan et al. 2017

44

CONVIENDED

Cosmological inferences

- 1) Independent "standard siren" measurement of H₀ from binary NS mergings
- GW170817: $H_0 = 70^{+12}_{-8} km s^{-1} Mpc^{-1}$ [Abbott+'17]
- $H_0 = 72^{+12}_{-8} \ km \ s^{-1} \ Mpc^{-1}$ [Palmese+'20]
- 2) Indication of the existence of massive primordial black holes from binary BH mergings [Blinnikov+'16,Dolgov+'20,...]

Future prospects (LVK collaboration)

	01		02	2	03		04		05		
LIGO	80 Мрс	100 Мрс		11	10-130 Mpc		160- M	190 bc		Tar 330	get Mpc
Virgo		, M	30 Ipc		50 Ирс		90-1 Mr	20 00		150 M	-260 pc
KAGRA					8-28 Mpc	5	25-1 Mp	30 00		13 M	0+ lpc
LIGO-India										Tar 330	get Mpc
2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026

Abbot et al. 2020

40-km LIGO Cosmic Explorer (2035)

Sensitivity of detectors with different lengths. Solid curves are for a 40km long detector

LIGO Scientific Collaboration, arXiv:1607.08697 [astro-ph.IM]

- LIGO, Virgo, and KAGRA are closely coordinating to start the O4 Observing run together in ~March 2023, despite local and global adversities.
- LIGO projects a sensitivity goal of 160-190 Mpc for binary neutron stars. Virgo projects a target sensitivity of 80-115 Mpc. KAGRA should be running with greater than 1 Mpc sensitivity at the beginning of O4, and will work to improve the sensitivity toward the end of O4.

Pulsar timing arrays (PTA)

- Pulsar timing (Estabrook & Walquist'75, Sazhin'78, Detweiler'79)
- Working collaborations
 - European PTA (EPTA) [42 msPSR]
 - Indian PTA (In PTA)
 - North American Nanohertz Observatory for GW (NANOGrav) [48 msPSR]
 - Parkes PTA (PPTA) [~30 msPSR]
 - >Join into International PTA (IPTA)

R(ns)~10 (h/10⁻¹⁶)/ (f/10⁻⁸ Hz)

NanoHz GW from PTA observations

• Stochastic GW backgrounds:

- Inspiral binary SMBH (M>10⁷) (e.g. Sesana+'08, α =-2/3)
- Cosmic strings (e.g. Oelmez+'10, $\alpha = -7/6$)
- Cosmological phase transitions, primordial GW
 (Grishchuk'05 α=-2, Lasky+'16 α=-1)

. . .

Pol+'21

IPTA DR2 results

 Stochastic common spectrum process (CP)

$$h_c = A(f/1 \,\mathrm{yr}^{-1})^{\alpha}$$
$$A = 3.8^{+6.3}_{-2.5} \times 10^{-15}$$

• Marginally consistent with SMBH GWB (α =-2/3) with space density

 $\Phi_0 \approx 10^{-5} \mathrm{Mpc}^{-3}$

 Cosmic string tension μG~[4-10]x10⁻¹¹ (Ellis,Lewicki'21)

$$h_c(f) = A_{\rm CP} \left(\frac{f}{f_{\rm yr}}\right)^{(3-\gamma_{\rm CP})/2}$$

$$A_{\rm GWB}^2 = \frac{4}{3\pi^{1/3}} \iiint dM_1 dz dq \frac{\mathcal{M}^{5/3}}{(1+z)^{1/3}} \frac{d^3 \Phi_{\rm BHB}}{dM_1 dz dq}$$

Antoniadis+ 2201.03980

Cosmological inferences if detected CP signal is GWB

 2d-order GWs accompanying formation of PBH from collapse of inflationary scalar perturbations

PHYSICAL REVIEW LETTERS 126, 041303 (2021)

De Luca, Franciolini, Riotto '21

Conclusions

- LVK O1+O2+O3: ~ 91 detections of binary BH and NS mergings, mostly binary BH, rate ~10-200 Gpc⁻ ³ yr⁻¹
- Astrophysical problems in formation of massive BH with M~100 $\rm M_{\odot}$, extreme mass ratio BH+BH inspirals, BH+NS
- Stochastic nanoHz CP signal is detected by NANOGrav and IPTA collaborations. If GWB, it may be produced by SMBH binaries ~10⁻⁵ Gpc⁻³
- Pulsar timing as a sensitive probe to new theoretical models of nanoHz GWBs!

Backup slides

How to measure tiny displacements?

$$\Delta \Phi = B \frac{hL}{\lambda}, \quad \frac{BL}{c} \leq \frac{1}{2} \left(\frac{1}{f_{GW}} \right) \Rightarrow B_{\max} \approx 400$$

Shot noise: $\Delta \Phi_{\min} \sim \frac{1}{\sqrt{N_{ph}}},$
$$N_{ph} = \frac{P_{laser} \times (\# recyclings)}{\hbar \omega} \times \Delta t \sim 2 \times 10^{20}$$

@ $P = 60W, \quad \Delta t = 10ms$
$$h_{\min} \sim \frac{\lambda}{BL} \frac{1}{\sqrt{N_{ph}}} = \frac{0.5\mu}{400 \times 4km} \frac{1}{\sqrt{2 \times 10^{20}}} \sim 10^{-22} \, \text{s}$$

24.1

Hellings-Downes correlation

$$\langle r_a^*(t)r_b(t)\rangle = 2C(\xi) \int_0^\infty df \, \frac{S_h(f)}{(2\pi f)^2} 2[1 - \cos(2\pi t)]$$

$$C(\xi) = \frac{1}{3} \left\{ 1 + \frac{3}{2} (1 - \cos \xi) \left[\ln \left(\frac{1 - \cos \xi}{2} \right) - \frac{1}{6} \right] \right\}$$

24.11.2022

- GR spin-orbital precession
- High BH spin...

NSBH mergers

• GW 200105_1162426 (8.9+1.9)

• GW 299115_042309 (5.4+1.5) $\chi_{\text{eff}} = -0.19^{+0.23}_{-0.35}$??

Predictions from binary star evolution

Detection rate BH+BH, BH+NS

Actual detections

EM emission from NS+BH

Mass shedding and tidal disruption

$$r_{\rm ISCO}/M = 3 + Z_2 \mp \sqrt{(3 - Z_1)(3 + Z_1 + 2Z_2)}$$
$$Z_1 \equiv 1 + (1 - \chi_1^2)^{1/3} \times \left[(1 + \chi_1)^{1/3} + (1 - \chi_1)^{1/3} \right]$$
$$Z_2 \equiv \sqrt{3\chi_1^2 + Z_1^2}$$

R_{tid}~R_{ns}(M_{bh}/M_{ns})^{1/3}
 Mass shedding if
 R_{tid}>R_{ISCO}

- Depends on NS compactness C=M_{ns}/R_{ns} (EOS)
- Tidal parameter Λ=2k₂/(3C⁵)
- Depends on the BH spin