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Kocvomoruueckne permernss m3y9aOTCd B KOHTEKCTE MOAMMUIMPOBAHHON
OpPMYJIMPDOBKH Mephl TEOPUU CTPYH, TOI/IA HATSXKEHUE CTPYHBI SBJISIETCS
JUMHAMUYECKON I[ePeMEHHOM, a HATAXKCHHE CTPYHbLI ABJIAETCA JOLOJTHUTE/JILHONR
JUHAMUYECKON CTeleHbl0 CBOOOIbI, W €€ 3HAUEHUE TEHEPUPYETCs JTUHAMUYECKH.
B 9TOM CJayYa€ HATAXKEHUA HE ABJAIOTCA YHUBEPCAJbHBIMU, KazKJIad CTPpyHa
€O3/1aeT CBOE CODCTBEHHOE HATSAXKEHUE, KOTOPOE MOYKET UMETh PA3HOE 3HAUEHUE JIJIs
KaxKa0ro m3 MHUPOBBIX JINCTOB CTPYH, & B chaM6J'Ie CTPYH 3Ha4YE€HUHA HATAKEHUA
MOTYT WMMETh OIPEJIeJIEHHYIO Jucnepcuto. Mbl paccMarpuBaeM HOBoOe (DOHOBOE
moJie, KOTOPpOE€ MOZKET CBA3BIBATHCA C ITUMU CTPYHAMU, <KCKAJAD HATAZKECHUAY,
KOTOPBIH CIOCODEH JIOKAJBHO W3MEHSIThCA BJOJb MHPOBOIO JIHCTA, W TOTJA
COOTBETCTBCHHO U3MEHACTCA 3HAYCHUEC HATAZKCHUA CTPYHDI.

Korna paccmarpuBaeTcs MHOXKECTBO THUIIOB CTPYH, UCCJIEIYIONTUX OJHY U TY YK€
06J1acTh TPOCTPAHCTBA, DTOT CKAJIAP HATIAKEHWS OTPAHMYMBAECTCA TPeDOBAHWEM
KBaHTOBOH KoHMOpMHON wHBapwanTHocTu. Jljas ciayuas AByX THUIOB CTPYH,
BOHAUPYIONINX OAHY U Ty K€ 00JIaCTh MPOCTPAHCTBA C PA3HBIM JUHAMUYECKH
FEHEPUPYEMbIM HATAXKEHUEM, CYIIECTBYIOT [BE pa3Hble METPUKHU, CBI3aHHBIE
C pPa3HbIMM CTPYHAMHU. Kaxpas w3 stmx MeTpwkK I0/KHA YIOBIETBOPATD
BaKYYMHBIM yDAaBHEHUSIM DUHINTENHA, U COTJIACOBAHHOCTH ITUX JBYX yDaBHEHUIT
DitHIITeHA ONpesessteT CKaadp HaTdAXKEHUs. YHUBEpCaabHass METpHUKa, 00Ias
JUId 00enxX CTPYH, B ODIEM cJyduae He YIAOBJIETBOPAET YPABHEHUIO DIHIITEHHA.
3/ech paccMaTpPUBAIOTCS JIBE METPUKW, 3aBUCAIIAE OT CTPYH, — 3TO TLJIOCKOE
MPOCTPAHCTBO B MpOCTpancTBe MUHKOBCKOTO U MPOCTPAHCTBO MUHKOBCKOTO MOCTE
CIIeNMaIbHOTO KOH(MOPMHOTO TpeobpazoBanus. Vccaeayercsa mpemes, mpyu KOTOPOM
HATSKEHUE JIBYX CTPYH OJWHAKOBO, W 3TO TNPUBOIUT K YETKO OIMPEIeIEHHOMY
PereHmnIo. ECJTI/I Pa3HOCTH HATAXKEHUA CTPYH MEXKIAYy ABYMA TUIIAMU CTPYH OYE€HDL
MaJjla, HO KOHEYHA, NPUOJIU3UTENIBHO OJHOPOIHOE U M30TPOIIHOE KOCMOJIOIMYECKOE
pEllleHre COXPAaHHAETCd J0JIN0e BpeMs, OOpaTHO IIPOIOPIUOHAIBHOE PA3HOCTH
HATSKEHUI CTPYH, U TOIJIA OJHOPOJHOCTD ¥ M30TPOITHOCTH KOCMOJIOT MY UCYE3aeT U
pEIleHre MPEBPAIAETCS B PACIIUPSIONIUiicH MUp OpaHbl, IJie CTPYHBI 3aKTI0UEHBI
MeXKAy ABYM{ DACHIUPAIONMIMMUCA ITy3bIPDAMUA, PA3ACJICHHBIMU OY€HbL He6OJIb]_HI/IM
paccrosgHueM Ha O0JIBIINX BpEMEHAX.

