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Introduction and context

-QG → breakdown of the continuum picture of space-time at the
scales near the Planck length
-e.g. string theory, loop qg, noncommutative geometry
-the same effect through modification of large momenta geometry
-first introduced by Snyder in 1947
-significant contribution of Soviet author in the 1960-80ies
(Mir-Kasimov, kadyshevsky, et. al.)
-becomes fashionable in the west in the 1990-ies, with string
theory and quantum groups
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Introduction and context

-math properties, symmetries deformations well established
-formulation of dynamics still open, many different proposals
-not enough constarints: in principle, any Hamiltonian H[P] which

lim
P→∞

H[P] = Hcanonical

will do
-in our approach covariance of the dynamics on momentum space
postulated
-leads to the unique formulation of dynamics
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Axioms
-list of definitions of and the demands on an energy-momentum
background on which a physical field theory is to be defined:

1. Energy-momentum manifold P is a four-dimensional
Riemmanian manifold described (locally) by a metric gµν(p)
or (globally) by a distance function d(p, q), which is a
geodesic distance between the points p and q on the manifold.

2. Manifold P contains a distinguished unique point pV called
the origin, which is identified with the absolute vacuum. The
coordinates of the vacuum are in any reference frame (any
system of coordinates) pV = (0, 0, 0, 0). In addition to the
origin, manifold P contains the set of points labeled the
points at infinity, which is a set of points with a maximal
(finite or infinite) distance from the origin. 1

1We include points at infinity to the manifold from technical reasons (see
axiom 5 below). This does not affect the dynamics of finite points in any way.
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3. Elementary particles are the energy-momentum excitations
with respect to the vacuum. Mass of an elementary particle
on the point p on P is defined as its geodesic distance from
the origin,

m(p) = d(0, p).

4. Manifold P must be able to accomodate a group of isometries
that leave the origin invariant.

5. Manifold P must be able to accomodate a group of isometries
that leave the points at infinity invariant.
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-a minimal set of physically reasonable requirements for a
momentum backgrounds
-relaxing any of them would lead to theories with much different
physical concepts that the ones we are used to.2

2A less restrictive set of axioms was proposed in [?].
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-the group in 4 is the usual Lorentz group, and its physical origin
lies in the demand that all the observers agree on the value of the
mass parameter (postion of the origin)
-the group in 5. is the group of translations or displacements, and
it defines the energy-momentum conservation law (the momenta
addition) in the interaction of elementary particles
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- no two particles p and q are allowed to reduce or increase their
mutual distance upon absorbing/emitting particles of the same
energy-momentum k, i.e. d(k ⊕ p, k ⊕ q) = d(p, q)
-no finite number of finite displacements of some point that does
not belong to the set of points at infinity could displace it to the
point at infinity
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Consequences:
- manifold P must necessarily be of a maximally symmetric type,
with either positive, negative or vanishing curvature
-under the assumption that the radius of curvature is very large
(Planck’s mass), for the points p that lie close to the origin the
manifold looks flat
-current theory of the Minkowskian P is to be be understood as a
low energy approximation of a more fundamental theory
-an important consistency condition in the construction of a
fundamental theory, namely, at any instance one should be able to
reproduce the standard theory by setting the curvature to zero
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Consequences:
-no explicit mention of any prefered system of coordinates implies
that the dynamics must be defined in terms of geometrical
invariants only
-otherwise, one would need to add to the set of axioms a rule
which defines absolute physical quantities of energy-momentum in
terms of some specific coordinates of P
-axiom 3., which was given earlier in [?], represents geometrization
of the usual dispersion relation p2 = m2

-it is only for the flat space that the points of the manifold are at
the same time vectors (the radii-vectors), and p2 = ηµνpµpν
consequently scalars. The latter is then naturally generalized for
non-flat spaces to the square of the distance function from the
origin.
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Nonrelativistic QM: zero curvature, general coordinates
-we start with the canonical Heisenberg algebra,

[x̂i, η̂
j ] = iℏδji , [x̂i, x̂j ] = [η̂i, η̂j ] = 0, (1)

and from which the operators in the stationary Schrödinger
equation are built,

(K̂(η̂i) + V̂ (x̂i))ψn = Enψn, (2)

-a spectral problem on an abstract Hilbert space
-one needs to choose the representation
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-choosing momentum representation, assuming as usual Euclidean
momentum space, with standard momentum coordinates, i.e.
those in which the metric is Kroenecker’s delta, then the
momentum operator is just multiplication, and the position
operator is gradient (a generator of infinitesimal translation on the
Euclidean momentum space),

η̂i → ηi, x̂i → −iℏ ∂

∂ηi
. (3)

Schrödinger’s equation is then(
η2

2m
+ V

(
∂

∂ηi

))
ψn(η) = Enψn(η), (4)
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-but what if one chooses a different set of coordinates, i.e.
identifies the momentum with pi, related to the original via

