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B gammoft pabore paccMaTpmBaeTcs BO3MOXKHOCTH TIPEICTABICHUS PSI0B
TEOPHH BO3MYIIEHUI PeHOPMUHBAPHAHTHLIX Beaunand B KX/ B BHAe pas3/ioxKeHus

no crerensiM KoHdopwmuOl anoManmnu [(as)/as B MS-cxeme.  Ormeduaercs,
9TO TaKoe [peICTaBIeHHe BO3MOXKHO /Ui yHKOMH Ajjepa  1mponecca

ete” ammmrmasTEM B agpoHBl ¥ KodduimenTHO# (YHKINH OpaBHIa
cymMm  DBrépkena  1iyGOKOHEYTIPYrOTO — pacCessiHUS — 3apsi?KEHHBIX  JIEITOHOB
Ha TOJAPU30BAHHBIX HYKJIOHAX, 06e n3 KOTOPBIX CBA3aHBI COOTHOIIICHHNEM
Kpiorepa—Bpoagxapcra—Karaesa. Mbl ncciemyeM o0CyKIaeMoOe Pa3/IOKEHHE
AT KYJOHOBCKOHM YaCTH CTATHYECKOTO MOTEHIHAaIa B3aUMOJAENCTBUS TAKETOHN
KBapK-aHTUKBApPKOBOM IIapbl, €ro COOTHOIICHUHA C BEJIUYHUHON, ONpeae/saeMOoi
YIJIOBOM AHOMAJIBLHON Pa3MePHOCTHIO, a Takxke KoIDPuimenTao GyHKInm
npaBwia cyMM DbépkenHa HeHTPHHO-HYKJIOHHOTO paccesHus. B 3akIIoveHnn MBI
TaKKe TPUBOAUM PE3yJbTATHl (POPMATLHOTO MPUMEHEHUS TaHHOTO TOAX01d K

HEPEHOPMWHBAPUAHTHOMY OTHOIIIEHUIO TIOJIOCHBIX 1 Gerymmx B MS-cxeme macc
TaXKENBIX KBapKOB B KX/ 1 cpaBHmWBaeM WX ¢ yiKe W3BECTHLIMU B JUTEPATyPe.
Ob6cy)matoTcss  apryMeHThl B MOJB3Y  CHPABEITHBOCTH  PACCMATPHUBAEMOTO
npeJcTaBAeHUS JA7d BCeX  YIOMSHYTBIX DPEHOPMUHBAPUAHTHBIX  BEJIUYNH,
BBIYKCJIEHHBIX 10 TEOPUU BO3MYIIIeHU.

In this work we consider the possibility of representing the perturbative se-
ries for renormalization group invariant quantities in QCD in the form of their

decomposition in powers of the conformal anomaly B(as)/as in the MS-scheme.
We remind that such expansion is possible for the Adler function of the process of

ete™ annihilation into hadrons and the coefficient function of the Bjorken polarized
sum rule for the deep-inelastic electron-nucleon scattering, which are both related
by the Crewther-Broadhurst-Kataev relation. In addition, we study the discussed
decomposition for the static quark-antiquark Coulomb-like potential, its relation
with the quantity defined by the cusp anomalous dimension and the coefficient
function of the Bjorken unpolarized sum rule of neutrino-nucleon scattering. In
conclusion we also present the formal results of applying this approach to the non-

renormalization invariant ratio between the pole and MS-scheme running mass of
heavy quark in QCD and compare them with those already known in the literature.
The arguments in favor of the validity of the considered representation in powers of
B(as)/as for all mentioned renorm-invariant perturbative quantities are discussed.

