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Êîñìîëîãè÷åñêèå ðåøåíèÿ èçó÷àþòñÿ â êîíòåêñòå ìîäèôèöèðîâàííîé
ôîðìóëèðîâêè ìåðû òåîðèè ñòðóí, òîãäà íàòÿæåíèå ñòðóíû ÿâëÿåòñÿ
äèíàìè÷åñêîé ïåðåìåííîé, à íàòÿæåíèå ñòðóíû ÿâëÿåòñÿ äîïîëíèòåëüíîé
äèíàìè÷åñêîé ñòåïåíüþ ñâîáîäû, è åå çíà÷åíèå ãåíåðèðóåòñÿ äèíàìè÷åñêè.
Â ýòîì ñëó÷àå íàòÿæåíèÿ íå ÿâëÿþòñÿ óíèâåðñàëüíûìè, êàæäàÿ ñòðóíà
ñîçäàåò ñâîå ñîáñòâåííîå íàòÿæåíèå, êîòîðîå ìîæåò èìåòü ðàçíîå çíà÷åíèå äëÿ
êàæäîãî èç ìèðîâûõ ëèñòîâ ñòðóí, à â àíñàìáëå ñòðóí çíà÷åíèÿ íàòÿæåíèÿ
ìîãóò èìåòü îïðåäåëåííóþ äèñïåðñèþ. Ìû ðàññìàòðèâàåì íîâîå ôîíîâîå
ïîëå, êîòîðîå ìîæåò ñâÿçûâàòüñÿ ñ ýòèìè ñòðóíàìè, ¾ñêàëÿð íàòÿæåíèÿ¿,
êîòîðûé ñïîñîáåí ëîêàëüíî èçìåíÿòüñÿ âäîëü ìèðîâîãî ëèñòà, è òîãäà
ñîîòâåòñòâåííî èçìåíÿåòñÿ çíà÷åíèå íàòÿæåíèÿ ñòðóíû.

Êîãäà ðàññìàòðèâàåòñÿ ìíîæåñòâî òèïîâ ñòðóí, èññëåäóþùèõ îäíó è òó æå
îáëàñòü ïðîñòðàíñòâà, ýòîò ñêàëÿð íàòÿæåíèÿ îãðàíè÷èâàåòñÿ òðåáîâàíèåì
êâàíòîâîé êîíôîðìíîé èíâàðèàíòíîñòè. Äëÿ ñëó÷àÿ äâóõ òèïîâ ñòðóí,
çîíäèðóþùèõ îäíó è òó æå îáëàñòü ïðîñòðàíñòâà ñ ðàçíûì äèíàìè÷åñêè
ãåíåðèðóåìûì íàòÿæåíèåì, ñóùåñòâóþò äâå ðàçíûå ìåòðèêè, ñâÿçàííûå
ñ ðàçíûìè ñòðóíàìè. Êàæäàÿ èç ýòèõ ìåòðèê äîëæíà óäîâëåòâîðÿòü
âàêóóìíûì óðàâíåíèÿì Ýéíøòåéíà, è ñîãëàñîâàííîñòü ýòèõ äâóõ óðàâíåíèé
Ýéíøòåéíà îïðåäåëÿåò ñêàëÿð íàòÿæåíèÿ. Óíèâåðñàëüíàÿ ìåòðèêà, îáùàÿ
äëÿ îáåèõ ñòðóí, â îáùåì ñëó÷àå íå óäîâëåòâîðÿåò óðàâíåíèþ Ýéíøòåéíà.
Çäåñü ðàññìàòðèâàþòñÿ äâå ìåòðèêè, çàâèñÿùèå îò ñòðóí, � ýòî ïëîñêîå
ïðîñòðàíñòâî â ïðîñòðàíñòâå Ìèíêîâñêîãî è ïðîñòðàíñòâî Ìèíêîâñêîãî ïîñëå
ñïåöèàëüíîãî êîíôîðìíîãî ïðåîáðàçîâàíèÿ. Èññëåäóåòñÿ ïðåäåë, ïðè êîòîðîì
íàòÿæåíèå äâóõ ñòðóí îäèíàêîâî, è ýòî ïðèâîäèò ê ÷åòêî îïðåäåëåííîìó
ðåøåíèþ. Åñëè ðàçíîñòü íàòÿæåíèÿ ñòðóí ìåæäó äâóìÿ òèïàìè ñòðóí î÷åíü
ìàëà, íî êîíå÷íà, ïðèáëèçèòåëüíî îäíîðîäíîå è èçîòðîïíîå êîñìîëîãè÷åñêîå
ðåøåíèå ñîõðàíÿåòñÿ äîëãîå âðåìÿ, îáðàòíî ïðîïîðöèîíàëüíîå ðàçíîñòè
íàòÿæåíèé ñòðóí, è òîãäà îäíîðîäíîñòü è èçîòðîïíîñòü êîñìîëîãèè èñ÷åçàåò è
ðåøåíèå ïðåâðàùàåòñÿ â ðàñøèðÿþùèéñÿ ìèð áðàíû, ãäå ñòðóíû çàêëþ÷åíû
ìåæäó äâóìÿ ðàñøèðÿþùèìèñÿ ïóçûðÿìè, ðàçäåëåííûìè î÷åíü íåáîëüøèì
ðàññòîÿíèåì íà áîëüøèõ âðåìåíàõ.