Cosmological solutions are studied in the context of the modified measure for-
mulation of string theory , then the string tension is a dynamical variable and the
string the tension is an additional dynamical degree of freedom and its value is
dynamically generated. These tensions are then not universal, rather each string
generates its own tension which can have a different value for each of the string
world sheets and in an ensemble of strings the values of the tensions can have a
certain dispersion. We consider a new background field that can couple to these
strings, the "tension scalar”™ which is capable of changing locally along the world
sheet and then the value of the tension of the string c%anges accordingly.

When many types of strings probing the same region of space are considered this
tension scalar is constrained %y the requirement of quantum conformal invariance.
For the case of two types of strings probing the same region of space with different
dynamically generated tensions, there are two different metrics, associated to the
different strings. Each of these metrics have to satisfy vacuum Einstein “s equa-
tions and the consistency of these two Einstein “s equations determine the tension
scalar. The universal metric, common to both strings generically does not satisfy
Einstein s equation . The two string dependent metrics considered here are flat
space in Minkowski space and Minkowski space after a special conformal transfor-
mation. The limit where the two string tensions are the same is studied, it leads
to a well defined solution. If the string tension difference between the two types of
strings is very small but finite, the approximately homogeneous and isotropic cos-
mological solution lasts for a long time, inversely proportional to the string tension
difference and then the homogeneity and isotropy of the cosmology disappears and
the solution turns into an expanding Braneworld where the strings are confined
between two expanding bubbles separated by a very small distance at large times.

PACS: 44.25.+f; 44.90.+¢

The Modified Measure Theory String Theory

The standard world sheet string sigma-model action using a world sheet
metric is [1], [2], [3]
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Ssigma—model = _T/d20-§ \% _’YvabaaXMabeg;w- (1)

Here 7% is the intrinsic Riemannian metric on the 2-dimensional string
worldsheet and v = det(ya); g, denotes the Riemannian metric on the em-
bedding spacetime. T is a string tension, a dimension full scale introduced
into the theory by hand.

Now instead of using the measure \/—v , on the 2-dimensional world-
sheet, in the framework of this theory two additional worldsheet scalar fields
¢'(i = 1,2) are considered. A new measure density is introduced:

1 . .
(I)(SO) = §€ij€ab3a¢ab90]- (2)

There are no limitations on employing any other measure of integration
different than /—y. The only restriction is that it must be a density under
arbitrary diffeomorphisms (reparametrizations) on the underlying spacetime
manifold. Then the modified bosonic string action is (as formulated first
in [4] and latter discussed and generalized also in [5])

ab
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where Fy; is the field-strength of an auxiliary Abelian gauge field Ag:
Fp = 0,4, — dA,. To check that the new action is consistent with the
sigma-model one, let us derive the equations of motion of the action (3).
The variation with respect to ¢° leads to the following equations of motion:
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since det(e®0yp') = @, assuming a non degenerate case (® # 0), we
obtain,

e“babcpiﬁa(WCdacX“ﬁdX”gW — F.) =0. (4)

’yCdachﬁdX”gMV - F.; = M = const. (5)
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The equations of motion with respect to v* are
Tab = aaX#abeg;w - 1")/(/‘Lbi

