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Motivation:

* The Standard Model is renormalizable
* Gravity is not renormalizable

Non-renormalizable theories are not accepted due to:

* UV divergences are not under control - infinite number of new types of divergences
* The amplitudes increase with energy (in PT) and violate unitarity

However:

* R-operation equally works for NR theories and leads to local counter terms
* Due to locality all higher order divergences are related to the lower ones

& These properties allow one to write down the RG equations for the
scattering amplitudes, effective potential, etc which sum up the leading
divergences (logarithms) and to find out the high energy/field behaviour
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The leading divergences are governed by | loop diagrams!
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Leading divergence is given by the one-loop term A = §(A§1))2

- These statements are universal and are valid in non-renormalizable theories as well.

- The only difference is that the counter term A%U depends on kinematics and has to be
integrated through the remaining one-loop graph.

« As aresult A§2) IS not the square of Agl) anymore but is the integrated square .

- This last statement is the general feature of any QFT irrespective of renormalizability



Leading divergences @

Quartic vertices
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(n-k-1)-loop

o terms with higher loop remaining diagrams
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Cubic vertices

n-loop (n-1)-loop (n-1)-loop k-loop (n-k-1)-loop

— terms with higher loop remaining diagrams
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The Recurrence Relation
Kazakov,20
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* This is the general recurrence relation that reflects the locality of the counter
terms in any theory

* In renormalizable theories A n is a constant and this relation is reduced to the
algebraic one

* In non-renormalizable theories A_n depends on kinematics and one has to
integrate through the one loop diagrams

Taking the sum Z An(—2)" = A(2) one can transform the recurrence relation

into integro-diff equation

This is the generalized RG equation valid in any (even non-renormalizable) theory!



I @
I { E u at I O I I Bogoliubov Laboratory of
Theoretical Physics

SYM D D=6 N=2 E(S,t,z):z_QZ(—z Sl

d

2 1 X
d_z(satv Z) T _Z(Svtv Z) Bl 25/ dill'/ dy (E(S7t,7 Z) i E(tlv S, Z))‘t’:azt—kyu
Z Z 0 0

Linear equation

D=8 N=1 (s,%,2) Z
n=1
d / /
EZ(S t :———|—2S / dx/ dyy 1_37 (S,t,Z)+Z(t,3,2))‘t/:tx+yu

/dmx 1—$22 p+2 dt/p(Z(s,t,z)JrE(t o))yt )P (e (L

Non-linear equation



Bogoliubov Laboratory of

Examples:

- Maximally supersymmetric gauge theory in D=6,8,10 dimensions SYMD
- Scalar field theory in D=4,6,8,10glimensions ¢%
- Gauge theory in D=4,6,8 dimensions YM

« Supersymmetric Wess-Zumino model with quartic superpotential in
= 4
D=4 & A

These are the toy models for (super) gravity - our aim



Perturbation Expansion for the 4-point
SYM_D Amplitudes for any D
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Universal expansion for any D in maximal SYM due to Dual conformal invariance
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S-channel S, (s,t) T-channel i) T, (s, 0 =TS {ms)

Exact all-loop recurrence relation S3 = —s/3, T3 = —t/3
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The Scalar theory example i
4
¢D 1= 4’ 6’ 87 10 [)\] S D/2 Kazakov,19
2->2 scattering amplitude on shell m =0 s+t+u=0

Ca(s,t,u) = A1+ Ts(s, t,u) + Ti(s, t,u) +Ty(s, t,u))
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PT expansion (only s-channel is shown)
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Differential Equation

Summing up the recurrence relation Y _(—2)" one gets the diff equation
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® YM D Both cubic and quartic vertices