PACS: 11.25.Db, 12.38.-t

1. Preliminaries

A long time ago, R.J. Crewther proved in his work [1] that in the Born ap-
proximation the product of the expressions for the Adler function of the pro-
cess eTe” — v* — hadrons annihilation in massless limit and the coefficient
function of the Bjorken polarized sum rule of deep-inelastic lepton-nucleon
scattering is proportional to amplitude of 7 — v decay, which contains the
number of quark colors N.. In the normalization of the Adler function by
unity, this product also becomes equal to unity. However, when higher orders
of the perturbation theory (PT) in powers of the running strong coupling
constant a,(Q?), defined in the Euclidean region in the MS-like renormal-
ization scheme, are taken into account, the Crewther relation is modified.
Indeed, starting from O(a?) level in the product of the flavor non-singlet
(NS) perturbative contributions to the Adler function Dyg(Q?) and the co-
efficient function Cys(Q?) of the Bjorken polarized sum rule instead of unity
an extra term appears. It reflects the violation of the symmetry with re-
spect to conformal transformations of the triangle Green function, composed
from axial-vector-vector (AVV) quark currents [2,3]. Application of these



transformations and the operator product expansion approach to the AVV
diagram enabled Crewther to obtain his original result [1].

In the MS-scheme (and generally speaking in the class of the gauge-
invariant MS-like schemes) at Q? = p? this extra conformal symmetry break-
ing term is proportional to the renormalization group (RG) S-function:

M-1

-3 a0 (1)

The solution of this RG equation allows to obtain the expression for
as(Q?) = a,(Q?) /7 in terms of the renormalized strong coupling as(u?) =
as(p?)/m depending on the scale p. The index M > 1 in Eq.(1) is intro-
duced for convenience and throughout this work it will stand for the order of
approximation in which the concrete quantity will be considered. Note here
that one-, two- and three-loop coefficients of S-function, used by us in this
manuscript, were calculated in [4,5], [6-8], |9, 10| correspondingly.

For the first time the modification form of the Crewther relation in the
perturbative QCD was discovered at M = 3 in [11]| and confirmed at M = 4
later on in [12]. At least at this level its generalization, called now by the
Crewther-Broadhurst-Kataev (CBK) relation, reads

ﬁ(M_l)(as)

Qs

8a5

B (ay(u?)) = 1

D¢ (a xﬂ”<>=1+( )Aﬂ“”ma+om¥“x @)

where a, = a,(p? = Q%) and therefore all RG logarithms are nullified.

Thus, in higher orders of PT the radiative corrections violates the simple
Crewther identity and leads to the factorization of the conformal anomaly
term [(as)/as in Eq.(2). Vice versa, in the conformal-invariant limit |2, 3]
(and in the scale-invariant one in particular) the S-function is vanished and
the simple Crewther identity is restored.

The conformal symmetry breaking (CSB) term in the right side of Eq.(2)
contains the flavor ns-dependent coefficient function K™~Y(a,), which is the
(M — 1)-degree polynomial in as. The explicit expressions for this function
were obtained at M = 3 in [11] and at M =4 in [12].

One should mention that as was recently shown in Ref. [13] the analog
of the CBK-relation also holds in the extended QCD model with arbitrary
number of fermion representations at M = 4. This fact demonstrates that
the factorization of the S-function in Eq.(2) is not accidental at least at this
level.

At the next stage, it was demonstrated in [14] at M = 3 and in [15] at
M = 4 that in the case of a generic simple gauge group the CSB term can
be represented in the expansion form in powers of the conformal anomaly.
Then, the CBK relation is rewritten as:

DD (a) O (as) = 1+ Z ( >)nP7§M_”)(as) +O@Mh. (3)
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At the 4-loop level the polynomials P\ (a,) in Eq.(3) read:

r 4—n D
PM(a) =Y PN akr=>"ar>y " PPlk,p—KCHCH ", (4)
k=1 p=1 k=1

where r = 4 — n when M = 4 and Cp, (4 are the quadratic Casimir op-
erator in the fundamental and adjoint representation of the gauge group
respectively. Coeflicients p! ,2 are defined unambiguously [15]. An important
point here is that at this 1evel of PT all dependence on ny in r.h.s. of Eq.(3)
is contained in the coefficients of the S-function. Thus, in contrast to the
coefficients of the polynomial K™~1(a,) in Eq.(2), the terms of P\"”(a,) in
Eq.(3) are independent on the number of quark flavors.

