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Introduction

According to the general principles of (local) quantum �eld theory (QFT)
[3], observables in a spacelike region (i.e. in Euclidean space) can have sin-
gularities only for negative values of their argument Q2. However, for large
Q2 values, these observables are usually represented as power expansions in
the running coupling constant (couplant) αs(Q

2), which has a ghostly sin-
gularity, the so-called Landau pole, at Q2 = Λ2. Therefore, to restore the
analyticity of the considered expansions, this pole in the strong couplant
should be removed.

The strong couplant αs(Q
2) obeys the renormalization group equation

L ≡ ln
Q2

Λ2
=

∫ as(Q2) da

β(a)
, as(Q

2) =
αs(Q

2)

4π
(1)

with some boundary condition and the QCD β-function:

β(as) = −
∑
i=0

βia
i+2
s = −β0a

2
s

(
1+
∑
i=1

bia
i
s

)
, bi =

βi

βi+1
0

, as(Q
2) = β0 as(Q

2) ,

(2)
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where

β0 = 11− 2f

3
, β1 = 102− 38f

3
, β2 =

2857

2
− 5033f

18
+

325f 2

54
, (3)

for f active quark �avors. Really now the �rst �fth coe�cients, i.e. βi with
i ≤ 4, are exactly known [4]. In our present consideration we will need only
0 ≤ i ≤ 2.

Note that in Eq. (2) we have added the �rst coe�cient of the QCD
β-function to the as de�nition, as is usually done in the case of analytic
couplants (see, e.g., Refs. [5]- [9]).

So, already at leading order (LO), where as(Q
2) = a

(1)
s (Q2), we have from

Eq. (1)

a(1)s (Q2) =
1

L
, (4)

i.e. a
(1)
s (Q2) does contain a pole at Q2 = Λ2.

In a timelike region (q2 > 0) (i.e., in Minkowski space), the de�nition of
a running couplant turns out to be quite di�cult. The reason for the prob-
lem is that, strictly speaking, the expansion of perturbation theory (PT)
in QCD cannot be de�ned directly in this region. Since the early days of
QCD, much e�ort has been made to determine the appropriate Minkowski
coupling parameter needed to describe important timelike processes such as,
e+e−-annihilation into hadrons, quarkonia and τ -lepton decays into hadrons.
Most of the attempts (see, for example, [10]) have been based on the analyt-
ical continuation of strong couplant from the deep Euclidean region, where
perturbative QCD calculations can be performed, to the Minkowski space,
where physical measurements are made. In other developments, analytical
expressions for a LO couplant were obtained [11] directly in Minkowski space,
using an integral transformation from the spacelike to the timelike mode from
the Adler D-function.

In Refs. [5, 6] an e�cient approach was developed to eliminate the Lan-
dau singularity without introducing extraneous infrared controllers, such as
the gluon e�ective mass (see, e.g., [13]). This method is based on a disper-
sion relation that relates the new analytic couplant AMA(Q

2) to the spectral
function rpt(s) obtained in the PT framework. In LO this gives

A
(1)
MA(Q

2) =
1

π

∫ +∞

0

ds

(s+ t)
r
(1)
pt (s), r

(1)
pt (s) = Im a(1)s (−s− iϵ) . (5)

The [5, 6] approach follows the corresponding results [15] obtained in the
framework of Quantum Electrodynamics. Similarly, the analytical images of
a running coupling in the Minkowski space are de�ned using another linear
operation

U
(1)
MA(s) =

1

π

∫ +∞

s

dσ

σ
r
(1)
pt (σ) , (6)

So, we repeat once again: the spectral function in the dispersion relations
(5) and (6) is taken directly from PT, and the analytical couplants AMA(Q

2)
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and UMA(Q
2) are restored using the corresponding dispersion relations. This

approach is usually called the Minimal Approach (MA) (see, e.g., [14]) or the
Analytical Perturbation Theory (APT) [5, 6]. 1

Thus, MA QCD is a very convenient approach that combines the analyti-
cal properties of QFT quantities and the results obtained in the framework of
perturbative QCD, leading to the appearance of the MA couplants AMA(Q

2)
and UMA(s), which are close to the usual strong couplant as(Q

2) in the limit
of large Q2 values and completely di�erent from as(Q

2) for small Q2 values,
i.e. for Q2 ∼ Λ2.

A further APT development is the so-called fractional APT (FAPT) [7�9],
which extends the construction principles described above to PT series, start-
ing from non-integer powers of the couplant. In the framework of QFT, such
series arise for quantities that have non-zero anomalous dimensions. Com-
pact expressions for quantities within the FAPT framework were obtained
mainly in LO, but this approach was also used in higher orders, mainly by
re-expanding the corresponding couplants in powers of the LO couplant, as
well as using some approximations.

