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Â äàííîé ðàáîòå ðàññìàòðèâàåòñÿ âîçìîæíîñòü ïðåäñòàâëåíèÿ ðÿäîâ
òåîðèè âîçìóùåíèé ðåíîðìèíâàðèàíòíûõ âåëè÷èí â ÊÕÄ â âèäå ðàçëîæåíèÿ

ïî ñòåïåíÿì êîíôîðìíîé àíîìàëèè β(αs)/αs â MS-ñõåìå. Îòìå÷àåòñÿ,
÷òî òàêîå ïðåäñòàâëåíèå âîçìîæíî äëÿ ôóíêöèè Àäëåðà ïðîöåññà
e+e− àííèãèëÿöèè â àäðîíû è êîýôôèöèåíòíîé ôóíêöèè ïðàâèëà
ñóìì Áü¼ðêåíà ãëóáîêîíåóïðóãîãî ðàññåÿíèÿ çàðÿæåííûõ ëåïòîíîâ
íà ïîëÿðèçîâàííûõ íóêëîíàõ, îáå èç êîòîðûõ ñâÿçàíû ñîîòíîøåíèåì
Êðþòåðà�Áðîàäõàðñòà�Êàòàåâà. Ìû èññëåäóåì îáñóæäàåìîå ðàçëîæåíèå
äëÿ êóëîíîâñêîé ÷àñòè ñòàòè÷åñêîãî ïîòåíöèàëà âçàèìîäåéñòâèÿ òÿæ¼ëîé
êâàðê-àíòèêâàðêîâîé ïàðû, åãî ñîîòíîøåíèÿ ñ âåëè÷èíîé, îïðåäåëÿåìîé
óãëîâîé àíîìàëüíîé ðàçìåðíîñòüþ, à òàêæå êîýôôèöèåíòíîé ôóíêöèè
ïðàâèëà ñóìì Áü¼ðêåíà íåéòðèíî-íóêëîííîãî ðàññåÿíèÿ. Â çàêëþ÷åíèè ìû
òàêæå ïðèâîäèì ðåçóëüòàòû ôîðìàëüíîãî ïðèìåíåíèÿ äàííîãî ïîäõîäà ê

íåðåíîðìèíâàðèàíòíîìó îòíîøåíèþ ïîëþñíûõ è áåãóùèõ â MS-ñõåìå ìàññ
òÿæ¼ëûõ êâàðêîâ â ÊÕÄ è ñðàâíèâàåì èõ ñ óæå èçâåñòíûìè â ëèòåðàòóðå.
Îáñóæäàþòñÿ àðãóìåíòû â ïîëüçó ñïðàâåäëèâîñòè ðàññìàòðèâàåìîãî
ïðåäñòàâëåíèÿ äëÿ âñåõ óïîìÿíóòûõ ðåíîðìèíâàðèàíòíûõ âåëè÷èí,
âû÷èñëåííûõ ïî òåîðèè âîçìóùåíèé.

In this work we consider the possibility of representing the perturbative se-
ries for renormalization group invariant quantities in QCD in the form of their

decomposition in powers of the conformal anomaly β(αs)/αs in the MS-scheme.
We remind that such expansion is possible for the Adler function of the process of
e+e− annihilation into hadrons and the coe�cient function of the Bjorken polarized
sum rule for the deep-inelastic electron-nucleon scattering, which are both related
by the Crewther-Broadhurst-Kataev relation. In addition, we study the discussed
decomposition for the static quark-antiquark Coulomb-like potential, its relation
with the quantity de�ned by the cusp anomalous dimension and the coe�cient
function of the Bjorken unpolarized sum rule of neutrino-nucleon scattering. In
conclusion we also present the formal results of applying this approach to the non-

renormalization invariant ratio between the pole and MS-scheme running mass of
heavy quark in QCD and compare them with those already known in the literature.
The arguments in favor of the validity of the considered representation in powers of
β(αs)/αs for all mentioned renorm-invariant perturbative quantities are discussed.

PACS: 11.25.Db, 12.38.-t

1. Preliminaries

A long time ago, R.J. Crewther proved in his work [1] that in the Born ap-
proximation the product of the expressions for the Adler function of the pro-
cess e+e− → γ∗ → hadrons annihilation in massless limit and the coe�cient
function of the Bjorken polarized sum rule of deep-inelastic lepton-nucleon
scattering is proportional to amplitude of π0 → γγ decay, which contains the
number of quark colors Nc. In the normalization of the Adler function by
unity, this product also becomes equal to unity. However, when higher orders
of the perturbation theory (PT) in powers of the running strong coupling
constant αs(Q

2), de�ned in the Euclidean region in the MS-like renormal-
ization scheme, are taken into account, the Crewther relation is modi�ed.
Indeed, starting from O(α2

s) level in the product of the �avor non-singlet
(NS) perturbative contributions to the Adler function DNS(Q

2) and the co-
e�cient function CNS(Q

2) of the Bjorken polarized sum rule instead of unity
an extra term appears. It re�ects the violation of the symmetry with re-
spect to conformal transformations of the triangle Green function, composed
from axial-vector-vector (AVV) quark currents [2, 3]. Application of these
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transformations and the operator product expansion approach to the AVV
diagram enabled Crewther to obtain his original result [1].