The double sum representation (3), (4) for the CSB term motivated the
authors of the work [16] to consider the similar one for the NS contributions
to the Adler function and the coefficient function of the Bjorken polarized
sum rule at least at the analytically available O(al) level. For instance, ac-
cording to this paper at M = 4 the PT expression for the NS Adler functlon,
calculated in the MS-scheme for the non-abelian gauge theory with a simple
compact Lie group, may be presented in the following form:

Mn)

DG (as) = 1+ DY (ay) + Z( )HD;M—“(as), (5)

where polynomials Dg)(as) in the coupling constant a, are:

v Z D;jal. (6)

In a more detailed form Eq.(5) may be written down as:

DYe ™ (a,) =1+ Dia, + (Dg;g - ﬁOD“)) a’ + (ngg — BoD) (7)
~ BiDY + ﬂéDé?l’)ai + ( — 6oD) — 5, D) — 5, D)

+ B2DE) + 28,3 D) — ﬁgpg}g) ot

where at the fixed number of n and k, DS% = DS:,‘:I) = Dg,—:Q) = ..., eg.
the terms D§2) = Dg

The coefficients DSL including in Eq.(7) are determined by an unam-
biguous way as solutions of a system of linear equations, analogous to those
presented in [15]. Herewith, the full dependence on ny (except for the light-
by-light scattering effects — see explanations below) is absorbed into the co-
efficients of S-function and their combinations (7). For the first time at the
four-loop level the values of szﬂl,)C were obtained in Ref. [16]. Tt is clear that



the representation (5) and its counterpart for the coefficient function of the
Bjorken polarized sum rule is a sufficient condition for the validity of the
generalized Crewther relation in the form of Eq.(3).

Note here two interesting facts. First of them is that the representation
(5), whose detailed form at the O(al) level is given in Eq.(7), is in full
agreement with its {5 }-expansion structure proposed in Ref. [17| much earlier
than this expansion in powers of conformal anomaly. Indeed, accordingly to
this work the coefficients dy; (1 < M < 4) of the NS Adler function

DY (a,) = 1+ dyay + dod? + dsa® + dya’ (8)

may be decomposed into the coefficients of the S-function and have the fol-
lowing form:

dy = dq[0], (9a)
dy = Boda[1] + da[0], (9b)
ds = B3d3[2] + S1ds[0, 1] + Bods[1] + ds]0], (9¢)
dy = B3da[3] + Br1Boda[l, 1] + B2ds[0,0, 1] 4+ B5d4[2] + B1d4[0, 1] (9d)

+ Boda[1] + da[0].

Relations (9a-9d) are in full compliance with representation (7).

The second interesting fact lies in observation that certain [-dependent
terms iji in (7) coincide in different orders of PT. For instance, Dﬁ) term
is the same for Bya?, Bi1a® and Beal contributions. Matching this fact with
results of {S}-expansion (9b-9d), one can obtain the following equalities:

Dy = ~da[1] = —d5[0, 1] = ~d.[0,0, 1], (10a)
DY) = —ds[1] = —du[0,1], (10Db)
Dg}g = d3[2] = d4[1,1]/2. (10¢)

The {f}-expansion terms (9a-9d) were obtained in [16]| (see also [18],
where the misprints made in [16] were found and several {/}-expanded coef-
ficients of d5 were fixed as well). As a result, the application of Egs.(10a-10c¢)
enables to determine all terms of {f}-expansion, except for ones propor-
tional to () and higher powers of (3 in concrete order of PT. Indeed, all
other terms proportional to higher coefficients of S-function will be uniquely
fixed from {(5}-expansion pattern obtained at the previous order of PT. In
the case, when the coefficient d); is known explicitly, the terms proportional
to powers of 3y are defined unambiguously.

It is worth pointing out that the same relations between some {5}-
dependent terms were also observed and used e.g. in Refs. [19-21] in the
process of application of the Rs-scheme (or class of the MS-like schemes)
to the study of the {f}-pattern of the perturbative series for different ob-
servables in QCD. As was explained there, the application of the Rs-scheme
exposes a special degeneracy of the {}-expanded terms in various orders of



PT. Now we see that this degeneracy may be clearly understood from the
decomposition of the PT series for physical quantities in powers of () /as.
Let us raise the following issue: is this decomposition valid for arbitrary
observables that are not related by the CBK relation? In order to shed light
on this question, we will consider the higher order PT corrections to various
physical quantities and apply to them the {(}-expansion technique in powers
of B(a)/as in next sections. Further, we will compare some of our results
with those already known in literature, obtained by independent methods.