Cosmological solutions are studied in the context of the modi�ed measure for-
mulation of string theory , then the string tension is a dynamical variable and the
string the tension is an additional dynamical degree of freedom and its value is
dynamically generated. These tensions are then not universal, rather each string
generates its own tension which can have a di�erent value for each of the string
world sheets and in an ensemble of strings the values of the tensions can have a
certain dispersion. We consider a new background �eld that can couple to these
strings, the ¨tension scalar¨ which is capable of changing locally along the world
sheet and then the value of the tension of the string changes accordingly.

When many types of strings probing the same region of space are considered this
tension scalar is constrained by the requirement of quantum conformal invariance.
For the case of two types of strings probing the same region of space with di�erent
dynamically generated tensions, there are two di�erent metrics, associated to the
di�erent strings. Each of these metrics have to satisfy vacuum Einstein´s equa-
tions and the consistency of these two Einstein´s equations determine the tension
scalar. The universal metric, common to both strings generically does not satisfy
Einstein´s equation . The two string dependent metrics considered here are �at
space in Minkowski space and Minkowski space after a special conformal transfor-
mation. The limit where the two string tensions are the same is studied, it leads
to a well de�ned solution. If the string tension di�erence between the two types of
strings is very small but �nite, the approximately homogeneous and isotropic cos-
mological solution lasts for a long time, inversely proportional to the string tension
di�erence and then the homogeneity and isotropy of the cosmology disappears and
the solution turns into an expanding Braneworld where the strings are con�ned
between two expanding bubbles separated by a very small distance at large times.
PACS: 44.25.+f; 44.90.+c

The Modi�ed Measure Theory String Theory

The standard world sheet string sigma-model action using a world sheet
metric is [1], [2], [3]
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Ssigma−model = −T

∫
d2σ

1

2

√
−γγab∂aX

µ∂bX
νgµν . (1)

Here γab is the intrinsic Riemannian metric on the 2-dimensional string
worldsheet and γ = det(γab); gµν denotes the Riemannian metric on the em-
bedding spacetime. T is a string tension, a dimension full scale introduced
into the theory by hand.

Now instead of using the measure
√
−γ , on the 2-dimensional world-

sheet, in the framework of this theory two additional worldsheet scalar �elds
φi(i = 1, 2) are considered. A new measure density is introduced:

Φ(φ) =
1

2
ϵijϵ

ab∂aφ
i∂bφ

j. (2)

There are no limitations on employing any other measure of integration
di�erent than

√
−γ. The only restriction is that it must be a density under

arbitrary di�eomorphisms (reparametrizations) on the underlying spacetime
manifold. Then the modi�ed bosonic string action is (as formulated �rst
in [4] and latter discussed and generalized also in [5])

S = −
∫

d2σΦ(φ)(
1

2
γab∂aX

µ∂bX
νgµν −

ϵab

2
√
−γ

Fab(A)), (3)

where Fab is the �eld-strength of an auxiliary Abelian gauge �eld Aa:
Fab = ∂aAb − ∂bAa. To check that the new action is consistent with the
sigma-model one, let us derive the equations of motion of the action (3).
The variation with respect to φi leads to the following equations of motion:

ϵab∂bφ
i∂a(γ

cd∂cX
µ∂dX

νgµν −
ϵcd√
−γ

Fcd) = 0. (4)

since det(ϵab∂bφ
i) = Φ, assuming a non degenerate case (Φ ̸= 0), we

obtain,

γcd∂cX
µ∂dX

νgµν −
ϵcd√
−γ

Fcd = M = const. (5)

The equations of motion with respect to γab are

Tab = ∂aX
µ∂bX

νgµν −
1

2
γab

ϵcd√
−γ

Fcd = 0. (6)