In the MS-scheme (and generally speaking in the class of the gauge-
invariant MS-like schemes) at Q2 = µ2 this extra conformal symmetry break-
ing term is proportional to the renormalization group (RG) β-function:

β(M)(as(µ
2)) = µ2∂as(µ

2)

∂µ2
= −

M−1∑
i=0

βia
i+2
s (µ2). (1)

The solution of this RG equation allows to obtain the expression for
as(Q

2) = αs(Q
2)/π in terms of the renormalized strong coupling as(µ

2) =
αs(µ

2)/π depending on the scale µ. The index M ≥ 1 in Eq.(1) is intro-
duced for convenience and throughout this work it will stand for the order of
approximation in which the concrete quantity will be considered. Note here
that one-, two- and three-loop coe�cients of β-function, used by us in this
manuscript, were calculated in [4, 5], [6�8], [9, 10] correspondingly.

For the �rst time the modi�cation form of the Crewther relation in the
perturbative QCD was discovered at M = 3 in [11] and con�rmed at M = 4
later on in [12]. At least at this level its generalization, called now by the
Crewther-Broadhurst-Kataev (CBK) relation, reads

D
(M)
NS (as)C

(M)
NS (as) = 1 +

(
β(M−1)(as)

as

)
K(M−1)(as) +O(aM+1

s ), (2)

where as = as(µ
2 = Q2) and therefore all RG logarithms are nulli�ed.

Thus, in higher orders of PT the radiative corrections violates the simple
Crewther identity and leads to the factorization of the conformal anomaly
term β(as)/as in Eq.(2). Vice versa, in the conformal-invariant limit [2, 3]
(and in the scale-invariant one in particular) the β-function is vanished and
the simple Crewther identity is restored.

The conformal symmetry breaking (CSB) term in the right side of Eq.(2)
contains the �avor nf -dependent coe�cient functionK(M−1)(as), which is the
(M − 1)-degree polynomial in as. The explicit expressions for this function
were obtained at M = 3 in [11] and at M = 4 in [12].

One should mention that as was recently shown in Ref. [13] the analog
of the CBK-relation also holds in the extended QCD model with arbitrary
number of fermion representations at M = 4. This fact demonstrates that
the factorization of the β-function in Eq.(2) is not accidental at least at this
level.

At the next stage, it was demonstrated in [14] at M = 3 and in [15] at
M = 4 that in the case of a generic simple gauge group the CSB term can
be represented in the expansion form in powers of the conformal anomaly.
Then, the CBK relation is rewritten as:

D
(M)
NS (as)C

(M)
NS (as) = 1 +

M−1∑
n=1

(
β(M−n)(as)

as

)n

P (M−n)
n (as) +O(aM+1

s ). (3)
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At the 4-loop level the polynomials P
(r)
n (as) in Eq.(3) read:

P (r)
n (as) =

r∑
k=1

P
(r)
n,k a

k
s =

4−n∑
p=1

a p
s

p∑
k=1

P (r)
n [k, p− k]Ck

FC
p−k
A , (4)

where r = 4 − n when M = 4 and CF , CA are the quadratic Casimir op-
erator in the fundamental and adjoint representation of the gauge group
respectively. Coe�cients P

(r)
n,k are de�ned unambiguously [15]. An important

point here is that at this level of PT all dependence on nf in r.h.s. of Eq.(3)
is contained in the coe�cients of the β-function. Thus, in contrast to the
coe�cients of the polynomial K(M−1)(as) in Eq.(2), the terms of P

(r)
n (as) in

Eq.(3) are independent on the number of quark �avors.
The double sum representation (3), (4) for the CSB term motivated the

authors of the work [16] to consider the similar one for the NS contributions
to the Adler function and the coe�cient function of the Bjorken polarized
sum rule at least at the analytically available O(a4s) level. For instance, ac-
cording to this paper at M = 4 the PT expression for the NS Adler function,
calculated in the MS-scheme for the non-abelian gauge theory with a simple
compact Lie group, may be presented in the following form:

D
(M)
NS (as) = 1 +D

(M)
0 (as) +

M−1∑
n=1

(
β(M−n)(as)

as

)n

D(M−n)
n (as), (5)

where polynomials D
(r)
n (as) in the coupling constant as are:

D(r)
n (as) =

r∑
k=1

D
(r)
n,ka

k
s . (6)

In a more detailed form Eq.(5) may be written down as:

D
(M=4)
NS (as) = 1 +D

(4)
0,1as +

(
D

(4)
0,2 − β0D

(3)
1,1

)
a2s +

(
D

(4)
0,3 − β0D

(3)
1,2 (7)

− β1D
(3)
1,1 + β2

0D
(2)
2,1

)
a3s +

(
D

(4)
0,4 − β0D

(3)
1,3 − β1D

(3)
1,2 − β2D

(3)
1,1

+ β2
0D

(2)
2,2 + 2β0β1D

(2)
2,1 − β3

0D
(1)
3,1

)
a4s,

where at the �xed number of n and k, D
(r)
n,k ≡ D

(r+1)
n,k ≡ D

(r+2)
n,k ≡ . . . , e.g.

the terms D
(2)
1,2 ≡ D

(3)
1,2.