2. The case of the static potential

2.1. The expansion in powers of the conformal anomaly

Let us start our consideration from the case of the static interaction po-
tential of the heavy quark and antiquark in QCD in color-singlet state. The
perturbative Coulomb-like part of this quantity is defined through the vac-
uum expectation value of the gauge-invariant Wilson loop W|[C|:

. 1 d*q WqEY (=2
Vag(r) = —TlggoﬁlogW[C] = /WB Voo(d”), (11)
(0] Tr Pexp (ig 4 dx“Agta> 0)
h = < 12
where W[C]| (O] Tr 1]0) (12)

and @? is the square of the Euclidean three-dimensional momentum, C' is
a closed rectangular contour, 7" and r are the time and three-dimensional
spatial variables, P is the path-ordering operator, Aj is a gluon field and ¢*
are the generators of the Lie algebra of the generic simple gauge group in
fundamental representation. In our study we are primarily interested in the
case of the SU(N.) gauge color group.

The limit T — oo formally leads to gy — 0 and the square of the Euclidean
four-dimensional transferred momentum Q? — 2. Thus, technically we
carry out the transition from the Euclidean four-dimensional space to its
three-dimensional subspace. The MS-scheme B-function is also considered in
this subspace and the coupling a,(q?) starts to depend on ¢2.

The perturbative expression for the Fourier image Vj5(q?) is known in
analytic form in the MS renormalization scheme at the three-loop level (see
|22, 23], [24,25] and |26, 27| respectively). It is written as:

B ArCras(q° ﬁ B
Veod®) = - T D 1k o) b (13

208 L\ .
(o T )b + 00

Here L = log(p?/q?) and the term 72C3L/8 28] arises due to the infrared
divergences.



Let us introduce the next notation:
Yo0(as(7?)) = 1+ a1a5(7?) + a202(7?) + asal(q?) + O(ay). (14)

Following our idea of decomposition of the perturbative coefficients into
powers of the conformal anomaly, which is valid for the ones of the Adler
function and the coefficient function of the Bjorken polarized sum rule at least
at M = 4 in QCD, we can write down the expression for ¥,5(as(q7* = 11%))
in the M-th order of PT (1 < M < 3) in the following form:

M n+1) n
”f/ég)(as)zu%( (a, +Z< (as )) Y Mt (g), (15)
M
where ”I/O(M)(as) :Z”f/(M) b Z s ’; L. (16)
k=1

In a more detailed way, Eq.(15) may be rewritten as:
1) = 1 (A = oD Y (A - 8y - pon? )
+ﬁ%ﬁ§ﬁ+<%@—%%@—&%@—m%@

+ 083 + 20, - g )t

where at the fixed numbers n and k, ”//nk = ”I/n(frl) ”f/n(;ﬁ) ... As
we have anticipated, the representation (17) is in full agreement with its
{#}-expansion pattern

ﬁoal[l] + a1[0], (18a)
Byas[2] + B1a2[0, 1] + Boaz[1] + a2[0], (18b)
Boas[3] + B1Boas[1, 1] + £2a3(0,0,1] + fFas[2] + Fras(0, 1] (18c)

+ 50613[1} + as[0].

Moreover, the representation (17) provides us equalities similar to Eqgs.(10a-
10¢), namely:

a1[1] = a2[0,1] = a5[0,0,1] = -, (19a)
as[1] = a3[0,1] = —%#%), (19b)
as[2] = a3[1,1]/2 = 457 . (19¢)

Using the three-loop explicit analytic results [27] for the static potential
in the perturbative QCD and taking into account Eqgs.(19a-19¢), we obtain
all terms of {f}-expansion included in Eqs.(18a-18¢). The corresponding
results are given in Table 1.



