"New Wine in an Old Bottle?"
„Novel Outlook on the Eigenvalue Problem for the Orbital Angular
Momentum Operator"
G. Japaridze ${ }^{1,2}$, A. Khelashvili ${ }^{1}$ and K. Turashvili ${ }^{1}$

1- High Energy Physics Institute, Tbilisi, Georgia; 2 - Clark Atlanta University, Atlanta, USA
Physics 2022, 4, 647-658. https://doi.org/10.3390/physics4020043
Analysis of differential equations for eigenfunctions in spherical coordinates:

$$
\begin{align*}
& (\theta ; \varphi \mid \mathrm{L} ; \mathrm{m})=\mathrm{L}(\mathrm{~L}+1)(\theta ; \varphi \mid \mathrm{L} ; \mathrm{m}) ; \tag{1}\\
& =\left(\theta ; \partial / \partial \theta ;(\partial / \partial \varphi)^{2}\right) ;
\end{align*}
$$

$$
\begin{equation*}
{ }_{z}(\varphi)=-i(\partial / \partial \varphi)(\varphi)=m(\varphi) ; \tag{2}
\end{equation*}
$$

$=0 \leq \theta \leq \pi$; and $0 \leq \varphi<2 \pi$ - spherical coordinates; ${ }^{2}$ - operator of the momentum squared; $L(L+1)$ - the eigenvalue of the ${ }^{2}$; ($\theta ; \varphi \mid \mathrm{L} ; \mathrm{m}$) - the eigenfunction of ${ }^{2}{ }^{2}{ }_{z}$ - the third component of the momentum operator; (φ) - the eigenfunction of the z_{z}.

```
    (0;\varphi|L;m) = (0|L;m) (\varphi);
(\partial/\partial0;0;(i\partial/\partial\varphi)}\mp@subsup{)}{}{2})(0|L;m)(\varphi)=(\varphi)(\partial/\partial0;0; m2) (0|L;m)
    (\partial/\partial0;0; m}\mp@subsup{)}{}{2})(0|L;m)=L(L+1) (0|L;m)
```

```
(0|L;m) = a (0|L;m) +b (0|L;m);
```

Even | Odd |
| :---: |
| $(\theta \mid L ; m)=(\theta \mid L ;-m) ; \quad(\theta \mid L ; \mathrm{m})=-(\theta \mid L ;-\mathrm{m}) ;$ |
| $\mathrm{d}(\varphi) / \mathrm{d} \varphi=-\mathrm{m}(\varphi) ; \quad \varphi)=(\varphi)+\mathrm{i}(\varphi) ;$ |
| $(\varphi) / \mathrm{d}=-(\varphi) \mathrm{d}(\varphi) / \mathrm{d} \varphi=\mathrm{m}(\varphi) ;$ |
| $(\varphi \mid \mathrm{m})=\mathrm{c}(\varphi \mid \mathrm{m})+\mathrm{d}(\varphi \mid \mathrm{m}) ;$ |

$(\varphi \mid \mathrm{m})=(\varphi \mid-\mathrm{m}) ; \quad(\varphi \mid \mathrm{m})=-(\varphi \mid-\mathrm{m}) ;$

Both equations reduce to the equation for the Gauss hypergeometric function:

1) $(\theta \mid L ; m) \cdots \quad z=\cos ^{2} \theta ; 4 \beta^{2}=m^{2} ;(\theta \mid L ; m)=(1-z)^{\beta} F(z \mid L ; \beta)$

$$
\begin{equation*}
\left[z(1-z)\left(d^{2} / d z^{2}\right)+\left[1 / 2-z(3 / 2+2 \beta)(d / d z)+\left(\lambda-2 \beta-4 \beta^{2}\right) / 4\right] F(z \mid L ; \beta)=0 ;\right. \tag{3}
\end{equation*}
$$

$$
\lambda=L(L+1) ;
$$

$$
F(z \mid L ; \beta)={ }_{2} F_{1}(a, b ; c ; z) ;
$$

$$
a=\left[1 / 2+2 \beta+(1 / 4+\lambda)^{1 / 2}\right] / 2 ; \quad b=\left[1 / 2+2 \beta-(1 / 4+\lambda)^{1 / 2}\right] / 2 ; c=1 / 2
$$