One can see that these equations are the same as in the sigma-model
formulation . Taking the trace of (6) we get that M = 0. By solving ϵcd√

−γ
Fcd

from (5) (with M = 0) we obtain the standard string eqs. The emergence of
the string tension is obtained by varying the action with respect to Aa:

ϵab∂b(
Φ(φ)√
−γ

) = 0. (7)
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Then by integrating and comparing it with the standard action it is seen
that

Φ(φ)√
−γ

= T. (8)

That is how the string tension T is derived as a world sheet constant of
integration opposite to the standard equation (1) where the tension is put ad
hoc. Let us stress that the modi�ed measure string theory action does not
have any ad hoc fundamental scale parameters. associated with it. This can
be generalized to incorporate super symmetry, see for example [5], [6], [7]
, [8]. For other mechanisms for dynamical string tension generation from
added string world sheet �elds, see for example [9] and [10]. However the
fact that this string tension generation is a world sheet e�ect and not a
universal uniform string tension generation e�ect for all strings has not been
su�ciently emphasized before. Notice that Each String in its own world
sheet determines its own tension. Therefore the tension is not universal for
all strings.

Introducing Background Fields including a New Background Field, The
Tension Field

Schwinger [11] had an important insight and understood that all the
information concerning a �eld theory can be studied by understanding how
it reacts to sources of di�erent types. This has been discussed in the text
book by Polchinski for example [12] . Then the target space metric and
other external �elds acquire dynamics which is enforced by the requirement
of zero beta functions. However, in addition to the traditional background
�elds usually considered in conventional string theory, one may consider as
well an additional scalar �eld that induces currents in the string world sheet
and since the current couples to the world sheet gauge �elds, this produces
a dynamical tension controlled by the external scalar �eld as shown at the
classical level in [13]. In the next two subsections we will study how this
comes about in two steps, �rst we introduce world sheet currents that couple
to the internal gauge �elds in Strings and Branes and second we de�ne a
coupling to an external scalar �eld by de�ning a world sheet currents that
couple to the internal gauge �elds in Strings that is induced by such external
scalar �eld.

Introducing world sheet currents that couple to the internal gauge �elds
If to the action of the string we add a coupling to a world-sheet current ja,
i.e. a term

Scurrent =

∫
d2σAaj

a, (9)

then the variation of the total action with respect to Aa gives

ϵab∂a

(
Φ√
−γ

)
= jb. (10)
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We thus see indeed that, in this case, the dynamical character of the brane
is crucial here.

How a world sheet current can naturally be induced by a bulk scalar �eld,
the Tension FieldSuppose that we have an external scalar �eld ϕ(xµ) de�ned
in the bulk. From this �eld we can de�ne the induced conserved world-sheet
current

jb = e∂µϕ
∂Xµ

∂σa
ϵab ≡ e∂aϕϵ

ab, (11)

where e is some coupling constant. The interaction of this current with the
world sheet gauge �eld is also invariant under local gauge transformations in
the world sheet of the gauge �elds Aa → Aa + ∂aλ.

For this case, (10) can be integrated to obtain

T =
Φ√
−γ

= eϕ+ Ti, (12)

or equivalently

Φ =
√
−γ(eϕ+ Ti), (13)

The constant of integration Ti may vary from one string to the other.
Notice that the interaction is metric independent since the internal gauge �eld
does not transform under the the conformal transformations. This interaction
does not therefore spoil the world sheet conformal transformation invariance
in the case the �eld ϕ does not transform under this transformation. One may
interpret (13 ) as the result of integrating out classically (through integration
of equations of motion) or quantummechanically (by functional integration of
the internal gauge �eld, respecting the boundary condition that characterizes
the constant of integration Ti for a given string ). Then replacing Φ =√
−γ(eϕ + Ti) back into the remaining terms in the action gives a correct

e�ective action for each string. Each string is going to be quantized with each
one having a di�erent Ti. The consequences of an independent quantization
of many strings with di�erent Ti covering the same region of space time will
be studied in the next section.

The Tension �eld from World Sheet Quantum Conformal Invariance

The case of two di�erent string tensionsIf we have a scalar �eld coupled to
a string or a brane in the way described in the sub section above, i.e. through
the current induced by the scalar �eld in the extended object, according to
eq. (13), so we have two sources for the variability of the tension when going
from one string to the other: one is the integration constant Ti which varies
from string to string and the other the local value of the scalar �eld, which
produces also variations of the tension even within the string or brane world
sheet. As we discussed in the previous section, we can incorporate the result
of the tension as a function of scalar �eld ϕ, given as eϕ + Ti, for a string
with the constant of integration Ti by de�ning the action that produces the
correct equations of motion for such string, adding also other background
�elds, the anti symmetric two index �eld Aµν that couples to ϵab∂aX

µ∂bX
ν
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and the dilaton �eld φ .