The coe�cients D
(r)
n,k including in Eq.(7) are determined by an unam-

biguous way as solutions of a system of linear equations, analogous to those
presented in [15]. Herewith, the full dependence on nf (except for the light-
by-light scattering e�ects � see explanations below) is absorbed into the co-
e�cients of β-function and their combinations (7). For the �rst time at the

four-loop level the values of D
(r)
n,k were obtained in Ref. [16]. It is clear that
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the representation (5) and its counterpart for the coe�cient function of the
Bjorken polarized sum rule is a su�cient condition for the validity of the
generalized Crewther relation in the form of Eq.(3).

Note here two interesting facts. First of them is that the representation
(5), whose detailed form at the O(a4s) level is given in Eq.(7), is in full
agreement with its {β}-expansion structure proposed in Ref. [17] much earlier
than this expansion in powers of conformal anomaly. Indeed, accordingly to
this work the coe�cients dM (1 ≤M ≤ 4) of the NS Adler function

D
(M=4)
NS (as) = 1 + d1as + d2a

2
s + d3a

3
s + d4a

4
s (8)

may be decomposed into the coe�cients of the β-function and have the fol-
lowing form:

d1 = d1[0], (9a)

d2 = β0d2[1] + d2[0], (9b)

d3 = β2
0d3[2] + β1d3[0, 1] + β0d3[1] + d3[0], (9c)

d4 = β3
0d4[3] + β1β0d4[1, 1] + β2d4[0, 0, 1] + β2

0d4[2] + β1d4[0, 1] (9d)

+ β0d4[1] + d4[0].

Relations (9a-9d) are in full compliance with representation (7).
The second interesting fact lies in observation that certain β-dependent

terms D
(r)
n,k in (7) coincide in di�erent orders of PT. For instance, D

(3)
1,1 term

is the same for β0a
2
s, β1a

3
s and β2a

4
s contributions. Matching this fact with

results of {β}-expansion (9b-9d), one can obtain the following equalities:

D
(1)
1,1 = −d2[1] = −d3[0, 1] = −d4[0, 0, 1], (10a)

D
(2)
1,2 = −d3[1] = −d4[0, 1], (10b)

D
(1)
2,1 = d3[2] = d4[1, 1]/2. (10c)

The {β}-expansion terms (9a-9d) were obtained in [16] (see also [18],
where the misprints made in [16] were found and several {β}-expanded coef-
�cients of d5 were �xed as well). As a result, the application of Eqs.(10a-10c)
enables to determine all terms of {β}-expansion, except for ones propor-
tional to β0

0 and higher powers of β0 in concrete order of PT. Indeed, all
other terms proportional to higher coe�cients of β-function will be uniquely
�xed from {β}-expansion pattern obtained at the previous order of PT. In
the case, when the coe�cient dM is known explicitly, the terms proportional
to powers of β0 are de�ned unambiguously.

It is worth pointing out that the same relations between some {β}-
dependent terms were also observed and used e.g. in Refs. [19�21] in the
process of application of the Rδ-scheme (or class of the MS-like schemes)
to the study of the {β}-pattern of the perturbative series for di�erent ob-
servables in QCD. As was explained there, the application of the Rδ-scheme
exposes a special degeneracy of the {β}-expanded terms in various orders of
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PT. Now we see that this degeneracy may be clearly understood from the
decomposition of the PT series for physical quantities in powers of β(αs)/αs.

Let us raise the following issue: is this decomposition valid for arbitrary
observables that are not related by the CBK relation? In order to shed light
on this question, we will consider the higher order PT corrections to various
physical quantities and apply to them the {β}-expansion technique in powers
of β(αs)/αs in next sections. Further, we will compare some of our results
with those already known in literature, obtained by independent methods.

2. The case of the static potential

2.1. The expansion in powers of the conformal anomaly
Let us start our consideration from the case of the static interaction po-

tential of the heavy quark and antiquark in QCD in color-singlet state. The
perturbative Coulomb-like part of this quantity is de�ned through the vac-
uum expectation value of the gauge-invariant Wilson loop W [C]:

VQQ̄(r) = − lim
T→∞

1

iT
logW [C] =

∫
d3q⃗

(2π)3
eiq⃗r⃗VQQ̄(q⃗

2), (11)

where W [C] =

⟨0| Tr P̂ exp

(
ig

∮
C

dxµAa
µt

a

)
|0⟩

⟨0| Tr 1 |0⟩
(12)

and q⃗ 2 is the square of the Euclidean three-dimensional momentum, C is
a closed rectangular contour, T and r are the time and three-dimensional
spatial variables, P̂ is the path-ordering operator, Aa

µ is a gluon �eld and ta

are the generators of the Lie algebra of the generic simple gauge group in
fundamental representation. In our study we are primarily interested in the
case of the SU(Nc) gauge color group.