2) (z) $----\quad=z ; \quad 4 \beta^{2}=m^{2}$;

$$
\begin{equation*}
\left[z(1-z) d^{2} / d z^{2}+[c-(a+b+1) z] d / d z-a b\right](z)=0 ; \tag{4}
\end{equation*}
$$

$$
c=1 / 2 ; a=\beta ; b=-\beta ;
$$

Let's start from the equation (3). From the set of Kummer pairs, we choose two linearly independent solutions corresponding to specific boundary conditions

$$
\begin{aligned}
& (\theta \mid L ; m)=\left(1-\cos ^{2} \theta\right)^{\beta}{ }_{2} F_{1}\left(1 / 2+\beta+L / 2, \beta-L / 2 ; 1 / 2 ; \cos ^{2} \theta\right) ; \\
& (\theta \mid L ; m)=\left(1-\cos ^{2} \theta\right)^{\beta}\left(\cos ^{2} \theta\right)^{1 / 2}{ }_{2} F_{1}\left(1+\beta+L / 2,1 / 2+\beta-L / 2 ; 3 / 2 ; \cos ^{2} \theta\right) \text {; } \\
& \beta=\{|m| / 2 ; \pm m / 2\} ; \\
& \beta= \pm m / 2 ; \\
& (\theta \mid L ; \pm m)=\left(1-\cos ^{2} \theta\right) \pm m / 2{ }_{2} F_{1}\left(1 / 2 \pm m / 2+L / 2, \pm m / 2-L / 2 ; 1 / 2 ; \cos ^{2} \theta\right) \text {; } \\
& (\theta \mid L ; m)=\left(1-\cos ^{2} \theta\right) \pm m / 2\left(\cos ^{2} \theta\right)^{1 / 2}{ }_{2} F_{1}\left(1 \pm m / 2+L / 2,1 / 2 \pm m / 2-L / 2 ; 3 / 2 ; \cos ^{2} \theta\right) ; \\
& (\theta \mid L ; m) \pm(\theta \mid L ;-m) ; \quad(\theta \mid L ; m) \pm(\theta \mid L ;-m) ; \\
& \beta=|m| / 2 ; \\
& \left(\theta|L ;|m|)=\left(1-\cos ^{2} \theta\right)^{|m| / 2}{ }_{2} F_{1}\left(1 / 2-|m| / 2+L / 2,|m| / 2-L / 2 ; 1 / 2 ; \cos ^{2} \theta\right)=\right. \\
& =\theta(m)(\theta \mid L ; m)+\theta(-m)(\theta \mid L ;-m)=(\theta \mid L ; m) ; \\
& \left(\theta|L ;|m|)=\left.\left(1-\cos ^{2} \theta\right)^{-\mid m}\right|^{12}\left(\cos ^{2} \theta\right)^{1 / 2}{ }_{2} F_{1}\left(1-|m| / 2+L / 2,1 / 2+|m| / 2-L / 2 ; 3 / 2 ; \cos ^{2} \theta\right)=\right. \\
& =\theta(m)(\theta \mid L ; m)+\theta(-m)(\theta \mid L ;-m)=(\theta \mid L ; m) \text {. }
\end{aligned}
$$

The Physical requirement of normalization Mathematical condition of regularity

 (polynomization!?) of hypergeometric functions (k - integer):```
for (0|L; m) m/2-L/2 = -k; m = L - 2k \ 0;
 (0|L; m) 1/2 + m/2-L/2 = -k; m = (L-1) - 2k \geq0;
 (0|L;-m) -m/2-L/2 = -k; m = -L + 2k \leq 0;
 (0|L;-m) 1/2 - m/2-L/2 = -k; m = -(L-1) + 2k \leq 0;
```

$$
\begin{array}{cc}
(\theta|L ;|m|)|m| / 2-L / 2=-k ; & |m|=L-2 k ; \\
(\theta|L ;|m|) 1 / 2+|m| / 2-L / 2=-k ; & |m|=(L-1)-2 k ; \\
-(L-2 k) \leq m \leq(L-2 k) ; & -(L-1-2 k) \leq m \leq(L-1-2 k) . \\
\text { Integer "m" } \quad \text { integer "L" } \\
\text { Is "m"integer or not? }
\end{array}
$$

Lore (from textbooks) - "m" can be only integer - two different arguments.
Argument of the first type:
I. Physical requirement - wave function must be single-valued ;(?)
II. if " $m$ " is non-integer - $\varphi$ ) = ; not single-valued;(?)
"m"-must be integer.

## Comments:

$\boldsymbol{\varphi})=$;
;

$$
\varphi)=;- \text { single-valued ; }
$$

The first type of argument is not correct.
Arguments of the second type:
III. Physical requirement -

The wave function must be periodic with regard ; (?)
IV. if " $m$ " is noninteger - $\boldsymbol{\varphi}$ ) = ; not periodic

