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Instead of, or alongside with, \/—g we can employ one
or several different alternative non-Riemannian volume

elements as in (1) given by non-singular ezact D-forms
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! BU) dxH"* N ... N dxH?

BY) = (D — 1)1 #sp

_ . 1 -
— QU =¢(BY) = (D — 1)'&“‘”1”%D aulB;gjz)--.up



One way to define a metric independent
measure (as opposed to /—g ), a density, is

by means of four scalar fields ¢, (a = 1,2,3,4)
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* Thereis an invariant volume element, b dD;I;

« O isa density, transforms according to the inverse of the jacobian
of a coordinate transformation, while de
transforms according to the jacobian



In this contex it is interesting to mention the work
of Pirogov, where the use of 4 scalars in gravity
theories have been studied from a more general
point of view, not just for use in the measure-

* See, Quartet metric gravity and Dark components of the Univrse,
arXiv1712.00612



We use these fields only in the measure however,
both in Gravity and for String or Branes

* We have used this these measure in the past to construct modified
theories of gravity

The generic form of modified gravity actions involving
(one or more) non-Riemannian volume-elements, called
for short NRVF (Non-Riemannian Volume-Form) ac-
tions, read (henceforth D = 4, and we will use units



2 The Modified Measure Theory String Theory

The standard world sheet string sigma-model action using a world sheet metric is [Z1],

[22], [23]

1
Sugma-moiet = T [ o5 T 0,X13X"g, (1)

Here 4™ is the intrinsic Riemannian metric on the 2-dimensional string worldsheet
and v = det(7,); gy denotes the Riemannian metric on the embedding spacetime. T
15 a string tension, a dimension full scale introduced into the theory by hand.

From the variations of the action with respect to v** and X* we get the following
equations of motion:

1
Top = (Bu X XY — Eﬁ-ﬂ,&r}-fdacx#adx”] G = 0, (2)

1
7=

where I'f:l 1s the afhine connection for the external metric.

Ba(V=17" XM ) + P8, XV, X T, =0, (3)

There are no limitations on employing any other measure of integration different
than /—~. The only restriction is that it must be a density under arbitrary diffeo-
morphisms (reparametrizations) on the underlying spacetime manifold. The modified-



measure theory is an example of such a theory.

In the framework of this theory two additional worldsheet scalar fields (i = 1,2)
are introduced. A new measure density is

| L
$(p) = Ef-i;r'fﬂbaa#ﬂ O’ (4)

Then the modified bosonic string action is (as formulated first in [IU] and latter
discussed and generalized also in [11])

Eu:.&
2/ —y
where F,; 1s the field-strength of an auxiliary Abelian gauge field A,: F,;, =
Oa Ay — b A,.

S=— [ dzmlv(c,;)(%fﬁaﬂﬂabfgw - Fus(A)), (5)

It is important to notice that the action (H) is invariant under conformal trans-
formations of the intrinsic measure combined with a diffeomorphism of the measure

fields,

Yab —+ JVab, (6)
o 2@t =0(F) (7)

siuch that
b d =Jb (8)

Here J 1s the jacobian of the diffeomorphim in the internal measure fields which
can be an arbitrary function of the world sheet space time coordinates, so this can
called indeed a loeal conformal symmetry.



To check that the new action is consistent with the sigma-model one, let us derive
the equations of motion of the action ().
The variation with respect to ¢* leads to the following equations of motion:

Eq:n[
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It implies
p E:d
A X X g, — —F.g = M = const. 10
The equations of motion with respect to +*" are
u L 1 Eq:d
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We see that these equations are the same as in the sigma-model formulation ([Z]),
o

£

[B). Namely, taking the trace of (II]) we get that M = (. By solving EF,_,& from (2]
(with M = 0} we obtain (2]).




A most significant result 1s obtained by varying the action with respect to A,:

Eubabt

d(p), _
=)=0 (12)

Then by integrating and comparing it with the standard action it is seen that

2(e)
Ve

=T (13)

That 1s how the string tension T is derived as a world sheet constant of integration
opposite to the standard equation (1) where the tension is put ad hoc.The variation
with respect to X* leads to the second sigma-model-type equation (B). The idea of
modifying the measure of integration proved itself effective and profitable. This can

he generalized to incorporate super symmetry, see for example [11], [13], [12] , [1d].

For other mechanisms for dynamical string tension generation from added string world

sheet fields, see for example

[17] and

[18].

However the fact that this string tension

generation is a world sheet effect and not a universal uniform string tension generation
effect for all strings has not been sufficiently emphasized before. Now we go and review

the Modified Measure Brane Theory

3 The Modified Measure Brane Theory



4 Each String and Each Brane in its own world
sheet determines its own tension. Therefore the

tension 1s not universal for all strings or branes

If we look at a single string, the dynamical string tension theories and the standard
string theories appear indeed indistinguishable, there are however more than one string
and/or one brane in the universe then, let us now observe indeed that it does not appear
that the string tension or the brane tension derived in the sections above correspond
to “the” string or brane tensions of the theory. The derivation of the string or brane
tensions in the previous sections holds for a given string or brane, there 1s no obstacle
that for another string or brane these could acquire a different string or brane tension.
In other words, the string or brane tension i1s a world sheet constant, but 1t does not
appear to be a universal constant same for all strings and for all branes. Similar situa-
tion takes place in the dynamical string generation proposed by Townsend for example
17|, in that paper worldsheet fields include an electromagnetic gauge potential. Its




equations of motion are those of the Green-Schwarz superstring but with the string
tension given by the circulation of the worldsheet electric field around the string. So
again .n [17]| also a string will determine a given tension, but another string may de-
termine another tension. If the tension 1s a umiversal constant valid for all strings, that
would require an explanation in the context of these dynamical tension string theories,
for example some kind of interactions that tend to equalize string tensions, or that all
strings 1n the universe originated from the splittings of one primordial string or some
other mechanism.