ηi = h(α2p2)pi, (5)

where α is a constant of dimension inverse momentum and h an
arbitrary function? In this case, the momentum metric is

gij(p) =
∂ηi

∂pk
∂ηj

∂pl
δkl = h2δij + 4h′α2(h+ α2p2)pipj (6)

and the position operator becomes

x̂i → −iℏ∂p
j

∂ηi
∂

∂pj
= −iℏ

(
1

h

∂

∂pi
− pi

2α2h′

h(h+ 2α2p2h′)
pj

∂

∂pj

)
,

(7)
where h′ = ∂h/∂(α2p2), which are just the rules for tensor
transformation ((2,0) tensor and a covector) upon the change of
coordinates.
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-one obtains a deformed Heisenberg algebra

[x̂i, p̂
j ] = iℏ

(
1

h
δji −

2α2h′

h(h+ 2α2p2h′)
δikp

kpj
)
, [x̂i, x̂j ] = [p̂i, p̂j ] = 0

(8)
-a special case of this transformation with h = 1/(1 + α2p2) was
considered in [?], up to the leading order in α2, where it was
shown to lead to the minimal uncertainty in the position ∆x ≥ ℏα.
-how does the Schrödinger equation look like in this new setting?
In [?, ?, ?], the kinetic energy operator was given as

K̂ =
p2

2m
(9)

- this choice not unique, not covariant

Boris Ivetić Covariant dynamics on momentum space



-n order to have a clear geometrical meaning of the kinetic energy
operator, we define it as a geodesical distance from the origin
divided with 2m. In other words, the η2 term in (4) is the square
of the length of the shortest path from origin to the point η

η2 =

(∫ η

0

√
δijdηidηj

)2

= d2(0, η), (10)

where d(η, η′) is the distance function (geodesic distance between
points η and η′), so that for a general variable p defined through
(5) the kinetic operator is

K̂ =
1

2m

(∫ p

0

√
gijdpidpj

)2

=
d2(0, p)

2m
=
h2p2

2m
(11)
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-what concerns the potential energy operator, we discuss its
geometric form on two specific examples.
a) Example A: harmonic oscillator potential
In the standard case, the isotropic harmonic oscillator (HO)
potential is

V̂HO =
mω2

2
x̂2 = −mω

2ℏ2

2

∂2

∂η2
(12)

-define it so as to give it a definite geometrical meaning
-this is achieved by defining it as the divergence of the gradient,
which for the general choice of coordinates on the flat space is

V̂HO = −mω
2ℏ2

2
∆ = −mω2ℏ2

2
√
detg

∂

∂pi

(√
detggij

∂

∂pj

)
(13)
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-with the choices (11) and (13) for the kinetic and the potential
energy operator the Schrödinger equation becomes completeley
covariant, from whence it is clear that, by construction, the
eigenvalues remain the same independent of the choice of
transformation h in (5), so we may as well choose h = 1
-the only change between different coordinatizations is in the
eigenvectors, which change according to

ψn(η) → ψn(hp) (14)

which is just the rule for the transformation of the scalar function
upon the change of coordinates
-the same procedure described here applies to any potential which
is given in terms of powers of x̂2.
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a) Example B: Coulomb’s potential
An example of the potential that can not be expanded in terms of
x̂2 is the Coulomb potential. It is an integral operator, which in
the standard case looks like3

V̂Coulψ(η) =
1

ℏ

∫
ψ(η′)d2η′

|η − η′|
. (15)

To make this coordinate invariant (covariant), one generalizes in a
natural way

d3η → dΩp =
√
detgd3p, |η−η′| → d(p, p′) =

√
(h2(α2p′2)p′2 − h2(α2p2)p2)2,

(16)
which in combination with (11) gives a fully covariant Schrödinger
equation. The spectrum remains that of the usual hydrogen atom,
with only wave functions changing according to (14).

3We take Ze2/2π = 1.
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A note on the physical implications for the structure of
configuration space
-it is argued that for some specific choice of transformation
function, a ”minimal length” emerges in the theory
- the position operator spectrum of a free particle remains
continuous, as in the canonical case
-this does not dependend on the choice of the kinetic energy
operator, but on the choice of the position operator (7)

x̂ie
ixjhp

j/ℏ = xie
ixjhp

j/ℏ (17)

-no discretization of space emerges!
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A note on the physical implications for the structure of
configuration space
-the meaning of the uncertainty relation