In this short paper, we give an overview of the main properties of MA
couplants in the FAPT framework, obtained in Refs. [1, 2] using the so-
called 1/L-expansion. Note that for an ordinary couplant, this expansion
is applicable only for large Q2 values, i.e. for Q2 >> Λ2. However, as shown
in [1, 2], the situation is quite di�erent in the case of analytic couplants,
and this 1/L-expansion is applicable for all values of the argument. This is
due to the fact that the non-leading expansion corrections vanish not only
at Q2 → ∞, but also at Q2 → 0, 1 which leads only to nonzero (small)
corrections in the region Q2 ∼ Λ2.

Below we consider the representations for the MA couplants and their
(fractional) derivatives obtained in [1, 2] and valid in principle in any PT
order. However, in order to avoid cumbersome formulas, but at the same
time to show the main features of the approach obtained in [1,2], we con�ne
ourselves to considering only the �rst three PT orders.

Strong couplant

As shown in the Introduction, the strong couplant as(Q
2) obeys the renor-

malized group equation (1). When Q2 >> Λ2, Eq. (1) can be solved by
iterations in the form of a 1/L-expansion (we give the �rst three terms of the
expansion in accordance with the reasoning in the introduction), which can
be represented in the following compact form

a
(1)
s,0(Q

2) =
1

L0

, a
(i+1)
s,i (Q2) = a

(1)
s,i (Q

2) +
i∑

m=2

δ
(m)
s,i (Q2) , (i = 0, 1, 2, ...) , (7)

1An overview of other similar approaches can be found in [16], including approaches [17]
that are close to APT.

1The absence of high-order corrections for Q2 → 0 was also discussed in Refs. [5, 6].
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where

Lk = ln tk, tk =
1

zk
=

Q2

Λ2
k

. (8)

The corrections δ
(m)
s,k (Q2) are represented as follows

δ
(2)
s,k(Q

2) = −b1 lnLk

L2
k

, δ
(3)
s,k(Q

2) =
1

L3
k

[
b21(ln

2 Lk − lnLk − 1) + b2

]
. (9)

As shown in Eqs. (7) and (9), in any PT order, the couplant as(Q
2)

contains its dimensional transmutation parameter Λ, which is related to the
normalization of αs(M

2
Z), where αs(MZ) = 0.1176 in PDG20 [18].

f-dependence of the couplant as(Q
2). The coe�cients βi (3) depend

on the number f of active quarks that change the couplant as(Q
2) at thresh-

olds Q2
f ∼ m2

f , where some the additional quark comes enters the game Q2 >

Q2
f . Here mf is the MS mass of the f quark, e.g., mb = 4.18+ 0.003− 0.002

GeV and mc = 1.27 ± 0.02 GeV from PDG20 [18]. 1 Thus, the couplant as
depends on f , and this f -dependence can be taken into account in Λ, i.e. it
is Λf that contributes to the above Eqs. (1) and (7).

Relationships between Λf
i and Λf−1

i , i.e. the so-called matching conditions
between as(f,Q

2
f ) and as(f −1, Q2

f ) are known up to the four-loop order [19]

in the MS scheme and usually are used for Q2
f = m2

f , where these relations
have the simplest form (see e.g. [20] for a recent review).

Here we will not consider the f -dependence of Λf
i and as(f,M

2
Z), since

we mainly consider the range of small Q2 values and therefore use Λf=3
i .

as,0
(1)

as,1
(2)

as,2
(3)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q2[GeV2]

Fig. 1. The results for a
(i+1)
s,i (Q2) with i = 0, 1, 2.

On Fig. 1 one can see that the strong couplants a
(i+1)
s,i (Q2) become sin-

gular at Q2 = Λ2
i . The values of Λ0 and Λi (i ≥ 1) are very di�erent. We use

results taken from a recent Ref. [21], where Λf=3
i (i = 0, 1, 2) were obtained

in the following form

Λf=3
0 = 142 MeV, Λf=3

1 = 367 MeV, Λf=3
2 = 324 MeV . (10)

1Strictly speaking, the quark masses in the MS scheme depend on Q2 and mf =
mf (Q

2 = m2
f ). The Q2-dependence is rather slow and will not be discussed in this paper.
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Fractional derivatives

Following [22,23], we introduce the derivatives (in the (i)-order of of PT)

ã
(i)
n+1(Q

2) =
(−1)n

n!

dna
(i)
s (Q2)

(dL)n
, (11)

which are very convenient in the case of the analytical QCD (see, e.g., [24]).
The series of derivatives ãn(Q

2) can successfully replace the corresponding
series of as-degrees. Indeed, each the derivative reduces the as degree, but
is accompanied by an additional β-function ∼ a2s. Thus, each application of
a derivative yields an additional as, and thus indeed possible to use series of
derivatives instead of series of as-powers.