In any case, if one beheves for example in strings . on the hght of the dynamical
string tension mechanism being a process that takes place at each string independently,
we must ask whether all strings have the same string tension.




5 Equations for the Background fields and a
new background field

However, in addition to the traditional background fields usually considered in
conventional string theory, one may consider as well an additional scalar field that
induces currents in the string world sheet and since the current couples to the world
sheet gauge fields, this produces a dynamical tension controlled by the external scalar
field as shown at the classical level in [25]. In the next two subsections we will study
how this comes about in two steps, first we introduce world sheet currents that couple
to the internal gauge fields in Strings and Branes and second we define a coupling to
an external scalar field by defining a world sheet currents that couple to the internal
gauge fields in Strings and Branes that is induced by such external scalar field. This is
very much in accordance to the philosophy of Schwinger [28| that proposed long time
ago that a field theory must be understood by probing it with external sources.

As we will see however, there will be a fundamental difference between this back-
ground field and the more conventional ones (the metric, the dilaton field and the two
index anti symmetric tensor field) which are identified with some string excitations
as well. Instead, here we will see that a single string does not provide dynamics for
this field, but rather when the condition for world sheet conformal invariance is imple-
mented for two strings which sample the same region of space time, so it represents a
collective effect instead.



3.1 Introducing world sheet currents that couple to the
internal gauge fields

If to the action of the string we add a coupling to a world-sheet current §°, i.e. a term

S rrent — fd"'_]a'.c‘:ﬂj“: (12)

then the variation of the total action with respect to A, gives

Embt,ﬂ( i ) — . (13)

-
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We thus see indeed that, in this case, the dvnamical character of the brane is crucial
here.

3.2 How a world sheet current can naturally be induced
by a bulk scalar field, the Tension Field

Suppose that we have an external scalar field ¢(x*) defined in the bulk. From this field
we can define the induced conserved world-sheet current

X e L
i* = e, 0 o e = efl, de™ (14)

where ¢ is some coupling constant. The interaction of this current with the world sheet
pauge field is also invariant under local gange transformations in the world sheet of the

pauge fields A, — A, + 0, A,




For this case, [13]) can be integrated to obtain

T:% —ep+ T, (15)
or equivalently
& = ' —7led +T;), (16)

The constant of integration T; may vary from one string to the other. Notice tha the
interaction is metric independent since the internal pange field does not transform under
the the conformal transformations. This interaction does not therefore spoil the world
sheot conformal transformation invariance in the case the field ¢ does not transform
under this transformation. One may interpret (IH ) as the result of integrating out
classically (through integration of equations of motion) or quantum mechanically (by
functional integration of the internal gange field, respecting the boundary condition
that characterizes the constant of integration T; for a given string ). Then replacing
& — +/—7(ed+T;) back into the remaining terms in the action gives a correct effective
action for each string. Each string is going to be quantized with each one having a
different T;. The consequences of an independent quantization of manv strings with
different T; covering the same region of space time will be studied in the next section.



As we discussed in the previous section, we can incorporate the result of the tension
as a function of scalar field @, given as ed 4 T;. for a string with the constant of
integration 7T; by defining the action that produces the correct equations of motion for
such string, adding also other background fields, the anti symmetric two index field A,
that couples to €®9,X#*3 X" and the dilaton field  that couples to the topological

density /—YR

S. = — / Jza(e¢+n)%\/_—~,-~,°baax~a,xvgw+ / d°c A, P9, X X"+ / d*o/=v¢R.

(34)
Notice that if we had just one string, or if all strings will have the same constant of
integration T; = Tj.

In any case, it is not our purpose here to do a full generic analysis of all possible
background metrics, antisymmetric two index tensor field and dilaton fields, instead,
we will take cases where the dilaton field i1s a constant or zero, and the antisymmetric
two index tensor field is pure gauge or zero, then the demand of conformal invariance
for D = 26 becomes the demand that all the metrics

g:w = (ed + Ti)gpv (35)

will satisfy simultaneously the vacuum Einstein ‘s equations,



5.3.1  The case where all all string tensions are the same, 1.e., 1; = 15,
and the appearance of a target space conformal invariance

If all T; = Ty, we just redefine our background field so that eg + Th — e¢ and then
in the effective action for all the strings the same combination eggy, ., and only this
combination will be determined by the regquirement that the conformal mmvariance in
the world sheet of all strings be preserved quantum mechanically, that 1s , that the beta
function be zero. So in this case we will not be able to determine e¢ and g, separately,
just the product egg,, . so the equation obtained from equating the beta function to
zero will have the target space conformal invariance e¢ — F(z)ed, gu — F(r)  guw.

That 15, there 1s no independent dynamics for the Tension Field in this case. So in
conclusion, 1f we just look at one string, or if we look at a set of strings, all of them
equal string tensions, then the tension field 1s not observable, can be gauged away
by the target space conformal invariance explained above. Another way to see this 1s



5.3.2 The case where not all string tensions are the same, with special
emphasis of two types of strings with 7} # 715,

The interesting case to consider i1s therefore many strings with different T, let us
consider the simplest case of two strings, labeled 1 and 2 with T} # T5 , then we will
have two Einstein’s equations, for gfw = (e¢ + T' ) gy and for gﬁy = (ed + T2)guv,

Ruu(gcl:ﬁ} =0 (36)
and , at the same time,

va[ﬂgﬁ} =0 (37)

These two simultaneous conditions above impose a constraint on the tension field
@, because the metrics gcltﬂ and 5"3,5 are conformally related, but Einstein s equations
are not conformally invariant, so the condition that Einstein’s equations hold for both
gég and gi& 1s highly non trivial.