```
"m" - must be integer;
```

```
Comment: Physical requirement -
The observables must be periodic with respect to
rotations at 2\pi;
Wave functions are not observables ;
```

The second type of argument is not
correct.
$\varphi)$ satisfies the orthonormalization condition -
If $|m|=(L-2 k)$, or $|m|=(L-1-2 k)$, than - (m' $\mathbf{m}$ ) -
integer,
$\left.\varphi \mid m)^{*} \varphi \mid m^{\prime}\right)=\quad=[-1] / i\left(m^{\prime}-m\right)=$
$=$
On non uniqueness of
In cartesian coordinates
$\mathbf{x ; y | m})=\mathbf{f}(\mathbf{z} ;$; ) --- not single-valued for non integer $\mathbf{m}$;
Using the Euler-Moivre formula:
= ;
$=1=$ [;
$=$ = - becomes single-valued

When for the eigenfunctions the specific pair of Kummer functions is used, and the non-uniqueness of the exponential function is determined by the EulerMoivre prescription, the physical requirement of normalizability
is realized by the condition

$$
|m|=L-2 k ; \quad|m|=(L-1)-2 k ; \text { so }|m|=L-k .
$$

Legendre functions as eigenfunctions of

The sum of the two functions of the Kummer pair is again the solution of the same equation:

$$
a(\theta \mid L ; m)+b(\theta \mid L ; m)=(\theta \mid L ; m) ;
$$

For the Legendre functions:
$(\theta \mid L ; m)=(\theta \mid L ; m)+(\theta \mid L ; m) ;$
$(\theta \mid L ; m)=(\theta \mid L ; m)+(\theta \mid L ; m) ; \quad$ are fixed coefficients.
( $\theta \mid L ; m$ ) is regular only if
and ( $\theta \mid L ; m$ ) - is regular, when (L;m) are only integer;
and ( $\theta \mid L ; m$ )-never becomes regular ;
The spectrum of numerical values of (L;m) depends on the choice of Kummer pairs


```
============================
```


## Algebraic method

The method is based on the following mathematical principles:
1*:
2*: ( $\theta ; \varphi \mid L ; m)=(L ; m)(\theta ; \varphi \mid L ; m \pm 1) ;$
3*: ( $\theta ; \varphi \mid L ; \pm L)=0$;
These relations hold for all values of $m$
When "m" is integer ---- $2 *$ and 3* ;
$-L \leq m \leq L \quad$ and all the $(\theta ; \varphi \mid L ; m) \quad$ are regular
If we introduce a mathematical (not-physical!) condition as the $4^{\text {th* }}$ mathematical principles (as is done in textbooks):