Si = −
∫

d2σ(eϕ+ Ti)
1

2

√
−γγab∂aX

µ∂bX
νgµν +

+

∫
d2σAµνϵ

ab∂aX
µ∂bX

ν +

∫
d2σ

√
−γφR. (14)

Notice that if we had just one string, or if all strings will have the same
constant of integration Ti = T0. We will take cases where the dilaton �eld
is a constant or zero, and the antisymmetric two index tensor �eld is pure
gauge or zero, then the demand of conformal invariance for D = 26 becomes
the demand that all the metrics

giµν = (eϕ+ Ti)gµν (15)

will satisfy simultaneously the vacuum Einstein´s equations. The interesting
case to consider is when there are many strings with di�erent Ti, let us
consider the simplest case of two strings, labeled 1 and 2 with T1 ̸= T2 ,
then we will have two Einstein´s equations, for g1µν = (eϕ + T1)gµν and for
g2µν = (eϕ+ T2)gµν ,

Rµν(g
1
αβ) = 0 (16)

and , at the same time,

Rµν(g
2
αβ) = 0 (17)

These two simultaneous conditions above impose a constraint on the ten-
sion �eld ϕ, because the metrics g1αβ and g2αβ are conformally related, but
Einstein´s equations are not conformally invariant, so the condition that
Einstein´s equations hold for both g1αβ and g2αβ is highly non trivial. Then
for these situations, we have,

eϕ+ T1 = Ω2(eϕ+ T2) (18)

which leads to a solution for eϕ

eϕ =
Ω2T2 − T1

1− Ω2
(19)

which leads to the tensions of the di�erent strings to be

eϕ+ T1 =
Ω2(T2 − T1)

1− Ω2
(20)

and

eϕ+ T2 =
(T2 − T1)

1− Ω2
(21)

Both tensions can be taken as positive if T2−T1 is positive and Ω2 is also
positive and less than 1.
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Flat space in Minkowski coordinates and �at space after a special confor-

mal transformationThe �at spacetime in Minkowski coordinates is,

ds21 = ηαβdx
αdxβ (22)

where ηαβ is the standard Minkowski metric, with η00 = 1, η0i = 0 and
ηij = −δij. This is of course a solution of the vacuum Einstein´s equations.

We now consider the conformally transformed metric

ds22 = Ω(x)2ηαβdx
αdxβ (23)

where conformal factor coincides with that obtained from the special confor-
mal transformation

x′µ =
(xµ + aµx2)

(1 + 2aνxν + a2x2)
(24)

for a certain D vector aν . which gives Ω2 = 1
(1+2aµxµ+a2x2)2

In summary, we

have two solutions for the Einstein´s equations, g1αβ = ηαβ and

g2αβ = Ω2ηαβ =
1

(1 + 2aµxµ + a2x2)2
ηαβ (25)

We can then study the evolution of the tensions using Ω2 = 1
(1+2aµxµ+a2x2)2

.

We will consider the cases where a2 ̸= 0.

The homogeneous and isotropic Universe in Dynamical String Tension
Theories

We now consider the case when aµ is not light like and we will �nd that for
a2 ̸= 0, irrespective of sign, i.e. irrespective of whether aµ is space like or time
like, we will have thick Braneworlds where strings can be constrained between
two concentric spherically symmetric bouncing higher dimensional spheres
and where the distance between these two concentric spherically symmetric
bouncing higher dimensional spheres approaches zero at large times. The
string tensions of the strings one and two are given by

eϕ+T1 =
(T2 − T1)(1 + 2aµx

µ + a2x2)2

(1 + 2aµxµ + a2x2)2 − 1
=

(T2 − T1)(1 + 2aµx
µ + a2x2)2

(2aµxµ + a2x2)(2 + 2aµxµ + a2x2)
(26)

eϕ+ T2 =
(T2 − T1)

(1 + 2aµxµ + a2x2)2 − 1
=

(T2 − T1)

(2aµxµ + a2x2)(2 + 2aµxµ + a2x2)
(27)

Let us by consider the case where aµ is time like, then without loosing gen-
erality we can take aµ = (A, 0, 0, ..., 0). Now, in order to get homogeneous
and isotropic cosmological solutions we must consider the limit A → 0 and
(T2 − T1) → 0, in such a way that (T2−T1)

A
= K, where K is a constant. In
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that case the spatial dependence in the tensions (26) and (27) drops out and
we get,

eϕ+ T1 = eϕ+ T2 =
K

4t
(28)

The embedding metric can now be solved.

gµν =
1

(eϕ+ T1)
g1µν =

4t

K
ηµν (29)

which is not a vacuum metric, as opposed to ηµν because of the conformal
factor 4t

K
.