WE GET TWO CONFORMALLY RELATED METRICS,
B OT H O F W H | C H Then for these situations, we have, ‘

ep+T1 = clep +T3) (40)

O B EY E | N STE | N E Q which leads to a solution for eg
cly —T .
Conformal factor, call it c can =g “h)

which leads to the tensions of the different strings to be

be constant or may not

[Ty —TY) a
be constant, co+li=—7—"— (42)
There are many situations and P
. . ep+Tp= 21 (43)
where multiplying a solution 1—c
. . . [t 15 important that we were force to consider a multi metric situation. One must
Of EInSteIn S equatlon also realize that the constant ¢ 1s physical, because both metries live in the same
. spacetime, so even if ¢ is a constant , we are not allowed to perform a coordinate
By a constant c g|Ves transformation, consisting for example of a rescaling of coordinates for one of the
us another SOIUtion, ||ke in metrics and not do the same transformation for the other metric.
Other way to see that ¢ is physical consist of considering the scalar consisting of the
the case Of Schwa rZSChiId ratio of the two measures 1“"——r;' and 1“’?}-’ where g! = det(gl ;) and ¢* = det(g2,),

Solution and Kasner Solution and we find that the scalar V}g = ¢P/?, showing that ¢ is a coordinate invariant.
e



THIS IS BECAUSE The two flat spaces considered
CANNOT BE TRANSFORMED SIMULTANEOUSLY
TO MINKOWSKI SPACE in standard coordinates
(meaning the metric with just diagonal
elements (-1, 1, 1, 1, .....)). Out of these two flat
space one can also construct true tensors that
do not vanish in any coordinate frame, like the
difference of the Levi Civita connections of the
two metrics, etc.



W -t

Let us study now a case where ¢ is not a constant, we will also focus on a cosmo-
logical case. To find this it is useful to consider flat space in the Milne representation,
D) = 4 this reads,

ds® = —dt* + t*(dx* + sinh®ydQ3) (44)

where dﬂ% represent the contribution of the 2 angles to the metric when using
spherical coordinates, that is, it represents the metric of a two dimensional sphere
of unit radius. In ) dimensions we will have a similar expression but now we must
introduce the metric of a I} — 2 unit sphere dﬂﬂﬂ_g so0 we end up with the following
metric that we will take as the metric 2

ds3 = —dt® + t*(dy” + sinh®ydQ7,_,) (45)

For the metric 1 we will take the metric that we would obtain from the coordinate
t — 1/t and we furthermore multiply by a constant o, so

ds? = %{_dﬁ + £2(dx? + sinh®xd3,_,)) (46)

Then the equations (40)), (&), (@2), ([@3]), with e = Z. If we want that the only
possible singularities take place at £ = 0 only, we must take ¢ negative, and therefore
the two strings have string tensions of opposite signs.

Whether strings 1 or 2 are the ones with negative tensions depends on the sign of
T5 —Ti. If we want the strings with negative tension to exist only in the early universe,

we must take T5 —T7 to be negative. At the same time there will not be positive tension



strings in the early universe, but in the late universe approaches a constant value. The
positive string tension are the strings 1, with zero tension in the early universe and the
tension T} — 7% in the late universe. The negative string tension are the strings 2, with
T1 — T5 tension in the early universe and the tension zero tension in the late universe.

5.4 The Non Singular Bouncing Solution for the Univer-
sal Metric

As we have seen when the space time is probed by two types of strings, there are two
metrics that have to satisfy the vacuum Einstein’s equations, this is enough to solve
the problem, The interesting thing however is that the universal metric g, does not
have to satisfy Einstein’s equation. We can see this by solving g, in terms of one of
the metrics , for example from g7, = (e¢ + T3) g, , we have that

1—
ds? = g dr*dz’ = (ﬁ)[—cﬁz + £2(dy? + sinh®xdQ%_s)) (47)
2— 41
and considering that ¢ = F = _—if,"‘— . where K is positive. So the coefficient of the

2, —K
hyperbolic D -1 dimensional metric dy” + smhzxdﬂzﬂ_g is %}‘2—:, showing a contrac-
tion, a bounce and a subsequent expansion. The initial and final spacetimes are flat
and satisfy vacuum Einstein “s equations, but not the full space, with most appreciable
deviations from Einstein’s equations at the bouncing time, t = t+ = K /4,

One can bring this metric in terms of cosmic time, where the 00 of metric component
of g, is normalized to 1. One has to notice however that we cannot do the transfor-
mation of coordinates only on one of the three metrics we have discussed grfw.. g}lw and
Guv, and if we bring the the 00 metric component of the metric gy, is normalized to 1,
it will not happen simultaneously for 93::1 g}w. Having this in mind. the cosmic time
coordinate T' where where the 00 of metric component of gy, is normalized to 1 is
defined by

1+ %
dT = | — L dt 48
T, (48)

So, we see that as t — oo, T' — ¢f, while for t — 0, T' — —cg/t, here ¢, ey are
positive constants. So at large negative cosmic time we have a contacting Milne space,
a bounce and the evolution towards an expanding Milne space at large positive cosmic
time.



>.0  The case where positive and and negative string ten-

sions are separated by a spontaneously generated wall in
Wesson warped spaces

One may wonder if there are similar solutions to the vacuum Einstein’s equations
similar to the Milne space but where instead of time some spacial coordinate would play
a similar way. The answer to this question is ves, and these are the solutions in higher
dimensional vacuum General Relativity discovered by Wesson and collaborators, see
29| and references there. In five dimensions for example the following warped solution

15 found,

ds® = I°dt* — IPcosh®t( + r2dQ3)) — diI” (49)

where [ 15 the fourth dimension, so we see that as in the fourth dimension [ such a
solution 15 homogeneous of degree two, just as the Milne space time was homogeneous
of degree two with respect to the time. Notice that maximally symmetric de Sitter
space times sub spaces [ = constant appear for instead of enclidean spheres that appear
in the Milne Universe for £ = constant.