```
4*: = -L +k;k = {0;1;2; \cdots.} and = {-L;-L+1; 的;
```

+L; •••\}
or
$=L-k ; k=\{0 ; 1 ; 2 ; \cdots \bullet$ and $=\{L ; L-1 ; \cdots \cdots ; L ;$
-••\}

$$
(; L)=
$$

When (; L) integer, all ( $\theta ; \varphi \mid \mathrm{L} ; \mathrm{m}$ ) functions are regular; When ( ; L) is not integer (including half-integer values):
3.1: $(\theta ; \varphi \mid L ;+L)=0$;
3.2: $\quad((\theta ; \varphi \mid L ;+L)$ - is ;
3.3: $\quad(\theta ; \varphi \mid L ;-L)=0$;
3.4: ( $(\theta ; \varphi \mid L ;-L)$ - is ;
3.5: $\quad(\theta \mid L ; m)=(\theta \mid L ;-m) ;-L \leq m \leq L ;-$ set is finite;
3.4: $(\theta \mid L ; m)=(\theta \mid L ;-m) ; m-L ; m \quad L ;-s e t$ is infinite.

Pauli rejected the requirement of periodicity and proposed instead
( $(\theta ; \varphi \mid L ;+L)$ and ( $(\theta ; \varphi \mid L ;-L)$ - must be regular for any k;
(L; m) -must be only integer

Question: is the above a physical requirement?

## No, it is not

Arguments, that this principle is only mathematical and not physical.
1: Operators - do not correspond to physical quantities ;
2: Operators - correspond operators of physically observable quantities, but they don't commute with and with each other - so, their corresponding observable quantities are not observable at the same time.

## Principle of quantum mechanics:

Hilbert space vectors must be constructed using only the complete set of commutative operators and not by considering operators outside of this set.

Counter example for Pauli's assumption: define

$$
=\left[{ }^{+}+\exp (i 2 \varphi)^{-}\right] / 2=\xi\left(1-\xi^{2}\right)^{-1 / 2}(i / \varphi) ; \quad \xi=\cos ;
$$

Acting with :
$=$
$={ }_{2} \mathbf{F}_{1}(\mathbf{1} / 2-|\mathrm{m}| / 2+\mathrm{L} / 2,|\mathrm{~m}| / 2-\mathrm{L} / 2 ; \mathbf{1} / 2 ;)-$
is singular, when (|m|-p) for all „ $\mathrm{m}^{\prime \prime}$, integer as well as non integer .

Some remarks on the Euler-Moivre theorem
1: Invariance to translations at 2mk - = ;
2: exponentiation operator - $\quad \mathrm{X}=$;
3: = ; = ;
and - functions are not uniquely defined;
4: = ; ;
5: Euler-Moivre theorem - = ; =
and - functions are uniquely defined ;
6: The relations derived from the Euler-Moivre theorem violates translational invariance
;
A similar example

7: $X=; \quad(-X)==$; Invariance to inversion of sign;
8: $\quad(X)=-$ not uniquely defined function;
9: Due to $= \pm 1$, there is an infinite number of possible rules by which this function can be redefined as unique;
The basic redefinition is reduced to three cases of prescription:

$$
=\{ \pm X ;|X|\} ;
$$

Prescriptions: $= \pm X$ - violates invariance to inversion of sign;
Prescription: $=|X|$ - saves invariance to sign inversion;

## Question:

whether there is a prescription that will preserve the starting symmetry $=$ for equality $=$;

Answer - yes, there is
1: is considered as the solution of equation:

$$
{ }_{z}(x ; y)=m(x ; y) ; \quad(x ; y) \quad(x ; y)=;
$$

Let's define the real and imaginary parts of this exponential function as the solutions of the corresponding equations in spherical coordinates:

$$
(\varphi) / d=-(\varphi) ;
$$

which can be easily reduced to the equation of hypergeometric functions:

```
[z(1-z)d}\mp@subsup{}{}{2}/d\mp@subsup{z}{}{2}+(1/2-z)d/dz -/4] (z) = 0; z = ;
Define (z) :
() = }\mp@subsup{}{2}{}\mp@subsup{F}{1}{}(m/2,-m/2;1/2;)
() = }\mp@subsup{}{2}{}\mp@subsup{F}{1}{}(m/2,-m/2;1/2;)
```

Due to the invariance of the equation to the transformation $z \rightarrow(1-z)$, the second pair of solutions can also be indicated:
() $={ }_{2} \mathrm{~F}_{1}(\mathrm{~m} / 2,-\mathrm{m} / 2 ; \mathbf{1 / 2 ;})$;
() = ${ }_{2} \mathrm{~F}_{1}(\mathrm{~m} / \mathbf{2},-\mathrm{m} / \mathbf{2} \mathbf{; 1 / 2}$; );

These functions are invariant to the $\varphi \rightarrow(\varphi+2 k \pi)$ transformation, no matter how we determine the exponential functions and

$$
()=() ;
$$

$$
=[()+i()] ;
$$

## Conclusion

It would be better if the spectrum of the orbital moment were observed according to the experimental results, which would be quite natural.