2V

One can see that these equations are the same as in the sigma-model
formulation . Taking the trace of (6) we get that M = 0. By solving %ch

Flg=0. (6)

from (5) (with M = 0) we obtain the standard string eqs. The emergence of
the string tension is obtained by varying the action with respect to A,:

eabab(q;%) = 0. (7)



Then by integrating and comparing it with the standard action it is seen
that

o) _ g ®)
Ve
That is how the string tension 7" is derived as a world sheet constant of
integration opposite to the standard equation (1) where the tension is put ad
hoc. Let us stress that the modified measure string theory action does not
have any ad hoc fundamental scale parameters. associated with it. This can
be generalized to incorporate super symmetry, see for example [5], [6], [7]
, [8]. For other mechanisms for dynamical string tension generation from
added string world sheet fields, see for example [9] and [10]. However the
fact that this string tension generation is a world sheet effect and not a
universal uniform string tension generation effect for all strings has not been
sufficiently emphasized before. Notice that Each String in its own world
sheet determines its own tension. Therefore the tension is not universal for
all strings.

Introducing Background Fields including a New Background Field, The
Tension Field

Schwinger [11] had an important insight and understood that all the
information concerning a field theory can be studied by understanding how
it reacts to sources of different types. This has been discussed in the text
book by Polchinski for example [12] . Then the target space metric and
other external fields acquire dynamics which is enforced by the requirement
of zero beta functions. However, in addition to the traditional background
fields usually considered in conventional string theory, one may consider as
well an additional scalar field that induces currents in the string world sheet
and since the current couples to the world sheet gauge fields, this produces
a dynamical tension controlled by the external scalar field as shown at the
classical level in [13]. In the next two subsections we will study how this
comes about in two steps, first we introduce world sheet currents that couple
to the internal gauge fields in Strings and Branes and second we define a
coupling to an external scalar field by defining a world sheet currents that
couple to the internal gauge fields in Strings that is induced by such external
scalar field.

Introducing world sheet currents that couple to the internal gauge fields
If to the action of the string we add a coupling to a world-sheet current j5¢,
i.e. a term

Scurrent = /dzO_Aajav (9)
then the variation of the total action with respect to A, gives
)

€0, (\/?7) = j° (10)



We thus see indeed that, in this case, the dynamical character of the brane
is crucial here.

How a world sheet current can naturally be induced by a bulk scalar field,
the Tension FieldSuppose that we have an external scalar field ¢(z*) defined
in the bulk. From this field we can define the induced conserved world-sheet
current

oXH
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where e is some coupling constant. The interaction of this current with the
world sheet gauge field is also invariant under local gauge transformations in
the world sheet of the gauge fields A, — A, + 9, \.

For this case, (10) can be integrated to obtain

§b = ed, ¢ e = e, pe®, (11)

d
T=—= T, 12
= e + (12)

or equivalently
® =+/=7(e¢ +T), (13)

The constant of integration 7; may vary from one string to the other.
Notice that the interaction is metric independent since the internal gauge field
does not transform under the the conformal transformations. This interaction
does not therefore spoil the world sheet conformal transformation invariance
in the case the field ¢ does not transform under this transformation. One may
interpret (13 ) as the result of integrating out classically (through integration
of equations of motion) or quantum mechanically (by functional integration of
the internal gauge field, respecting the boundary condition that characterizes
the constant of integration T; for a given string ). Then replacing ® =
vV—7(ep + T;) back into the remaining terms in the action gives a correct
effective action for each string. Each string is going to be quantized with each
one having a different 7;. The consequences of an independent quantization
of many strings with different T; covering the same region of space time will
be studied in the next section.