The list of space times of this type 1s quite large, for example, one cal find solutions
of empty GR with Schwarzchild de Sitter subpaces for | = constant, as in

AlZ IM  Ar? dr?
dsﬂ=T{dtﬂ(1—T— 3 ) — _E_E—rﬂdﬂﬁj—ﬂﬂ (50)
T 3

This of course can be extended to [ dimensions, where we choose one dimension [ to
have a factor [ warp factor for the other dimensions , generically for D dimensions as
n

ds3 = 1°g,,, (z)dr"dz¥ — dl (51)

where g, (r) is a D) — 1 Schwarzschild de Sitter metric for example [29]. This we will
take as our 2 metric.




In any case, working with this generic metric of the form ([EID), but now in D
dimensions, we can perform the inversion transformation [ — 1 ., and multiplying also
by a factor & and obtain the conformally transformed metric 1 that also satisfies the
vacuum Einstein s equations

‘,ﬂi

2 —2_ —4 52

ds] = ol " gy (x)dz"dz" — oo = ol “dsy (52)
From this point on . the equations the solutions fot the tensions of the 1 and 2

strings are the same as in the cosmological case, just that ¢t — [, so now ¢ = ol %,

so that we now insert this expression for ¢ in (IJ) and in (3], obtaining that on one

direction in [ negative string tensions dominate, while in the other direction positive

string tensions dominate, and we still take ¢ = — K, where K 1s positive.
The universal metric, following the steps done for the cosmological case 1s now |,
1—
ds? = (—— ) (I2gu (z)dz* dz” — dI?) (53)
T> - T

looking at the coefficient of g, (r)dz*dz¥, the function is [%{iﬁ—z) so the space
time 1s expanded or contracted as we move in the dimension [ by this factor. This
factor is minimized at Ix = K- We can define a proper length coordinate L where
where the [l of metric component of the metric 1s normalized to —1 is defined by

1+ T
dlL = | ———dl 54
T, —T5 (54)
So, we see that as | —+ oo, L — ¢1l, while for [ — 0, L — —e2/1, here c1, 2 are
positive constants,
Finally we can compare the resulting gravity theories resulting from these multa
string effects with known gravity theories discussed in the literature. We have found



For two strings tensions with positive tensions.
Avoidance of Hagedorn temperature and
Braneworlds!, first go back to the 2 metrics

dsg = —dt? + t2(dx? + sinh*ydQ3_o) (26)

For the metric 1 we will take the metric that we would obtain from the coordinate
t — 1/t (using Minkowskii coordinates x#, this corresponds to the inversion trans-
formation, for a review and generalizations see [30]. = — z¥/(z"x,)) and then we
furthermore multiply by a constant o, so

ds? = %{_dff + 2(dx? + sinh®dQ%_s)) (27)



Now both tensions are positive,

e+ Ty = 0 (e + 1) (21)

which leads to a solution for e

P, - T
ed = TP (22)
which leads to the tensions of the different strings to be
| 0Ty —TY) 1
ep+ 17 = P (23)
and Ty - T))
. 2 — 11 .

Both tensions can be taken as positive if Th — T} is positive and Q2 is also positive



1— 02

ds® = Gudztdr” = (77— )(— dt? + t2(dy? + sinh?ydQ3,_,)) (28)
15 -1
and considering that 22 = 7r , Where o is positive. So the coefficient of the hyperbolic
2_ o
D -1 dimensional metric dy? + sinh?yd(? 7o 18 :_;-2—_%, showing a collapse at t = 1" =

[J)l,.-“fi_
We can expand the scale factor around t = t* = (0)'/*, defining t = t* + 7. The
result is, just keeping the first linear term in £,

t? — 3 4(o)4 _
= t
Io -1 T9-T1;

(20)

One can bring this metric in terms of cosmic time, where the 00 of metric component of
Guv 18 normalized to 1. One has to notice however that we cannot do the transformation
of coordinates only on one of the three metrics we have discussed gﬁm g}m and g, , and
if we bring the the 00 metric component of the metric g, is normalized to 1, it will not
happen simultaneously for gﬁw g}w. Having this in mind, the cosmic time coordinate

I" where where the 00 of metric component of g, is normalized to 1 is defined by

1—
7 ti
T =/ T (30)



3.5 Absence of a Hagedorn Temperature at Early times
in the cosmological case, vanishing slope parameters in the
early universe as a sign of asymptotic freedom

We notice that at the singular point, t = t* = (o)/%, where 0? — 1, and from
the expressions of the tensions of strings 1 and 2, ( egs. [23] 24]), that both string
tensions become arbitrarily large at this point. Since the Hagedorn Temperature is
proportional to the string tension, we conclude that in the early Universe the will no
maximum temperature or Hagedorn phase transition. At the early universe, the slopes,
oy = 1/47T7 and of, = 1 /47T are very small, so the expansion that gives the effective
gravity equatinsfrom the requirement that the conformal invariance is preserved at the
quantum level is very reliable, since this relies in a perturbative expansion in the slopes,
oy = 1/47T7 and of = 1/477T5.

We can say therefore that there is a kind of asymptotic freedom of this theory
for the early universe, which is exactly the reason that we are relieved (or allowed to
escape) from the Hagerdorn temperature in the early universe.



3.7 Spontaneously Generated Boundary in Wesson warped
spaces

One may wonder if there are similar solutions to the vacuum Einstein’s equations
similar to the Milne space but where instead of time some spacial coordinate would play

L LLI.].'L.I.}
2

dr” ¢ 2402) — (31)

2 _ 123,22 2

ds® = 17dt" — [“cosh tltl—-rg
where [ is the fourth dimension, so we see that as in the fourth dimension [ such a
solution is homogeneous of degree two, just as the Milne space time was homogeneous
of degree two with respect to the time. Notice that maximally symmetric de Sitter
space times sub spaces [ = constant appear for instead of euclidean spheres that appear
in the Milne Universe for £ = constant.