The limit T → ∞ formally leads to q0 → 0 and the square of the Euclidean
four-dimensional transferred momentum Q2 → q⃗ 2. Thus, technically we
carry out the transition from the Euclidean four-dimensional space to its
three-dimensional subspace. The MS-scheme β-function is also considered in
this subspace and the coupling as(q⃗

2) starts to depend on q⃗ 2.
The perturbative expression for the Fourier image VQQ̄(q⃗

2) is known in

analytic form in the MS renormalization scheme at the three-loop level (see
[22,23], [24, 25] and [26,27] respectively). It is written as:

VQQ̄(q⃗
2) = −4πCFαs(q⃗

2)

q⃗ 2

[
1 + a1as(q⃗

2) + a2a
2
s(q⃗

2) (13)

+

(
a3 +

π2C3
AL

8

)
a3s(q⃗

2) +O(a4s)

]
.

Here L = log(µ2/q⃗ 2) and the term π2C3
AL/8 [28] arises due to the infrared

divergences.
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Let us introduce the next notation:

VQQ̄(as(q⃗
2)) = 1 + a1as(q⃗

2) + a2a
2
s(q⃗

2) + a3a
3
s(q⃗

2) +O(a4s). (14)

Following our idea of decomposition of the perturbative coe�cients into
powers of the conformal anomaly, which is valid for the ones of the Adler
function and the coe�cient function of the Bjorken polarized sum rule at least
at M = 4 in QCD, we can write down the expression for VQQ̄(as(q⃗

2 = µ2))
in the M -th order of PT (1 ≤M ≤ 3) in the following form:

V (M)

QQ̄
(as) = 1 + V (M)

0 (as) +
M∑
n=1

(
β(M−n+1)(as)

as

)n

V (M−n+1)
n (as), (15)

where V (M)
0 (as) =

M∑
k=1

V (M)
0,k aks , V (r)

n (as) =
r∑

k=1

V (r)
n,k a

k−1
s . (16)

In a more detailed way, Eq.(15) may be rewritten as:

V (M=3)

QQ̄
(as) = 1 +

(
V (3)
0,1 − β0V

(3)
1,1

)
as +

(
V (3)
0,2 − β0V

(3)
1,2 − β1V

(3)
1,1 (17)

+ β2
0V

(2)
2,1

)
a2s +

(
V (3)
0,3 − β0V

(3)
1,3 − β1V

(3)
1,2 − β2V

(3)
1,1

+ β2
0V

(2)
2,2 + 2β0β1V

(2)
2,1 − β3

0V
(1)
3,1

)
a3s,

where at the �xed numbers n and k, V (r)
n,k ≡ V (r+1)

n,k ≡ V (r+2)
n,k ≡ . . . . As

we have anticipated, the representation (17) is in full agreement with its
{β}-expansion pattern

a1 = β0a1[1] + a1[0], (18a)

a2 = β2
0a2[2] + β1a2[0, 1] + β0a2[1] + a2[0], (18b)

a3 = β3
0a3[3] + β1β0a3[1, 1] + β2a3[0, 0, 1] + β2

0a3[2] + β1a3[0, 1] (18c)

+ β0a3[1] + a3[0].

Moreover, the representation (17) provides us equalities similar to Eqs.(10a-
10c), namely:

a1[1] = a2[0, 1] = a3[0, 0, 1] = −V (1)
1,1 , (19a)

a2[1] = a3[0, 1] = −V (2)
1,2 , (19b)

a2[2] = a3[1, 1]/2 = V (2)
2,1 . (19c)

Using the three-loop explicit analytic results [27] for the static potential
in the perturbative QCD and taking into account Eqs.(19a-19c), we obtain
all terms of {β}-expansion included in Eqs.(18a-18c). The corresponding
results are given in Table 1.
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Group structures Numbers

a1[1] � 5
3

a1[0] CA −2
3

a2[2] � 25
9

a2[1]
CF

35
16

− 3ζ3

CA −217
72

+ 7
2
ζ3

a2[0]
CFCA −385

192
+ 11

4
ζ3

C2
A

133
144

− 11
4
ζ3 +

π2

4
− π4

64

a3[3] � 125
27

a3[2]
CF

5471
288

− 39
2
ζ3

CA −7943
576

+ 69
4
ζ3 +

π4

15

C2
F −571

192
− 19

8
ζ3 +

15
2
ζ5

CFCA −70069
3456

+ 49
2
ζ3 − 15

4
ζ5

a3[1]