The Tension field from World Sheet Quantum Conformal Invariance

The case of two different string tensionslf we have a scalar field coupled to
a string or a brane in the way described in the sub section above, i.e. through
the current induced by the scalar field in the extended object, according to
eq. (13), so we have two sources for the variability of the tension when going
from one string to the other: one is the integration constant 7; which varies
from string to string and the other the local value of the scalar field, which
produces also variations of the tension even within the string or brane world
sheet. As we discussed in the previous section, we can incorporate the result
of the tension as a function of scalar field ¢, given as e¢ + T;, for a string
with the constant of integration 7; by defining the action that produces the
correct equations of motion for such string, adding also other background
fields, the anti symmetric two index field A4, that couples to €*9,X"9, X"



and the dilaton field ¢ .
1
S; = — /dQU(eqb + Ti)?/ —vvabé)aX“abX”gW +
+/d20AWe“b8aX“6bX”+/dQU\/—vgoR. (14)

Notice that if we had just one string, or if all strings will have the same
constant of integration T; = Ty. We will take cases where the dilaton field
is a constant or zero, and the antisymmetric two index tensor field is pure
gauge or zero, then the demand of conformal invariance for D = 26 becomes
the demand that all the metrics

G = (€& + T1) g (15)

will satisfy simultaneously the vacuum Einstein “s equations. The interesting
case to consider is when there are many strings with different 7;, let us
consider the simplest case of two strings, labeled 1 and 2 with 77 # T, ,
then we will have two Einstein’s equations, for g}w = (e¢ + T')g,m and for

g;zw = (€¢ + T2)g;w>

Ry(9ag) =0 (16)
and , at the same time,
Ryu(9ag) =0 (17)

These two simultaneous conditions above impose a constraint on the ten-
sion field ¢, because the metrics g5 and g3, are conformally related, but
Einstein “s equations are not conformally invariant, so the condition that
Einstein "s equations hold for both g} 5 and g2, is highly non trivial. Then
for these situations, we have,

€§Z§+T1 = Qz(e(b—i—Tg) (18)

which leads to a solution for e¢

O, — Ty
o= T (19)
which leads to the tensions of the different strings to be
0Ty, —Th)
Thn=—"-- 2
€¢ + 1 11— Q2 ( O)
and 1)
2 — 11
co+Te=T—m (21)

Both tensions can be taken as positive if T, — T} is positive and 2 is also
positive and less than 1.



Flat space in Minkowski coordinates and flat space after a special confor-
mal transformationThe flat spacetime in Minkowski coordinates is,

ds? = napdax®da” (22)

where 7,4 is the standard Minkowski metric, with 1y = 1, 7o; = 0 and
1ni; = —0;;. This is of course a solution of the vacuum Einstein s equations.
We now consider the conformally transformed metric

ds2 = Q(z)*nazda™da” (23)

where conformal factor coincides with that obtained from the special confor-

mal transformation
(zH + atx?)

M = 24
(14 2a,2" + a’x?) (24)
for a certain D vector a,. which gives Q2 = m In summary, we
have two solutions for the Einstein’s equations, géﬁ = 7)ap and
2 2 1

1+ 2a,2" 4 a2x?)
We can then study the evolution of the tensions using Q% = W
We will consider the cases where a? # 0.

The homogeneous and isotropic Universe in Dynamical String Tension
Theories

We now consider the case when a* is not light like and we will find that for
a® # 0, irrespective of sign, i.e. irrespective of whether a* is space like or time
like, we will have thick Braneworlds where strings can be constrained between
two concentric spherically symmetric bouncing higher dimensional spheres
and where the distance between these two concentric spherically symmetric
bouncing higher dimensional spheres approaches zero at large times. The
string tensions of the strings one and two are given by

oL T, — (Ty — T1)(1 + 2a,2" + a*x?)? _ (—-T)(A + 20" + a’zr?)?
(1+2a,2* + a?2?)? -1 (2a,2# + a’2?)(2 + 2a,2+ + a’2?)
(26)
P ¢t R (1, - 1))
(1+2a,2* +a%22)2 -1  (2a,2* + a?2?)(2 + 2a,2" + a’2?)
(27)

Let us by consider the case where a* is time like, then without loosing gen-
erality we can take a* = (A,0,0,...,0). Now, in order to get homogeneous
and isotropic cosmological solutions we must consider the limit A — 0 and
(T — T1) — 0, in such a way that (TQ—;TI) = K, where K is a constant. In



that case the spatial dependence in the tensions (26) and (27) drops out and
we get,
K
6¢+T1:€¢+T2:E (28)
The embedding metric can now be solved.