The list of space times of this type is quite large, for example, one cal find solutions
of empty GR with Schwarzchild de Sitter subpaces for [ = constant, as in

A2

[ A2 2
d‘gE:T(th(l—QﬂI— 1?’ d?’

r 3)_1_m_:a§2

r

— r2dQ3) — dI? (32)

This of course can be extended to ) dimensions, where we choose one dimension [ to
have a factor 12 warp factor for the other dimensions , generically for D dimensions as
in

ds3 = Ig,, (z)detde” — dI* (33)

where g, (x) is a D — 1 Schwarzschild de Sitter metric for example [31]. This we will
take as our 2 metric,



In any case, working with this generic metric of the form (33), but now in D
dimensions, we can perform the inversion transformation [ — %, and multiplying also
by a factor ¢ and obtain the conformally transformed metric 1 that also satisfies the
vacuum Einstein s equations

2 —2_ di® —44.2
dsy = ol " gy (x)dxFdz” — oo = ol "ds; (34)

From this point on , the equations the solutions for the tensions of the 1 and 2
strings are the same as in the cosmological case, just that ¢ — [, so now 2 = gl so
that we now insert this expression for ¢ in (23)) and in (24]).

Now , we will choose o positive, since we work here only with two types of strings,
both with positive tension. obtaining that on one value of the wrapping coordinate in
[ both string tensions approach arbitrarily large values.

The universal metric, following the steps done for the cosmological case is now ,

76 1 -2

= (m)(ﬂggm,(m}dﬁdr" —dI?) (35)

looking at the coefficient of g, (z)dz*dz", the function is {T o/ —), so the space

time is expanded or contracted as we move in the dimension [ b}f tlllb factor. This
factor explodes at I* = ¢'/4. We can define a proper length coordinate L where where
the [l of metric component of the metric is normalized to —1 is defined by

[ 11—
_ i
dL = oo ——dI (36)



3.5 Absence of a Hagedorn Temperature at Early times
in the cosmological case, vanishing slope parameters in the
early universe as a sign of asymptotic freedom

We notice that at the singular poimnt, t = t* = ()4, where 2 — 1, and from
the expressions of the tensions of strings 1 and 2, ( egs. 24, 25), that both string
tensions become arbitrarily large at this point. Since the Hagedorn Temperature is
proportional to the string tension. we conclude that in the early Universe the will no
maximum temperature or Hagedorn phase transition. At the early universe, the slopes,
afy = 1/4xT) and af = 1/47xT5 are very small, so the expansion that gives the effective
gravity equatinsfrom the requirement that the conformal invariance is preserved at the
quantum level is very reliable, since this relies in a perturbative expansion in the slopes,
af = 1/4xT) and of, = 1/47Ts.

We can sayv therefore that there s a kind of asvmptotic freedom of this theory
for the early universe, which is exactly the reason that we are relieved (or allowed to
escape) from the Hagerdorn temperature in the early universe.



Branewords!, the two metrics are flat space in
Minkowskii space and the other Minkowskii space
after a special conformal transformation

In this case, this conformal factor coincides with that of the special conformal

transformation 5
L+ ata

! JJ-'
a :
(1 + 2a, 27 + a2a2)

in summary, we have two solutions for the Einstein ’s equations, yi 53 = Tag and

. . 1
2 2 —2
-2 =818 = O “1nan = — :

2”&5 (36}

—2 __ 1
T (142a,xr+ax2)2”

- . . . . ) .
We can then study the evolution of the tensions using 2 = ¢

T . . . (T 4 5] g ¢ i
We will consider two different cases: 1) a? =0, 2) a® # 0

where a® = a'a, and 2 = ata,.



3.3.4 Light Like Segment Compactification

Here we consider the case a® = 0, and let us consider a* = (A, A.0, ......0). Then

i 1 1
¥ = = 37
(14 2a,2#)2 (14 2A(t — 2))? (37)

From this, let is calculate the tensions of the two sting types and see that they
will be constrained to be inside a segment that moves with the speed of light. At the
boundaries of those segments the string tensions become infinity, so the strings cannot
escape this segment.

37 leads to the tensions of the different strings to be

DTy —Ty)  (To—Th)(1+2A(t — x))?
1—Q2 4A(t— r)(1+ At —a))

e+ 17 = (38)

and

ep+ Ty = o1y Uz~ 1) (39)

- I'I 2 I - — ,

1 — Q2 4A(t —2)(1 + A(t — 2))

Let us take 175 — I3 positive, A negative, so we see that both tensions above go to
positive infinity when ¢+ — 2 goes to zero from negative values . Also both tensions
above go to positive infinity when t — 2 goes to the value —1/A from above. That
means that the strings are confined to the moving segment where ¢+ — 2 is inside the

segment (—1/A,0). We call this phenomenon “Light Like Segment Compactification™.




3.3.5 Braneworlds in Dynamical String Tension Theories

We now consider the case when a* is not light like and we will find that for a® # 0,
irrespective of sign, i.e. irrespective of whether a# is space like or time like, we will have
thick Braneworlds where strings can be constrained between two concentric spherically
symmetric bouncing higher dimensional spheres and where the distance between these
two concentric spherically symmetric bouncing higher dimensional spheres approaches
zero at large times. The string tensions of the strings one and two are given by

o (15 —T17)(1 + 2a,2" + a’x?)? (1o —T7)(1 + 2a,2" + a’2?)? |
e+ 11 = 55 L 2..2)2 = (o, 2.2 e (40)
(1+ 2a,2t 4+ a*r<) —1 (2a,2H 4 a*2=)(2 4 2a,2F + a*x®)
(13 —T1) (15 — Ty)

(41)

2+ Ty = , —
o T+ a2 + a?x?)? — 1 (2aua* + a®22)(2 + 2a,2H + a*2?)