C2
A

2491
288

− 309
16
ζ3 − 1091

128
ζ5 − 171

128
ζ23 +

9
4
s6 − 761

53760
π6

+π4

(
9

640
+ 5

192
log 2− 3

64
log2 2

)
+π2

(
− 17

576
+ 19

64
ζ3 +

1
16
log 2 + 21

32
ζ3 log 2 +

3
2
α4

)
C2

FCA
6281
2304

+ 209
96
ζ3 − 55

8
ζ5

CFC
2
A

3709
3456

− 379
96
ζ3 +

55
16
ζ5

a3[0]

C3
A

−19103
27648

+ 181
48
ζ3 +

1431
512

ζ5 +
55
512
ζ23 +

3
16
s6 − 21097

1935360
π6

+π4

(
211

23040
− 15

256
log 2− 61

2304
log2 2

)
+π2

(
− 191

768
+ 841

768
ζ3 − 955

576
log 2 + 203

384
ζ3 log 2 +

5
3
α4

)
dabcdF dabcdF

NA
nf

5
96
π6 + π4

(
− 23

24
+ 1

6
log 2− 1

2
log2 2

)
+π2

(
79
36

− 61
12
ζ3 + log 2 + 21

2
ζ3 log 2

)
dabcdF dabcdA

NA

1511
2880

π6 + π4

(
− 39

16
+ 35

12
log 2 + 31

12
log2 2

)
+π2

(
929
72

− 827
24
ζ3 − 74α4 +

461
6
log 2− 217

4
ζ3 log 2

)
Table 1: All terms in the {β}-expansion of coe�cients a1, a2 and a3.
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Note that there are transcendent numbers α4 = Li4(1/2) + log4 2/4! with
polylogarithmic function Lin(x) =

∑∞
k=1 x

kk−n, s6 = ζ6 + ζ−5,−1 with ζ6 =

π6/945 and multiple zeta value ζ−5,−1 =
∑∞

k=1

∑k−1
i=1 (−1)i+k/ik5 in Table

1. They appear from scalar master-integrals [27], which are di�erent from
those arising in the calculation of corrections to DNS(Q

2) and CNS(Q
2) (see

e.g. [29]).

Excepting two reservations, the presented coe�cients of {β}-expansion
mostly coincide with ones de�ned in [20] by independent way using the Rδ-
scheme approach. The �rst of them lies in the small di�erence between our
rational numbers, highlighted in blue in Table 1, and those found in [20]. In-
deed, instead of coe�cients 5171/288 and −2981/192 ≈ −15.526, contained
in a3[2]-term in Ref. [20], we get slightly di�erent ones, namely 5471/288 and
−7943/576 ≈ −13.789. Instead of the CFCA-term −66769/3456 ≈ −19.320
included in a3[1] in [20], we obtain −70069/3456 ≈ −20.275.

The second clause concerns the light-by-light scattering e�ects, �rst oc-
curring at the three-loop level for the static potential [27]. In our opinion,
despite the nf -dependence of these e�ects, they have to be included in the
scale-invariant coe�cient a3[0]. This fact is re�ected in Table 1 by the in-
corporation of the terms proportional to dabcdF dabcdF nf/NA and dabcdF dabcdA /NA

group structures in this �nf -independent� coe�cient. Here NA is the number
of group generators, dabcdF = Tr(tat{ btctd })/6 and dabcdA = Tr(CaC{ bCcCd })/6,
where the symbol {. . . } stands for the full symmetrization procedure of el-
ements tbtctd by superscripts b, c and d [30, 31]; (Ca)bc = −ifabc are the
generators of the adjoint representation with the antisymmetric structure
constants fabc of the Lie algebra: [ta, tb] = ifabctc. In the particular case of
the SU(Nc) color gauge group the contractions of the symmetric invariant
tensors considered above read:

dabcdF dabcdF

NA

=
N4

c − 6N2
c + 18

96N2
c

,
dabcdF dabcdA

NA

=
Nc(N

2
c + 6)

48
. (20)

Although the term dabcdF dabcdF nf/NA in the correction a3 (14) is propor-
tional to the number of �avors nf , which formally enters the β0-coe�cient,

we will not include it into V (3)
1,3 -coe�cient in Eq.(17), since such rearrange-

ment will not be supported by the QED limit [16, 18]. Indeed, in the QED
limit of the QCD-like theory with the SU(Nc) group d

abcd
F dabcdF /NA = 1 and

nf = N , where N is the number of the charged leptons (structures with dabcdA

are nulli�ed). This term arises from the three-loop Feynman diagram with
light-by-light scattering internal subgraphs (see Fig.1). However, in QED the
sum of these subgraphs are convergent and does not give extra β0-dependent
(or N -dependent) contribution to the coe�cient V (3)

1,3 [16, 18]. Therefore, to
get a smooth transition from the case of SU(Nc) to U(1) gauge group, these
light-by-light scattering terms should be included into the β-independent
coe�cient V (3)

0,3 (or a3[0]) at the three-loop level.