Equation is more complicated but has the same main features

@ \Wess-Zumino modern in D=4 *

i /d29c12§ <i><1>+/d29‘ %@4 +/d29 %@4,

C=<®Pdd >, C =< PPP >, M =< ®PPD >. C=CS+CT+CU, M+MS+MT+MU

RG Equations
dC's

dz
ke
= ~[s¢*(MS® MS + MT @ MT + MU @ MU)

dz 2
+CS®CS+CT ® CT + CU ® CUJ,

— 5¢°MS ® (CS + CT + CU)

1 ©9 Sy
0 1 dp / / dp / / D jo
A(s,t,u) ® B(s,t,u) = /0 dx g g Dol diidun— A(s,t',u )dt’ldu’l’—l Bis,t ju)| iy — 2 s SR

p=0 =0 uw = —(1-—2zx)s




Effective Potential in Scalar Theory in D=4

: . g Kazakov, lakhibbaev, Tolkachev 22
Generating functional for Green functions
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Effective action
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General scalar field theory in D=4 = %(QMQb)Q E gVO(Qb)
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Divergences and Log ¢ behaviour

2 1 2

e e ) 1 - m
:O . Diag ~ _(,u_) et o (017 ?7 i gua (@)

,° .. € 2 €

The leading divergences ﬁ The leading logs

* In non-renormalizable theories divergences cannot be absorbed into the
renormalization of the couplings and fields.

* |f they are subtracted some way one is left with infinite arbitrariness.

* Coefficients of the leading divergences (logs) do not depend on this
arbitrariness !

1

The aim is to calculate the leading divergences ~ T in n-th order of PT
€




Recurrence relations for the leading poles

Action of R’-operation on divergent diagram
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RG pole equation for arbitrary potential

o
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RG pole equation
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This a non-linear partial differential equation!

Effective potential

Veff(ga ¢) = gZ(Z, ¢)‘z—>— 7 _ log gua /2 v (@) = TVo(9)

1672




Example |: Power like Potential

gVo(9) =g§ =g B, ) = gf(wp_4)
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Example |: Power like Potential

>4 p
: gVo (@) = %
fly) =uly)/y
' (y) — u(y) =~ 5 [120(0) + (b = Do + I’ () + (0~ 45" W)
u(£0) = 0,u'(£0) = £1 Discontinuity at y=0




Example |: Power like Potential

V(¢) . . V()

* Finite gap instead of an infinite barrier as for p=4
* Metastability of the quantum state
* No new minima

Dk



Applicability of approximation

Validity of PT Validity of LL approximation
9 p—4 g¢p—2
< |l | 1
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Possible simultaneously for small coupling g and temporal field ¢
ger—*
Singular point = 1 is within validity region
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Example ll: Exponential Potential
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* Finite gap

* Metastability of the quantum state
* No new minima
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Conclusion on Effective potential

& The effective potential in the LL approximation obeys the RG master equation which
IS a partial non-linear differential equation

€ In some cases this equation is simplified to the ordinary differential one and can be
solved at least numerically. |

€ In all the cases that we studied the obtained ordinary differential equations obey the
solution with a discontinuity.

& The effective potential has a metastable minima at the origin and no other minima
exists.

€ The main message is that under certain assumptions while studying the CW
mechanism one may not be restricted by the renormalizable potentials but consider
much wider possibilities. We provided the method of such analysis.

€ This might be useful for cosmological applications where they are usually not limited
by renormalizability since gravity makes it non-renormalizable anyway.

5
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(General Resume

¢ The UV divergences in nhon-renormalizable theories are local and can be
removed by local counter terms like in renormalizable ones

¢ The main difference is that the renormalization constant Z depends on
kinematics and acts like an operator rather than simple multiplication

¢ Based on locality of the counter terms due to the Bogoliubov-Parasiuk
theorem one can construct the recurrence relations that define all loop
divergences starting from one loop

¢ The recurrence relations can be converted into the generalized RG
equations just like in renormalizable theories

¢ The RG equations allow one to sum up the leading (subleading, etc)
divergences in all loops and define the high-energy/field behaviour

26