Then, the locations where the string tensions go to infinity are determined by the
conditions

no 2.2 ,
2a 2" +a"2" =0 (42)
or
2+ 2a,2" +a®2? =0 (43)
Let us start by considering the case where a* is time like, then without loosing gen-
erality we can take a* = (A,0,0,...,0). In this case the denominators in (40) , (41)
1S



(2a,2H 4+ a*2?) (24 2a,2H 4+ a?a?) = (24t + A*(t2 — 2%)) (2 + 24t + +A* (12— 27)) (44)

The condition (42) implies then that

1 1
2 2 2 2 2 T
i+ 13+ 25 +2p g —(I+—) =—— (45)
A A
vhile the other boundary of infinite string tension (43) is given by,
x4 ad+ai 42 —(t+ l)2 = iﬁ (46)
A A
o we see that (49) represents an exterior boundary which has an bouncing motion
vith a minimum radius i at t = —% , The denominator (77) is positive between

‘hese two bubbles. So for To — 17 positive the tensions are positive and diverge at the
»oundaries defined above.

The internal boundary (45) exists only for times ¢ smaller than —% and bigger than

), so in the time interval (—%,U) there is no inner surface of infinite tension strings.
I'his inner surface collapses to zero radius at ¢ = —% and emerges again from zero

‘adius at £ = 0.



we can take a# = (0,A,0,...,0). In this case the denominators in (40) | (4f) is

(2a, 2" +-a*2?)(24-2a, 2 +a®a?) = (—2Axt — A% (7 —72))((2—2Ax' —A*(* —77)) (48)

where 7 = (2, 22, ..., 2P~1) represents the spacial part of 2#, and 7% = (2')2 + (2?)? +

... + (zP~1)2. We now consider the case when a* is space like, then without loosing
generality we can take a* = (0, A,0,....0). We then consider the first boundary where
the string tensions approoach infinity according to (42),

1
(1 — =)= —ad 2+t =—— (49)

which describes a bouncing bubble with minimum radius % at t = 0.
The case (43) gives

1
2 2 2 2 2 -
—(r1——=)"—a25—25..... —0rpH 1+t = — (50)
(50) is an internal boundary which exists only for times ¢ smaller than —% and bigger
than % Between —i and % there is no inner surface of infinite tension strings. Between
these two bubbles the two factors in eq. This inner surface collapses to zero radius at

= —% and emerges again from zero radius at ¢ = —%. So the situation is very similar
to that of the case where the vector a* is time like, just that the roles of the cases
() =1 and 2 = —1 get exchanged. Between these two boundaries the two factors in

the denominator (48) are positive, while at the boundaries one or the other approach
zero and the tensions diverge. so again for Ts — T} positive the tensions are positive



2 Are the flat space backgrounds consistent with the
presence of very high tension strings?

The whole construction of the braneworld has been based on

the conformal mapping between two flat spaces, this confor-
mal mapping then defines the behavior of the string tensions

and in principle it represents a vacuum solution where test
strings acquire string tensions that diverge at two concentric

and expanding surfaces. for details see [1].
Furthermore, as we start to populate the braneworld with

actual strings, these strings will have infinite tension at the
borders of the braneworld. A natural question one may ask
at this point is the following: Are the flat space backgrounds
of our construction consistent with the presence of very high
Tension Strings or will the backreaction from the very larpe
string tension destroy this basic feature of the model 7

This question requires a non trivial answer because the

presence of arbitrarily large string tensions would appear at
first sight substantial back reaction from the space time and

possibly large deviations from the construction based on the
flat spaces in the previous sections, but is that s0?7 As we
will see.indeed, our picture it appears that the introduction



We consider then a surface or thin shell with D — 2 spa-
cial dimensions, where in this shell a gas of strings with the
equation of state that relates the surface pressure p to the o
being

o
D—-2
see for example a discussion of the string gas equation of
state in 402 cosmology in [23]) and for an example involving
string gas shells see [24], so for D = 3, we obtain that the
surface becomes a line with p = —o, This was a matching
corresponding to a particular choice of the ones studied in
|25]. while the D = 4 corresponds to a membrane (2 + 1
dimensional brane) moving in 34 | universe with a string gas
matter in it [22]. In [23,25] the universe was meant to be the
bulk space inside the bubble, while now, being interested in
the braneword picture, the bubble, that is the surface with the
large string tensions itself is the Universe where we live. We
must consider therefore higher dimensions to get a relevant
braneworld scenario.

Applying a local conservation law of the energy momen-
tum in the brane defined by Eq. (1) leads to the possibility of
integrating o,

p—— ()

oo
o= 2)




2 , drt 5 s
ds® = —A+ﬂrf +_."-'|___|_+r Elrﬂﬂ._l [:3}
for the outside metric and

. 2, 4t | 5o

¢ =—A_dt- + 17 dQ3_4 (4)
for the inside metric. Here d ﬂ?j':r—l represents the contribution
to the metric of the [} — 2 angles relevant to the spherically
symmetric solutions in D space time dimensions. A, and
A_ are functions of r . different for the inside and the outside
spaces, matched at a bubble defined by a trajectory

r=ri(t) (3)

Then the matching condition as a consequence of the Israel
analysis [26] generalized to [ dimensions reads,

JAL+72 = AL +i2 =«kor (6)

where & 1s proportional to Newton constant in [} dimensions.