In LO, the series of derivatives ãn(Q
2) are exactly the same as ans . Beyond

LO, the relationship between ãn(Q
2) and ans was established in [23, 25] and

extended to fractional cases, where n → is a non-integer ν, in Ref. [26].

Now consider the 1/L-expansion of ã
(k)
ν (Q2). We can raise the ν-power of

the results (7) and (9) and then restore ã
(k)
ν (Q2) using the relations between

ãν and aνs obtained in [26]. This operation is carried out in detail in Appendix
B to [1] (see also Appendix A to [27]). Here we present only the �nal results,
which have the following form 1:

ã
(1)
ν,0(Q

2) =
(
a
(1)
s,0(Q

2)
)ν

=
1

Lν
0

, ã
(i+1)
ν,i (Q2) = ã

(1)
ν,i (Q

2) +
i∑

m=1

Cν+m
m δ̃

(m+1)
ν,i (Q2),

δ̃
(m+1)
ν,i (Q2) = R̂m

1

Lν+m
i

, Cν+m
m =

Γ(ν +m)

m!Γ(ν)
, (12)

where

R̂1 = b1

[
Ẑ1(ν)+

d

dν

]
, R̂2 = b2+b21

[ d2

(dν)2
+2Ẑ1(ν+1)

d

dν
+ Ẑ2(ν+1)

]
(13)

and Ẑj(ν) (j = 1, 2) are combinations of the Euler Ψ-functions and their
derivatives.

The representation (12) of the δ̃
(m+1)
ν,i (Q2) corrections as R̂m-operators is

very important and allows us to similarly present high-order results for the
(1/L-expansion) of analytic couplants.

MA coupling

We �rst show the LO results, and then go beyond LO following our re-
sults (12) for the ordinary strong couplant obtained in the previous section.

1The expansion (12) is similar to those used in Refs. [7, 8] for the expansion of(
a
(i+1)
s,i (Q2)

)ν
in terms of powers of a

(1)
s,i (Q

2).
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LO. The LO MA couplant A
(1)
MA,ν,0 has the following form [7]

A
(1)
MA,ν,0(Q

2) =
(
a
(1)
ν,0(Q

2)
)ν

− Li1−ν(z0)

Γ(ν)
=

1

Lν
0

− Li1−ν(z0)

Γ(ν)
≡ 1

Lν
0

−∆
(1)
ν,0 , (14)

where

Liν(z) =
∞∑

m=1

zm

mν
=

z

Γ(ν)

∫ ∞

0

dt tν−1

(et − z)
(15)

is the Polylogarithm.
The LO MA couplant U

(1)
MA,ν,0 in the Minkowski space has the form [8]

U
(1)
MA,ν,0(s) =

sin[(ν − 1) g0(s)]

π(ν − 1)(π2 + L2
s,0)

(ν−1)/2
, (ν > 0) , (16)

where

Ls,i = ln
s

Λ2
i

, gi(s) = arccos

 Ls,i√
π2 + L2

s,i

 . (17)

For ν = 1 we recover the famous Shirkov-Solovtsov results [5]:

A
(1)
MA,0(Q

2) ≡ A
(1)
MA,ν=1,0(Q

2) =
1

L0

− z0
1− z0

, U
(1)
MA,0(Q

2) ≡ U
(1)
MA,ν=1,0(s) =

g0(s)

π
.

(18)
Note that the result (18) can be taken directly for the integral forms (5) and
(6), as it was in Ref. [5].

Beyond LO. Following Eqs. (14) and (16) for the LO analytic couplants,
we consider the derivatives of the MA couplants, as

ÃMA,n+1(Q
2) =

(−1)n

n!

dnAMA(Q
2)

(dL)n
, ŨMA,n+1(Q

2) =
(−1)n

n!

dnUMA(s)

(dLs)n
.

(19)
By analogy with ordinary couplant, using the results (12) we have for

MA analytic couplants Ã
(i+1)
MA,ν,i and Ũ

(i+1)
MA,ν,i the following expressions:

Ã
(i+1)
MA,ν,i(Q

2) = Ã
(1)
MA,ν,i(Q

2) +
i∑

m=1

Cν+m
m δ̃

(m+1)
A,ν,i (Q2),

Ũ
(i+1)
MA,ν,i(s) = Ũ

(1)
MA,ν,i(s) +

i∑
m=1

Cν+m
m δ̃

(m+1)
U,ν,i (s), (20)

where Ã
(1)
MA,ν,i and Ũ

(1)
MA,ν,i are given in Eqs. (14) and (16), respectively, and

δ̃
(m+1)
A,ν,i (Q2) = δ̃

(m+1)
ν,i (Q2)−R̂m

(
Li−ν−m+1(zi)

Γ(ν +m)

)
, δ̃

(m+1)
U,ν,i (s) = R̂m

(
Ũ

(1)
MA,ν+m,i(s)

)
.