Group structures Numbers
a1 [1] - 3
al[O] CA —§
az(2] - 5
Cr B3¢
az{1] ) 77
21
Ca —%3 + 3G
CrCy —% + %
a2[0] 133 4
2 el
Ci 144 _C + 4 64
as(3] - %
Cr 5471 39
(] 7942388 69
Ca —5% T IC3 + 1
cz 5B - 86, + 26
CF CA - 7504056()9 + 49 C3 _ %CE)
2491 309 1091 171 9 _ _T61 6
as[1] T8~ 1698~ Tos 65— 19863 + 156 — sam0 T
c? +d <640 192 log2 — log2 2)
+7r2< — 2L+ PG+ s log2 + 2 ¢slog2 + a4)
CEC g 4 e, g,
CrC3 T AR
_ 19103 181 1431 21097 6
— 27648 C + 512 Sis 6 T 512C3 56 ~ 1935360 "
4 211
3 +m (23040 — 551082 — 55 log” 2)
2 191 |, 841 955 203 5
a3[0] —+7r ( — 763 + 768C ~ 576 10g2 + ﬁCg 10g2 + 5(14)
5 1 1702
Jbed gabed om0+ ( —|— 5log2 — 5 log 2)
E NAF nf
+? ( Cg +log2 + 21('3 log 2)
1511 -6 39 , 35 2
gobed e g0 T T ( 2+ 3 log2 + 31 log 2)
Na
+7? <% — wé}, — Tdoy + == 461 log?2 — %4“3 log 2)
Table 1: All terms in the {f}-expansion of coefficients a1, as and as.
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Note that there are transcendent numbers ay = Liy(1/2) + log* 2/4! with
polylogarithmic function Li,(z) = > 2, 2Fk™", s¢ = (s + (51 with (5 =
70/945 and multiple zeta value ¢ 5_; = Yoo, SV (—1)"*F/ik® in Table
1. They appear from scalar master-integrals 27|, which are different from
those arising in the calculation of corrections to Dyg(Q?) and Cys(Q?) (see
e.g. [29]).

Excepting two reservations, the presented coefficients of {5}-expansion
mostly coincide with ones defined in [20] by independent way using the R -
scheme approach. The first of them lies in the small difference between our
rational numbers, highlighted in blue in Table 1, and those found in [20]. In-
deed, instead of coefficients 5171/288 and —2981/192 ~ —15.526, contained
in a3[2]-term in Ref. [20], we get slightly different ones, namely 5471 /288 and
—7943/576 ~ —13.789. Instead of the CrC4-term —66769/3456 ~ —19.320
included in as[1] in [20], we obtain —70069/3456 ~ —20.275.

The second clause concerns the light-by-light scattering effects, first oc-
curring at the three-loop level for the static potential [27]. In our opinion,
despite the ns-dependence of these effects, they have to be included in the
scale-invariant coefficient a3[0]. This fact is reflected in Table 1 by the in-
corporation of the terms proportional to d*d$**/n;/N, and d§“died /N 4
group structures in this “n-independent” coefficient. Here Ny is the number
of group generators, d@e? = Tr(t*t1%tt?}) /6 and d%*? = Tr(C*C{*CeC?}) /6,
where the symbol {...} stands for the full symmetrization procedure of el-
ements t°ttY by superscripts b, ¢ and d |30, 31|; (C%). = —if®c are the
generators of the adjoint representation with the antisymmetric structure
constants fo of the Lie algebra: [t t°] = if2t¢. In the particular case of
the SU(N,.) color gauge group the contractions of the symmetric invariant
tensors considered above read:

danCdd%—{)Cd _ Nél _ 6Nc2 +18 d%‘bcdd%bcd _ NC(NCZ + 6) (20)
N, O6NZ Ny /8

Although the term d¥°¢d®“in;/N, in the correction az (14) is propor-
tional to the number of flavors ns, which formally enters the Sy-coefficient,
we will not include it into %Eg)—coefﬁcient in Eq.(17), since such rearrange-
ment will not be supported by the QED limit [16,18]|. Indeed, in the QED
limit of the QCD-like theory with the SU(N.) group d®*¢d%“!/N, = 1 and
ny; = N, where N is the number of the charged leptons (structures with d%*
are nullified). This term arises from the three-loop Feynman diagram with
light-by-light scattering internal subgraphs (see Fig.1). However, in QED the
sum of these subgraphs are convergent and does not ‘%ive extra [y-dependent
(or N-dependent) contribution to the coefficient ”//1(§ [16,18]. Therefore, to
get a smooth transition from the case of SU(N,) to U(1) gauge group, these
light-by-light scattering terms should be included into the S-independent
coefficient 7/0%) (or as[0]) at the three-loop level.