The square roots are not necessarily positive, the sign can
be negative for example for a wormhole matching as has

been discussed in details in ) = 4, which corresponds to
a membrane (2 4+ 1 dimensional brane) moving in 3 + |
universe with a string gas matter in 1t [22]. Another case

where a difference a sum of the two terms 1s obtained, or
what 1s equivalent, we can say that the second square root

15 negative 15 when considering a braneword scenario where
the radius growths as we go out from the brane on both sides,

see for example |27]. The assignment of signs of the square
roots when one of the soaces 15 a Schwarzschild space can be

worked out rigorously by study the problem using Kruskal-
Szekeres coordinates [ 28] where these expressions were used
for the study of the dynamics of false vacuum bubbles and
baby universe creation



We will now study the case where inside we have flat
space, that 1s

A_=1

and outside a [} dimensional Schwarzschild solution with
maximal rotational invanance, which gives the Tangherlini
solution |249]
Cl
o

A, =1

where ) 1s a constant. In the Tangherlim solution the radial
| - -y 1
!'al.l -:l-f!' - ::E: the I'*Iewmm:an p:f[ﬂl‘ll].‘::d 15 rﬂp]au.':‘ﬂ:j b}’HTJ'IE D=3



Sn:l-l-ving from 6 for one of the square roots and then solving

for the other square root and squaring again, we obtain the
particle in a potential like equation,

4+ Ver(r) =0 (7)

where

(kop)? (kon)?

(8)

s

The expression (8) can also be expressed as

2
Cl Ko
V =1 —
eff (T} (E;mnr - Erﬂ—“)
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The expression (13) allows also a particularly simple solution
for the point where Virr(r) = 0, the point of return of the
bubble, even for ¢y # 0, which is particularly simple for
D = 35, see Fig. 3 since in this case both terms inside the

square are proportional to ;lf 50 we must choose

] KO | Cl K
1 — =1-- — =0 (14
(EH‘UD.F - 2r ) r(ﬂxﬂn * 2 ) (14)

50 that

O K On
= 15
Fim (EEUU + 7 ) [ ]'

S0, we explicitly see that for kog — o0 then . r,, — 0C
regardless of the mass (i.e. ¢1), so infinite tension string gas
shell can describe an expanding shell to infinity being con-
nected by two flat spaces. This feature extends to all dimen-

sions bigger than 4 as well. Finally, Fig. 4 shows the effective
potential for D = 26.



Phenomenological advantages of these
oraneworlds over the traditional ones

e See Limits on the number of spacetime dimensions from GW170817

The observation of GW170817 in both %ravitatio_nal and
electromagnetic waves provides a number of unique tests of general
relativity. One question we can answer with this event is: Do large-
wavelength %rawtatlonal waves and short-frequency photons
experience the same number of spacetime dimensions? In models that
include additional non-compact spacetime dimensions, as the

ravitational waves propagate, they "leak" into the extra dimensions,
eading to a reduction in the amplitude of the observed gravitational
waves, and a commensurate systematic error in the inferred distance
to t?fe gtrac\l/ltatlonal wave source. Electromagnetic waves would remain
unaffected.....


https://inspirehep.net/literature/1650424

Limits based on observation of coalesing
Neutron stars MR G R e e

was the gravitational wave event

A pair of neutron stars
spiralled together and merged.

And the LIGO and Virgo
gravitational wave

observatories detected

the resulting ripples.

merging neutron stars
explode spectacularly.

The resu.lting ki.lon‘ova iS first B Scnrved in August
observed in gravitational waves of 2017, GW170817.

and then as a gamma ray burst.
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Consider branes, in the standard approach
(not dynamical string tension approach!)

branes

There are these theoretical
objects called branes.




there, gauge interactions live in a 3- brane

including all of the fundamental
forces besides gravity,

would be restricted
to the 3-brane.




We obtain

|
DN—l

Intensity

for example, the usual

inverse square law for light. N = number of spatial dimensions




On some spatial scales, you

: But on other spatial
even get the inverse square law Scales, graVity can behave very differenﬂy

for gravity. -
If gravity spreads out in four
dimensions rather than three,

Well, here's where
we finally get back to our gravitational waves. [f the gravitational into this hypothetical

then gravitational
waves should lose energy

R i T they travel through space. how much intensity




A super convenient propertylis that you can figure this out! namely, the masses of
of gravitational waves

o

and the frequency gwith our independent
of the wave combined’ distance measurement

however

5 pe——
e SHOES H,,

The gravitational wave lost
the right amount of intensity

for a 3-plus-1-dimensional
space-time. |

There was no observable
Iea kage Of gravi‘ty Figure 1. Posterior probability distribution for the number

of spacetime dimensions, D), using the GW distance poste-
rior to GWI1T0817 and the measured Hubble velocity to its
host galaxy, NGC 4993, assuming the Hy measurements from
\{:llll]\!ll: o6 grav, waves Planck Collaboration et al. (2016) (blue curve) and Riess
et al. (2016) (green curve). The dashed lines show the sym-
metric 90% credible intervals. The equivalent constraints on
dimensions (J space +4 | time) the damping factor, «, are shown on the top axis. GW1T0817
constrains [J to be very close to the GR value of ) = 4 space-
time dimensions, denoted by the solid black line.

D

points to 4 spacetime




The asymmetry in the propagation ot gravity as
compared to light , in braneworlds with large extra
dimensions is disproved by the observations (RS2)

RS1 with two branes ok, but one brane tension <0

BUT OUR BRANEWORLDS INDUCED BY VARIABLE STRING TENSIONS ARE
FREE OF THIS PROBLEM!, WHY?,

* Because we confine EVERYTHING, both gravity, that arises from the closed
strings and gauge interactions which ori%inates from open strings. Both the
open and closed strings are constrained between two very closed
ex%alndhing surfaces, this mechanism avoids any asymmetry between gravity
and light-

* We can still have a combination of the standard brane scenario and the
dynamical string tension branes, where the dynamical string tension
prevents the propagation of gravity to deep into the extra dimension.