In accordance with the foregoing, at the three-loop level the static Coulomb
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Fig. 1: Light-by-light scattering type diagram in the static potential

potential of QED can be expressed through the invariant charge as:

VQED(q⃗
2) = −4π

q⃗ 2

α(µ2)

1 + ΠQED(L, α(µ2))

(
1 +N · C

(
α(µ2)

π

)3)
+O(α5), (21)

where the MS-scheme photon vacuum polarization function ΠQED(L, α(µ
2))

was calculated in α3 order in Ref. [32]. The constant C originates from the
light-by-light scattering e�ects and may be extracted from the results of
work [27]:

C =
5

96
π6 − π4

(
23

24
− 1

6
log 2 +

1

2
log2 2

)
+ π2

(
79

36
− 61

12
ζ3 + log 2 (22)

+
21

2
ζ3 log 2

)
.

2.2. Special representations of the relation between VQQ̄ and Vcusp

It is interesting to note that there is a quantity Vcusp associated with
the static potential by the relation where, as in the CBK relation, the e�ect
of conformal symmetry breaking is explicitly manifested in the form of the
factorized β-function. This relation was �rst obtained at two-loop level (at
M = 2) in Ref. [33] and reads:

V (M)
cusp (as)− V (M)

QQ̄
(as) =

β(M−1)(as)

as
C(M−1)(as). (23)

Here C(M−1)(as) =
M−1∑
k=1

Cka
k
s with C1 =

47
27
CA − 28

27
TFnf .

In Eq.(23) the function Vcusp(as) is related with the cusp anomalous di-
mension Γ(ϕ, as) of the vacuum expectation value of the Wilson loop W [C̃]
(12), but unlike the case of the static potential, C̃ is now a closed contour
formed by two segments along directions vµ1 and vµ2 with Euclidean cusp an-
gle ϕ: cosϕ = (v1, v2) (see investigations on this topic [33�38] and references
therein).

The quantity logW [C̃] is expressed through the logarithm of the corre-
sponding MS-scheme cusp renormalization constant Zcusp [33�38]:

logW = logZcusp +O(ε0), (24)
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where Zcusp contains the ultraviolet divergences and it is written in terms of
the renormalized coupling constant. In its turn, the cusp anomalous dimen-
sion is de�ned as:

Γ(ϕ, as) =
∂ logZcusp

∂ log µ2
. (25)

The quantity Vcusp(as) is a δ-independent coe�cient function of Γ(ϕ, as)
in the anti-parallel lines limit, i.e. when ϕ = π − δ and δ ≪ 1 [33, 39]:

Γ(π − δ, αs) = −CFαs
Vcusp(αs)

2δ
+O

(
α4
s log δ

δ

)
. (26)

The �rst order corrections to Vcusp(αs) and VQQ̄(αs) coincide [39] and the
di�erences between them are observed only from the second order of PT and
they are proportional to the �rst coe�cient of the RG β-function [33] (see
Eq.(23)).

At M = 3 the convincing arguments in favor of validity of the expression
(23) were given in [35]. Except for the pure non-abelian part proportional to
C2

A-structure, all other terms to coe�cient C2 (proportional to terms T 2
Fn

2
f ,

CFTFnf and CATFnf ) were de�ned there in analytical form.
Since the function Vcusp(αs) has the same dependence on nf and the same

group structures like the quantity VQQ̄(αs), it is obvious that its series of PT
can be decomposed into powers of the conformal anomaly as well:

V (M)
cusp (as) = 1 + V (M)

cusp, 0(as) +
M∑
n=1

(
β(M−n+1)(as)

as

)n

V (M−n+1)
cusp, n (as). (27)

But representation of the functions VQQ̄(αs) and Vcusp(αs) in the form of
double sum (15) and (27) is a su�cient condition for the CSB term in the
di�erence Vcusp(as)−VQQ̄(as) can also be decomposed in powers of β(αs)/αs:

V (M)
cusp (as)− V (M)

QQ̄
(as) =

M∑
n=1

(
β(M−n+1)(as)

as

)n

T (M−n+1)
n (as), (28)

where T (r)
n =

r∑
k=1

T
(r)
n,ka

k−1
s . (29)

One should emphasize that since the �rst order corrections to Vcusp(as)

and to VQQ̄(as) coincide, then T
(1)
1,1 = T

(2)
1,1 = · · · = 0. Taking this fact into

account and using the representation (28) and the results of Refs. [33,35], we
obtain:

V (3)
cusp(as)− V (3)

QQ̄
(as) =

(
− 28

9
β2
0 +

10

9
CAβ0

)
a2s +

(
β3
0

(
2ζ3 −

134

27

)
(30)

+
10

9
CAβ1 − 2 · 28

9
β0β1 + β2

0

(
CF

(
19

2
ζ3 −

1487

96
+
π4

20

)
+ CA

(
1879

144

− 89

12
ζ3 −

π4

8

))
+ β0

(
CFCA

(
16357

1152
− 209

24
ζ3 −

11

240
π4

)
− C2

AT
AA
1,3

))
a3s,
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where TAA
1,3 is the still unknown coe�cient, contained in term T

(3)
1,3 and propor-

tional to C2
A group factor. Its explicit form may be found from the coe�cient

C2 [35], where C
2
A-term CAA

2 was �xed in part. They are related to each other
in the following way: TAA

1,3 = CAA
2 + 86893/15552− 737/144ζ3 − 11/96π4. It

is important to emphasize that the system of linear equations, arising in
process of application of the decomposition into powers of the conformal
anomaly, has a unique solution at any value of TAA

1,3 . This means that the
representation (28) is always possible at least at the three-loop level.