In accordance with the foregoing, at the three-loop level the static Coulomb
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Fig. 1: Light-by-light scattering type diagram in the static potential

potential of QED can be expressed through the invariant charge as:

Vaen(§?) = —%1 - HQ(;E/ZZ),a(u?)) (1 +N- c(o‘(:z))S) +0(a”), (21)

where the MS-scheme photon vacuum polarization function Hqgp (L, (p?))
was calculated in o order in Ref. [32]. The constant C originates from the
light-by-light scattering effects and may be extracted from the results of
work [27]:

5 23 1 1 79 61
C=—70 -7 == — Zlog2+ = log®2 == log2 (22
96" ”(24 glos2+glog 2 ) +m{ 35—y tlos2  (22)

21

2.2. Special representations of the relation between 755 and ¥(usp

It is interesting to note that there is a quantity ¢, associated with
the static potential by the relation where, as in the CBK relation, the effect
of conformal symmetry breaking is explicitly manifested in the form of the
factorized S-function. This relation was first obtained at two-loop level (at
M = 2) in Ref. [33]| and reads:

Y (M) (q) — y!

cusp Q

@\5

(as) = ————=C"(q,). (23)

M-1
Here CM~V(a,) = > Cyak with C = ££Cy — BTpny.

k=1

In Eq.(23) the function ¥¢usp(as) is related with the cusp anomalous di-
mension I'(¢, as) of the vacuum expectation value of the Wilson loop W[é’]
(12), but unlike the case of the static potential, C' is now a closed contour
formed by two segments along directions v}' and v4 with Euclidean cusp an-
gle ¢: cos ¢ = (v1,v2) (see investigations on this topic [33-38] and references
therein).

The quantity log W[C] is expressed through the logarithm of the corre-
sponding MS-scheme cusp renormalization constant Zeusp |33-38:

10g W = 10% Zcusp + 0(60)7 (24)
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where Z.,s, contains the ultraviolet divergences and it is written in terms of
the renormalized coupling constant. In its turn, the cusp anomalous dimen-
sion is defined as:
I'(6,a,) = 0log Zcusp.
0log u?
The quantity Y¢usp(as) is a d-independent coefficient function of I'(¢, a;)
in the anti-parallel lines limit, i.e. when ¢ =7 — ¢ and § < 1 [33,39):

4]
D(r — 8, a,) = —Cra, %“52*’(50‘5) +0O (O‘S ;gé). (26)

(25)

The first order corrections to Yeusp(crs) and ¥5g(a) coincide [39] and the
differences between them are observed only from the second order of PT and
they are proportional to the first coefficient of the RG S-function [33] (see
Eq.(23)).

At M = 3 the convincing arguments in favor of validity of the expression
(23) were given in |35]. Except for the pure non-abelian part proportional to
C3-structure, all other terms to coefficient Cy (proportional to terms T7n?,
CpTrns and CyTpnys) were defined there in analytical form.

Since the function ¥,usp(cvs) has the same dependence on ny and the same
group structures like the quantity 7;5(as), it is obvious that its series of PT
can be decomposed into powers of the conformal anomaly as well:

M n+1) ) n
YO0 (0) = 14 70D (a, +Z( ) PO (). (27)

But representation of the functions ¥4 (as) and Yousp(as) in the form of
double sum (15) and (27) is a sufficient condition for the CSB term in the
difference ¥usp(as) — 795 (as) can also be decomposed in powers of (o) /as:

M n
B(M—n—&-l) s .
K = 7t = 3 () ey,

n=1

where T = Z Té?,ia’j’l. (29)
k=1

One should emphasize that since the first order corrections to Yeusp(as)
and to Yg55(as) coincide, then T1(,11) = T1(,21) = ... = 0. Taking this fact into
account and using the representation (28) and the results of Refs. [33,35], we
obtain:

Ko - 700 = (- Sat+ Foan)a+ (2 -5 ) @

10 28 9 1487 7t 1879
+§CA61 —2'35051+50(0F< (3 — —+%> CA( i

89t 16357 209 11 o)\
- e - ) et
2% 3 )) +fo (CFCA( 52 2409 210" ) Calis ) Jds:
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where Tf}f is the still unknown coefficient, contained in term Tl(z) and propor-
tional to C? group factor. Tts explicit form may be found from the coefficient
Cy [35], where C2-term C3'4 was fixed in part. They are related to each other
in the following way: T74' = C5* 4 86893/15552 — 737/144¢3 — 11/967*. It
is important to emphasize that the system of linear equations, arising in
process of application of the decomposition into powers of the conformal
anomaly, has a unique solution at any value of Tﬁ‘g“. This means that the
representation (28) is always possible at least at the three-loop level.

Note that the absence of terms ;a? and 2a? in Eq.(30) is explained by

fact that Tl(,21) = T1(,31) = 0.

3. The case of the unpolarized Bjorken sum rule

Let us now consider a quantity that, according to current data, is not
included in any of known relations that would reflect the effect of violation
of the conformal symmetry. As an example, we examine the unpolarized
Bjorken sum rule for deep-inelastic neutrino-nucleon scattering [40]. The
detailed theoretical study of this process may be still of interest in view of
its possible investigation from the potential future DIS v N data, which may
be collected at SAND detector (see e.g. [41]) of the DUNE Collaboration.

So, consider the aforementioned unpolarized Bjorken sum rule:
1
Fajunl @) = [ dolF?(0,Q%) - Fi7(2,Q%), @1
0

where F” P (2, Q?) is the structure function of vN DIS process that arises
in the general decomposition of the hadronic tensor into possible Lorentz
structures. At large Q* = —¢* the dependence of Fgjun, on Q? is absorbed
into the coupling constant.

In the Born approximation Fpgju,, = 1. Deviation from unity is already
observed in the leading order of PT [42|. Analytical two- and three-loop
corrections to the coefficient function of the unpolarized Bjorken sum rule
in the MS-scheme for the case of the generic simple gauge group were com-
puted in [43] and [44] correspondingly. In particular case of the SU(3) color
group the analytical four-loop correction to Fgju,y is known due to the un-
published results [45]. One should mention that the general formula for the
leading renormalon contributions to this considered perturbative quantity
was obtained in [46]. Tts predictions are in full agreement with the results of
the papers cited above.

Applying the idea about the representation of the perturbative series for
observables in QCD-like theories with the generic simple gauge group in form
of their decomposition into powers of 5(as)/as, we obtain that at 1 < M < 4
the NS contribution to the Bjorken unpolarized sum rule may be rewritten
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as.

FOO (as) =1+ Fy"(a) + Zl (—ﬁ (M_n)(“s))nFWn)(as). (32)

Bjunp - g n
n=

In more detailed form at the four-loop level we have:
@%ﬁmgzl+ﬂﬂ%+( @ﬁﬁ)a+( —BoFY  (33)
—BiFyY + BSFQ(?B) al+ (Féiﬁ —BoFys — iFYY

— B F) + BRFLS + 2601 Fyl) — S’Fé}f) a.

Taking into account the results of Refs. [42-44], one can get:

Fo=—F, Fiy=10r (34a)

Fip= 150} = 5:CrCa, o = —%CF, (34D)

Fip= (49361 1@3) ( - i—i + C3 — 5(5) CrCy, (34c)

Fos = ( - % - —Cs Cs) Cp + (%; + %Cz& - ZC5) CrCa (34d)
(- 508~ et 15 )CeCh

Using now the results of four-loop calculations [45] made for particular
case of the SU(3) color gauge group, we arrive to the following expressions:

1780 78155
Fs, = S Foo = 2502 + C3 + 12¢5 — 1106, (34e)
97247 61153 965 206 . 49
Fiq=— _ 222 6B Af
1,3 2592 648 G 54<5+ 27 G — 5 =05 (34f)
8139161 308489 239665 . 2927 . 253757
Fig=— - el 4
0,4 216~ 1296 T 1206 © T 188t om0 ¢ (348)
33

where B ~ d%¢d2% /dp-term is the light-by-light scattering type contribu-
tion to the Bjorken unpolarized sum rule. Note that the nonabelian flavor-
independent correction of this effect is already contained in the coefficient
Fo4. To get expressions (34e-34g) in an analytical form for the case of the
generic simple gauge group, it would be interesting to evaluate the 4-loop
correction to the coefficient function of the Bjorken unpolarized sum rule for
the generic simple gauge group as well.
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4. Conclusion