1 4t

= g, = i 29
gl’« (e(b‘i_Tl)g/u/ K77u ( )

which is not a vacuum metric, as opposed to 7, because of the conformal
factor %.
Life of the homogeneous and isotropic Universe and emergence of a Braneworld

at large timesOne should notice that the homogeneous and isotropic solution
has been obtained only in the limit A — 0 and (75 — 7}) — 0, in such a way
that (T2A+T1) = K, where K is a constant. If A and T3 — 17 are small but
finite, then for large times, of the order of 1/A. We can formulate this as an
uncertainty principle,

(Ty — T1) At =~ constant (30)

where we have used that A is of the order of (75 —77). So a small uncertainty
in the tension (75 — T7) leads to a long lived homogeneous and isotropic
phase, while a big uncertainty in the tension (75 — T}) leads to short lived
homogeneous and isotropic phase.

In fact in these situations, for finite (75 — 71) and A, it is the case that
the string tensions can only change sign by going first to infinity and then
come back from minus infinity. We can now recognize at those large times
the locations where the string tensions go to infinity, which are determined
by the conditions

2a,2" + a*r* =0 (31)

or
2 + 2a,2" + a*z® = 0 (32)

Let us start by considering the case where a* is time like, then without loosing
generality we can take a* = (A,0,0,...,0). In this case the denominator in
(26) , (27) is

(2a,2" + a®2?) (24 2a,7" + a®2?) = (24t + A*(t* — 22)) (2 + 24t + A*(£* — 2?))

(33)
The condition (31), if A # 0 implies then that
o+ 22+ T3+ 2 —(15—#1)2——i (34)
1T Ty T Tz D-1 1 2
if A — 0, it is more convenient to write this in the form
A@? + a5+ a3 +a5, ) — A2 =2t =0 (35)

which for the limit A — 0 gives us the single singular point ¢ = 0, which is
the origin of the homogeneous and isotropic cosmological solution.



The other boundary of infinite string tensions is, (32) is given by,

1 1
R N N - +$%—1_(t+2)2:ﬁ
This has no limit for A — 0, all these points disappear from the physical
space (they go to infinity).

For A # 0 we see that (36) represents an exterior boundary which has an
bouncing motion with a minimum radius % at t = —% , The denominator
(33) is positive between these two bubbles. So for T, —T) positive the tensions
are positive and diverge at the boundaries defined above.

The internal boundary (34) exists only for times ¢ smaller than —2 and

A
bigger than 0, so in the time interval (—%,0) there is no inner surface of

infinite tension strings. This inner surface collapses to zero radius at t = —%
and emerges again from zero radius at ¢ = 0.
For large positive or negative times, the difference between the upper

radius and the lower radius goes to zero as t — oo

(36)

1 ERCRIY ERCRINIE
A2+(t+A) \/ +(t+—)2— —0 (37)
of course the same holds t — —oo. This means that for very large early or
late times the segment where the strings would be confined (since they will
avoid having infinite tension) will be very narrow and the resulting scenario
will be that of a brane world for late or early times, while in the bouncing
region the inner surface does not exist. Notice that this kind of braneworld
scenario is very different to the ones previously studied, in particular both
gravity (closed strings) and gauge fields (open strings) are treated on the
same footing, since the mechanism that confines the strings between the two
surfaces relies only on the string tension becoming very big.

We can ignore the part of the solution where t < —% and instead take
t = 0 as the origin of the Universe and only consider positive values of cosmic
time because the part of the solution with ¢ < —% is disconnected, at least
at the classical level from the part of the solution with positive cosmic time.

We see then that for the exact limit of AT — 0 and A — 0 we get a perfect
homogeneous and isotropic cosmology, but as AT and A are deformed to be
small but finite, the scenario is modified at large times into a braneworld
scenario.
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