* The hyperbolic motion also induces a deSitter space in the brane,
explaining also DE.



Life of the homogeneous and isotropic universe
in dynamical string tension theories, E.I.
Guendelman, Eur.Phys.J.C 82 (2022) 10, 857

The homogeneous and isotropic universe in dynamical string tension
theories

We now consider the case when a* is not light like and we will find that for a® # 0,
irrespective of sign, i.e. irrespective of whether a* is space like or time like, we will have thick
braneworlds where strings can be constrained between two concentric spherically symmetric
bouncing higher dimensional spheres and where the distance between these two concentric
spherically symmetric bouncing higher dimensional spheres approaches zero at large times.

The string tensions of the strings one and two are given by

(Ty — T1)(1 + 2a,2* + a®z?)?
(1+2a,z* +a’z?)? -1
(T, — T,)(1 + 2a,2% + a*2)?
- (2a,z* + a?22?)(2 + 2a,z* + a%x?)

E¢+T1 =

(T2 —T)
(1+2a,z" +a’z?)? — 1
_ (> —T)
 (2a,2* 4 a222)(2 + 2a, 2" + a2x2)

E(ﬁ—I—TQ =

Let us by consider the case where a* is time like, then without loosing generality we can take

A oA RAn



a* = (A,0,0,...,0). Now, In order to get homogeneous and isotropic cosmological solutions

(T:Tl} = K, where

K is a constant. In that case the spatial dependence in the tensions (37) and (38) drops out and

we must consider the limit A — 0 and (75 — 7T;) — 0, in such a way that

we get,

K
e¢+T1:e¢—|—Tg:a (39)

The embedding metric can now be solved.

__ - o _
gﬂ!-"'_ (e.(;ﬁ)—'—Tl)g#y - K'??_U.Lﬂ' {40)

which is not a vacuum metric, as opposed to 7, because of the conformal factor %.

Life of the homogeneous and isotropic universe and emergence of a
braneworld at large times

One should notice that the homogeneous and isotropic solution has been obtained only in the
(T,—T)
A
and Ty — T; are small but finite, then for large times, of the order of 1/A. We can formulate

limit A — 0 and (75 — T}) — 0, in such a way that

— K, where K is a constant. If A

this as an uncertainty principle,



(Ty — T1 ) At =~ constant (41)

where we have used that A is of the order of (T, — T} ). So a small uncertainty in the tension
(T, — T;) leads to a long lived homogeneous and isotropic phase, while a big uncertainty in

the tension (7 — T3 ) leads to short lived homogeneous and isotropic phase.

In fact in these situations, for finite (75, — 7)) and A4, it is the case that the string tensions can
only whange sign by going first to infinity and then come back from minus infinity. We can
now recognize at those large times the locations where the string tensions go to infinity, which

are determined by the conditions

2a,z" + a’z® =0 (42)
or
2+ 2a,2" 4+ a’z® =0 (43)

Let us start by considering the case where a* is time like, then without loosing generality we

can take a* = (4,0,0,...,0). In this case the denominator in (37) , (38) is

(2a,2" + a’z*)(2 + 2a,2" + a*z?)

— (24t + A2(t2 — 22))(2 + 24t + A2 (#2 — z?)) (44)



The condition (42), if A # 0 implies then that

2
1
NI (HE) __ L (45)

if A — 0, it is more convenient to write this in the form

A@® vzl + 22 . 22 ) At —2t=0 (46)

which for the limit A — 0 gives us the single singular point ¢ = 0, which is the origin of the

homogeneous and isotropic cosmological solution.

The other boundary of infinite string tensions is, (43) is given by,

2
1 1
mf+m§+m§...+m%_l—(t+z) - — 47)
This has no limit for A — 0, all these points disappear from the physical space (they go to
infinity).

For A # 0 we see that (47) represents an exterior boundary which has an bouncing motion

with a minimum radius % att = — % ;

bubbles. So for 75 — T} positive the tensions are positive and diverge at the boundaries

defined above.

The denominator (44,) is positive between these two



2

The internal boundary (45) exists only for times t smaller than — = and bigger than o, so in

A
the time interval (—%, 0) there is no inner surface of infinite tension strings. This inner
surface collapses to zero radius at t = —% and emerges again from zero radius at t = 0.

For large positive or negative times, the difference between the upper radius and the lower

radius goes to zero as t — 00

1 1)° 1 1\> 1
(e L) = () o — S0 48
\/A2+(+A) \/A2+(+A) Az 2

of course the same holds ¢ — —o0. This means that for very large early or late times the

segment where the strings would be confined (since they will avoid having infinite tension)
will be very narrow and the resulting scenario will be that of a brane world for late or early

times, while in the bouncing region the inner surface does not exist. We can ignore the part of

the solution where ¢t < — % and instead take ¢ = 0 as the origin of the Universe and only

consider positive values of cosmic time because the part of the solution with ¢ < — % is
disconnected, at least at the classical level from the part of the solution with positive cosmic

time.

We see then that for the exact limit of AT — 0 and A — 0 we get a perfect homogeneous and

isotropic cosmology, but as AT and A are deformed to be small but finite, the scenario is



Discussion: motivations, AT from quantum fluctuations, braneworld
creation and decoherence

The approach we want to promote in this paper is to formulate first of all the dynamical
tension theories where each string can have its own tension. The string interactions are usually
formulated for strings of the same tension, in dynamical string tension this may not be an
obstacle if the string tensions are close enough, so that quantum fluctuations of the string
tension will make possible interactions. This is then a good motivation to consider the
dispersion of the tension parametrized by AT in the string ensemble to be very small, in fact

we consider solutions where this dispersion goes to zero, AT — 0.
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