Life of the homogeneous and isotropic Universe and emergence of a Braneworld
at large timesOne should notice that the homogeneous and isotropic solution
has been obtained only in the limit A → 0 and (T2 − T1) → 0, in such a way

that (T2−T1)
A

= K, where K is a constant. If A and T2 − T1 are small but
�nite, then for large times, of the order of 1/A. We can formulate this as an
uncertainty principle,

(T2 − T1)∆t ≈ constant (30)

where we have used that A is of the order of (T2−T1). So a small uncertainty
in the tension (T2 − T1) leads to a long lived homogeneous and isotropic
phase, while a big uncertainty in the tension (T2 − T1) leads to short lived
homogeneous and isotropic phase.

In fact in these situations, for �nite (T2 − T1) and A, it is the case that
the string tensions can only change sign by going �rst to in�nity and then
come back from minus in�nity. We can now recognize at those large times
the locations where the string tensions go to in�nity, which are determined
by the conditions

2aµx
µ + a2x2 = 0 (31)

or
2 + 2aµx

µ + a2x2 = 0 (32)

Let us start by considering the case where aµ is time like, then without loosing
generality we can take aµ = (A, 0, 0, ..., 0). In this case the denominator in
(26) , (27) is

(2aµx
µ+a2x2)(2+2aµx

µ+a2x2) = (2At+A2(t2−x2))(2+2At+A2(t2−x2))
(33)

The condition (31), if A ̸= 0 implies then that

x2
1 + x2

2 + x2
3.....+ x2

D−1 − (t+
1

A
)2 = − 1

A2
(34)

if A → 0, it is more convenient to write this in the form

A(x2
1 + x2

2 + x2
3.....+ x2

D−1)− At2 − 2t = 0 (35)

which for the limit A → 0 gives us the single singular point t = 0, which is
the origin of the homogeneous and isotropic cosmological solution.
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The other boundary of in�nite string tensions is, (32) is given by,

x2
1 + x2

2 + x2
3.....+ x2

D−1 − (t+
1

A
)2 =

1

A2
(36)

This has no limit for A → 0, all these points disappear from the physical
space (they go to in�nity).

For A ̸= 0 we see that (36) represents an exterior boundary which has an
bouncing motion with a minimum radius 1

A
at t = − 1

A
, The denominator

(33) is positive between these two bubbles. So for T2−T1 positive the tensions
are positive and diverge at the boundaries de�ned above.

The internal boundary (34) exists only for times t smaller than − 2
A
and

bigger than 0, so in the time interval (− 2
A
, 0) there is no inner surface of

in�nite tension strings. This inner surface collapses to zero radius at t = − 2
A

and emerges again from zero radius at t = 0.
For large positive or negative times, the di�erence between the upper

radius and the lower radius goes to zero as t → ∞√
1

A2
+ (t+

1

A
)2 −

√
− 1

A2
+ (t+

1

A
)2 → 1

tA2
→ 0 (37)

of course the same holds t → −∞. This means that for very large early or
late times the segment where the strings would be con�ned (since they will
avoid having in�nite tension) will be very narrow and the resulting scenario
will be that of a brane world for late or early times, while in the bouncing
region the inner surface does not exist. Notice that this kind of braneworld
scenario is very di�erent to the ones previously studied, in particular both
gravity (closed strings) and gauge �elds (open strings) are treated on the
same footing, since the mechanism that con�nes the strings between the two
surfaces relies only on the string tension becoming very big.

We can ignore the part of the solution where t < − 2
A
and instead take

t = 0 as the origin of the Universe and only consider positive values of cosmic
time because the part of the solution with t < − 2

A
is disconnected, at least

at the classical level from the part of the solution with positive cosmic time.
We see then that for the exact limit of∆T → 0 and A → 0 we get a perfect

homogeneous and isotropic cosmology, but as ∆T and A are deformed to be
small but �nite, the scenario is modi�ed at large times into a braneworld
scenario.
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