(21)
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and δ̃
(m+1)
ν,i (Q2) and R̂m are given in Eqs. (12) and (13), respectively.

The analytical results for the MA analytic couplants Ã
(i+1)
MA,ν,i and Ũ

(i+1)
MA,ν,i

can be found in Refs. [1] and [2], respectively. Here we present only the
results for the case ν = 1:

A
(i+1)
MA,i (Q

2) ≡ Ã
(i+1)
MA,ν=1,i(Q

2) = A
(1)
MA,i(Q

2) +
i∑

m=1

δ̃
(m+1)
A,ν=1,i(Q

2),

U
(i+1)
MA,i (s) ≡ Ũ

(i+1)
MA,ν=1,i(s) = U

(1)
MA,i(s) +

i∑
m=1

δ̃
(m+1)
U,ν=1,i(s) (22)

where A
(1)
MA,i(Q

2) and U
(1)
MA,i(s) are shown in Eq. (18) and

δ̃
(m+1)
A,ν=1,i(Q

2) = δ̃
(m+1)
ν=1,i (Q

2)− Pm,1(zi)

m!
,

δ̃
(2)
U,ν=1,i(s) =

b1
π(π2 + L2

s,i)
1/2

{
gi cos(gi)−

[
1 +Gi

]
sin(gi)

}
,

δ̃
(3)
U,ν=1,i(s) =

1

2π(π2 + L2
s)

(
b2 sin(2gi) + b21

[
G2

i − g2i − 1
]
sin(2gi)

)
(23)

with

Gi(s) =
1

2
ln
(
π2 + L2

s,i

)
, P1,ν(z) = b1

[
γELi−ν(z) + Li−ν,1(z)

]
, γE = γE − 1,

P2,ν(z) = b2 Li−ν−1(z) + b21

[
Li−ν−1,2(z) + 2γELi−ν−1,1(z) +

(
γ2
E − ζ2

)
Li−ν−1(z)

]
,(24)

Euler constant γE and

Lin,m(z) =
∑
m=1

lnk m

mn
, Li−1(z) =

z

(1− z)2
, Li−2(z) =

z(1 + z)

(1− z)3
. (25)

On Fig. 2 we see that A
(i+1)
MA,i (Q

2) and U
(i+1)
MA,i (Q

2) are very close to each
other for i = 0 and i = 2. The di�erences between the L0 and NNLO results
are nonzero only for Q2 ∼ Λ2.

Conclusions

In this short paper, we have demonstrated the results obtained in our
recent papers [1, 2]. In particular, Ref. [1] contains 1/L-expansions of ν-
derivatives of the strong couplant as expressed as combinations of the R̂m

(13) operators applied to the LO couplant a
(1)
s . Using the same operators

to ν-derivatives of LO MA couplants A
(1)
MA and U

(1)
MA, various representations

were obtained for ν-derivatives of MA couplants, i.e. Ã
(i)
MA,ν and Ũ

(i)
MA,ν in

each i-order of PT. All results are presented in [1, 2] up to the 5th order
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AMA,0
(1)

UMA,0
(1)

AMA,2
(3)

UMA,2
(3)

10-18 10-13 10-8 0.001 100.000
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0.4
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1.0

Q2,GeV2

Fig. 2. The results for A
(i+1)
MA,i (Q

2) and U
(i+1)
MA,i (Q

2) with i = 0, 2.

of PT, where the corresponding QCD β-function coe�cients are well known
(see [4]). In this paper, we have limited ourselves to the �rst three orders in
order to exclude the most cumbersome results obtained for the last two PT
orders.

High-order corrections are negligible in both asymptotics: Q2 → 0 and
Q2 → ∞, and are nonzero in a neighborhood of the point Q2 = Λ2. Thus,
in fact, they represent only minor corrections to LO MA couplants A

(1)
MA(Q

2)

and U
(1)
MA(Q

2). This proves the possibility of expansions of high-order cou-

plants A
(i)
MA(Q

2) and U
(i)
MA(Q

2) via the LO couplants A
(1)
MA(Q

2) and U
(1)
MA(Q

2),
which was done in Ref. [9].
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