Note that the absence of terms β1a
2
s and β2a

3
s in Eq.(30) is explained by

fact that T
(2)
1,1 = T

(3)
1,1 = 0.

3. The case of the unpolarized Bjorken sum rule

Let us now consider a quantity that, according to current data, is not
included in any of known relations that would re�ect the e�ect of violation
of the conformal symmetry. As an example, we examine the unpolarized
Bjorken sum rule for deep-inelastic neutrino-nucleon scattering [40]. The
detailed theoretical study of this process may be still of interest in view of
its possible investigation from the potential future DIS νN data, which may
be collected at SAND detector (see e.g. [41]) of the DUNE Collaboration.

So, consider the aforementioned unpolarized Bjorken sum rule:

FBjunp(Q
2) =

1∫
0

dx(F ν̄p
1 (x,Q2)− F νp

1 (x,Q2)), (31)

where F
ν̄p (νp)
1 (x,Q2) is the structure function of νN DIS process that arises

in the general decomposition of the hadronic tensor into possible Lorentz
structures. At large Q2 = −q2 the dependence of FBjunp on Q

2 is absorbed
into the coupling constant.

In the Born approximation FBjunp = 1. Deviation from unity is already
observed in the leading order of PT [42]. Analytical two- and three-loop
corrections to the coe�cient function of the unpolarized Bjorken sum rule
in the MS-scheme for the case of the generic simple gauge group were com-
puted in [43] and [44] correspondingly. In particular case of the SU(3) color
group the analytical four-loop correction to FBjunp is known due to the un-
published results [45]. One should mention that the general formula for the
leading renormalon contributions to this considered perturbative quantity
was obtained in [46]. Its predictions are in full agreement with the results of
the papers cited above.

Applying the idea about the representation of the perturbative series for
observables in QCD-like theories with the generic simple gauge group in form
of their decomposition into powers of β(αs)/αs, we obtain that at 1 ≤M ≤ 4
the NS contribution to the Bjorken unpolarized sum rule may be rewritten



13

as:

F
(M)
Bjunp(as) = 1 + F

(M)
0 (as) +

M−1∑
n=1

(
β(M−n)(as)

as

)n

F (M−n)
n (as). (32)

In more detailed form at the four-loop level we have:

F
(M=4)
Bjunp (as) = 1 + F

(4)
0,1 as +

(
F

(4)
0,2 − β0F

(3)
1,1

)
a2s +

(
F

(4)
0,3 − β0F

(3)
1,2 (33)

− β1F
(3)
1,1 + β2

0F
(2)
2,1

)
a3s +

(
F

(4)
0,4 − β0F

(3)
1,3 − β1F

(3)
1,2

− β2F
(3)
1,1 + β2

0F
(2)
2,2 + 2β0β1F

(2)
2,1 − β3

0F
(1)
3,1

)
a4s.

Taking into account the results of Refs. [42�44], one can get:

F0,1 = −CF

2
, F1,1 =

4

3
CF , (34a)

F0,2 =
11

16
C2

F − 1

24
CFCA, F2,1 = −155

36
CF , (34b)

F1,2 =

(
431

96
− 1

2
ζ3

)
C2

F +

(
− 35

144
+

7

2
ζ3 − 5ζ5

)
CFCA, (34c)

F0,3 =

(
− 313

64
− 47

4
ζ3 +

35

2
ζ5

)
C3

F +

(
687

128
+

125

8
ζ3 −

95

4
ζ5

)
C2

FCA (34d)

+

(
− 463

288
− 137

24
ζ3 +

115

2
ζ5

)
CFC

2
A.

Using now the results of four-loop calculations [45] made for particular
case of the SU(3) color gauge group, we arrive to the following expressions:

F3,1 =
1780

81
, F2,2 =

78155

2592
+

87

2
ζ3 + 12ζ23 − 110ζ5, (34e)

F1,3 = −97247

2592
− 61153

648
ζ3 −

965

54
ζ5 +

296

27
ζ23 −

49

4
ζ7 − 6B, (34f)

F0,4 = −8139161

124416
− 308489

1296
ζ3 +

239665

1296
ζ5 −

2927

108
ζ23 +

253757

2592
ζ7 (34g)