∆x ≥ ℏα, (18)

which follows from the [x̂, p̂] for certain choices of the
transformation h [?], is, from a strictly instrumentalist point of
view, that upon simultaneous measurement of position and
momentum, the position can be measured only up to a certain
precision, regardles of the precision of the momentum
measurement. In the same way, if in the canonical case one were
to design an experiment to measure simultaneously position and a
function g(α2p2)pi of the momentum, where g is the inverse of the
transformation function h, one would again arrive at the conclusion
that there is a finite (non-vanishing) uncertainty in the measurment
of the position in such experiment, irispective of the precision of
the measurment of variable gpi. This, however, would not imply
the existence of a minimal length in the canonical setting.
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Nonrelativistic QM, constant curvature (Snyder)

(η1)2 + (η2)2 + (η3)2 = β−2 (19)

where β is a constant of the dimension of inverse momentum, and
with the origin at the north pole
-expressing the physical momentum coordinates pi in terms of the
embedding space coordinates

ηi = h(β2p2)pi, η3 =
√
β−2 − h2p2, (20)

the momentum metric is given as

gij(p) = h2δij + β2
4h′(h− β2p2h′)− h4

1− β2p2h2
pipj (21)
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-the position operator is

x̂i = βĴi3 = −iℏβ
√

1− β2p2h2

h

[
∂

∂pi
+

2β2h′

h− 2β2p2h′
δikp

kpj
∂

∂pj

]
,

(22)
which leads to a deformed Heisenberg algebra

[x̂i, p̂
j ] = iℏ

√
1− β2p2h2

h

(
δji +

2β2h′

h− 2β2p2h′
δikp

kpj
)
, [x̂i, x̂j ] = β2Ĵij , [p̂i, p̂j ] = 0,

(23)
where Ĵ12 is the angular momentum operator
-all the geometrical considerations from the flat space case apply
equally here
-kinetic energy operator is again given by

K̂ =
d2(0, p)

2m
=

1

2m
β−2 arccos2

√
1− β2p2h2 (24)
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-what concerns the potential, the HO as before -Coloumb case now

d2η → dΩp =
√
detgd2p (25)

|η − η′| → d(p, p′) = β−1 arccos
(
β2hphp′p

ip′i −
√
1− β2h2pp

2
√
1− β2h2p′p

′2
)
,

(26)

where hp = h(β2p2) and hp′ = h(β2p′2),
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final note on the consequence of the generalization of the
momentum space geometry on the configurational space. In this
case, unlike in the previous one, the spectrum of the position
operator is discrete. In one dimension, for instance, we have

x̂einθ = ℏβneinθ, (27)

where n must be integer to enable the vanishing of the wave
function at θ = ±π/2, which represent the points at infinity. This
implies the emergence of the minimal length ℏβ in the theory. For
a detailed exposition of the spatial lattice in three dimensions, we
refer to [?]
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....if there is any time left....
Scalar field theory
-the stage is set - we consider the geometry

η20
c2

− η21 − η22 − η23 − η24 = P2 (28)

-the law of the momenta addition, or the energy-momentum
conservation law is given by

pµ ⊕ kµ = h−1
(
P−2K2

)
Kµ, (29)

where

Kµ = hppµ + hkkµ

√
1 + P−2h2pp

2 +
P−2hphk(pk)

1 +
√
1 + P−2h2kk

2

 .

(30)
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-the enrgy-momentum integral is changed accordingly,∫
d4p→

∫
dΩp =

∫ √
detgd4p (31)

-finally, the delta function generalizes to

δ(p− k) → δ(p⊖ k), (32)

wchich is defined in the distributional sense as∫
dΩpf(p)δ(p⊖ k) = f(k). (33)
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Feynman rules

L = ϕ(p2 −m2)ϕ− g

n!
ϕn (34)

is generalized generalized to

L = ϕ(d2(p, 0)−m2)ϕ− g

n!
ϕn (35)

in order to accomodate for a generalization in the dispersion
relation given in axiom 4 above
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-the free Feynman propagator

DF (p) =
1

d2(p, 0)−m2 ± iϵ
, (36)

with the +iϵ a choice consistent with causality, as in the canonical
case
vertex factors remain the same, with the momentum conservation
imposed via generalized delta function,

δ(pout ⊖ pin) (37)

and the integration over undefined momenta proceeds according to
(31).
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For the sake of definitness, let us evaluate the leading order
correction in the simplest case of a free propagator in ϕ4 theory

p p

k

iM = ig

∫
dΩk

(2π)4
i

d2(k, 0)−m2 + iϵ
. (38)
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For this purpose angular coordinates are used, with angles
(ω, ρ, θ, φ). We preform Wick’s rotation on the embedding space,
as is done in the standard case, to obtain Euclidean integrals.
Rotating η0 from (??) for π/2 in the complex plane, the surface
becomes a sphere with imaginary radius, and the distance function
depends only on the polar angle ω, d = iPω. This gives

iM = − igP
4

8

∫ π/2

0
dω sin3 ω

i

P2ω2 +m2
≈ 0.086gP2 (39)
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