The proposed decomposition procedure of the PT series for observables
into powers of the conformal anomaly in QCD allows us not only to reproduce
the known structure of {f}-expansion, but to predict its definite terms in
higher orders of PT as well. For instance, application of this technique to the
non-singlet contribution of the coefficient function of the Bjorken unpolarized
sum rule gives

0 = 1+ s (89 - )+ (R - sorfd - L)

Bjunp
+ 5§F§i)) ad + <Féf‘£ — BoF{Y — BiFY — BFY) + B2FY)
0n 5 12 _ M) 4
+2B0p1F57 — BoFs ) as.

We can see that the knowledge of Fl(i)—coefﬁcient of By-dependent term
in a? order enables to predict values of ;- and [r-dependent ones in a2
and a! orders. In its turn, the knowledge of fy-dependent coefficient F1(32)
and 32-dependent one F2(21) in a® order gives values of the ;- and [y5;-
dependent coefficients in a? order correspondingly. Thus, the utilization of
the expansion in powers of the conformal anomaly allows to determine all
terms of {3}-expansion, except for ones proportional to 5) and higher powers
of By in concrete order of PT. Indeed, all other terms proportional to higher
coefficients of S-function will be uniquely fixed from {/}-expansion pattern
obtained at the previous order of PT. In the case, when the correction of the
M-th order to observable quantity is known explicitly, the terms proportional
to powers of fy may be defined unambiguously.

Application of this procedure to the static Coulomb-like potential, to
the relation between it and cusp anomalous dimension in anti-parallel lines
limit and to the Bjorken unpolarized sum rule enables to determine all their
{B}-expanded terms unambiguously. The arguments in favor of validity of
this decomposition in powers of f(as)/as gives not only from Refs. [19-21]
and [47], [18], but also from work [48], where the ratio of the pole mass M
to MS-scheme scale-dependent running 7 (u?) mass of the heavy quark was
obtained at the three-loop level analytically. The results of this work were
also presented there in the following numerical form

) = L+ 1383, + (624806, — 3.739)a> + (23.49782 + 6.2483;  (35)
miim

+1.0196 — 29.94)a?.

It reproduces the {8}-expansion structure and the relations between its
definite coefficients, which we have obtained within procedure of decomposi-
tion in powers of B(as)/as (see e.g. Eqgs.(10a-10c¢) or (19a-19¢)). Indeed, the
coefficient before Sya?-term is the same as the coefficient before f;a3-term.
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The same feature we have observed above in the cases of the NS Adler func-
tion, the NS coefficient functions of the Bjorken polarized and unpolarized
sum rules and the static Coulomb-like potential. However, unlike the previ-
ous cases, the scale dependence of ratio M /m(u?) is governed now by two RG
functions: g-function and anomalous mass dimension ~,,. Note one interest-
ing fact. The utilization of the formal {5}-expansion in powers of 5(as)/as
of the two- [49,50] and three-loop [51,52| coefficients of ~,,-function, namely

5) 3 7
Y1 = gcpﬁo + —012: + —CFCA, (36&)

Yo = —%CFﬂo Bo (02 ( — —Cs> + C'FCA( - % + 9CS)) (36b)

5 129 525 1063
-C — O3+ CRCA| — — CrC3| — — =
Ot gl A( 256 1 53)+ A\ 128 C‘”’

and the subsequent substitution of these decompositions into NLO and NNLO
general expressions, given in Ref. [53] and obtained there within the Rs-
scheme motivated approach, allows us to reproduce the numerical form of
Eq.(35). This finding may be related to the fact that the QCD trace anomaly
TH = (B(as)/2as) P FS, + (1 + ym)mapip [54-56] contains not only S-term,
but also the anomalous mass dimension ~,,-term. However, as was noted
in [47], it is necessary to treat with caution to the {f}-expansion of the non-
RG-invariant quantities with other non-zero anomalous dimension functions.
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