− 33

2
B +B · nf ,

where B ∼ dabcdF dabcdF /dR-term is the light-by-light scattering type contribu-
tion to the Bjorken unpolarized sum rule. Note that the nonabelian �avor-
independent correction of this e�ect is already contained in the coe�cient
F0,4. To get expressions (34e-34g) in an analytical form for the case of the
generic simple gauge group, it would be interesting to evaluate the 4-loop
correction to the coe�cient function of the Bjorken unpolarized sum rule for
the generic simple gauge group as well.
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4. Conclusion

The proposed decomposition procedure of the PT series for observables
into powers of the conformal anomaly in QCD allows us not only to reproduce
the known structure of {β}-expansion, but to predict its de�nite terms in
higher orders of PT as well. For instance, application of this technique to the
non-singlet contribution of the coe�cient function of the Bjorken unpolarized
sum rule gives

F
(M=4)
Bjunp (as) = 1 + F

(4)
0,1 as +

(
F

(4)
0,2 − β0F

(3)
1,1

)
a2s +

(
F

(4)
0,3 − β0F

(3)
1,2 − β1F

(3)
1,1

+ β2
0F

(2)
2,1

)
a3s +

(
F

(4)
0,4 − β0F

(3)
1,3 − β1F

(3)
1,2 − β2F

(3)
1,1 + β2

0F
(2)
2,2

+ 2β0β1F
(2)
2,1 − β3

0F
(1)
3,1

)
a4s.

We can see that the knowledge of F
(3)
1,1 -coe�cient of β0-dependent term

in a2s order enables to predict values of β1- and β2-dependent ones in a3s
and a4s orders. In its turn, the knowledge of β0-dependent coe�cient F

(3)
1,2

and β2
0-dependent one F

(2)
2,1 in a3s order gives values of the β1- and β0β1-

dependent coe�cients in a4s order correspondingly. Thus, the utilization of
the expansion in powers of the conformal anomaly allows to determine all
terms of {β}-expansion, except for ones proportional to β0

0 and higher powers
of β0 in concrete order of PT. Indeed, all other terms proportional to higher
coe�cients of β-function will be uniquely �xed from {β}-expansion pattern
obtained at the previous order of PT. In the case, when the correction of the
M -th order to observable quantity is known explicitly, the terms proportional
to powers of β0 may be de�ned unambiguously.

Application of this procedure to the static Coulomb-like potential, to
the relation between it and cusp anomalous dimension in anti-parallel lines
limit and to the Bjorken unpolarized sum rule enables to determine all their
{β}-expanded terms unambiguously. The arguments in favor of validity of
this decomposition in powers of β(as)/as gives not only from Refs. [19�21]
and [47], [18], but also from work [48], where the ratio of the pole mass M
to MS-scheme scale-dependent running m(µ2) mass of the heavy quark was
obtained at the three-loop level analytically. The results of this work were
also presented there in the following numerical form

M

m(m2)
= 1 + 1.333as + (6.248β0 − 3.739)a2s + (23.497β2

0 + 6.248β1 (35)

+ 1.019β0 − 29.94)a3s.

It reproduces the {β}-expansion structure and the relations between its
de�nite coe�cients, which we have obtained within procedure of decomposi-
tion in powers of β(as)/as (see e.g. Eqs.(10a-10c) or (19a-19c)). Indeed, the
coe�cient before β0a

2
s-term is the same as the coe�cient before β1a

3
s-term.
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The same feature we have observed above in the cases of the NS Adler func-
tion, the NS coe�cient functions of the Bjorken polarized and unpolarized
sum rules and the static Coulomb-like potential. However, unlike the previ-
ous cases, the scale dependence of ratioM/m(µ2) is governed now by two RG
functions: β-function and anomalous mass dimension γm. Note one interest-
ing fact. The utilization of the formal {β}-expansion in powers of β(as)/as
of the two- [49,50] and three-loop [51,52] coe�cients of γm-function, namely

γ1 =
5

8
CFβ0 +

3

32
C2

F +
7

16
CFCA, (36a)

γ2 = −35

48
CFβ

2
0 + β0

(
C2

F

(
27

16
− 9

4
ζ3

)
+ CFCA

(
− 679

96
+

9

4
ζ3

))
(36b)

+
5

8
CFβ1 +

129

128
C3

F + C2
FCA

(
− 525

256
+

33

16
ζ3

)
+ CFC

2
A

(
1063

128
− 33

16
ζ3

)
,

and the subsequent substitution of these decompositions into NLO and NNLO
general expressions, given in Ref. [53] and obtained there within the Rδ-
scheme motivated approach, allows us to reproduce the numerical form of
Eq.(35). This �nding may be related to the fact that the QCD trace anomaly
T µ
µ = (β(as)/2as)F

aµνF a
µν + (1 + γm)mψ̄ψ [54�56] contains not only β-term,

but also the anomalous mass dimension γm-term. However, as was noted
in [47], it is necessary to treat with caution to the {β}-expansion of the non-
RG-invariant quantities with other non-zero anomalous dimension functions.
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