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Kanmubposounast CUMMETpUS HA3BIBAETCS HECBODOTHO-TTOPOYK IEHHOM,
ecan  KaauOpPOBOUHBIE MpPeoOpa30BAHUS OCTABJIAIOT (DYHKIIMOHAT AeHCTBUAA
WHBAPUAHTHLIM TPU  YCJOBUU, YTO KaJUOPOBOUHBIE TTAPAMETPHI TOIINHEHBI
cucrteme muddepeHnraabHbIX YPaBHEHUN B YaCTHBIX NMPOM3BOAHBIX. Hawmbosee
W3BECTHBIM IPUMEPOM JAHHOTO THUIMA CUMMETPUU sBjsercs mauddeomopdusm,
COXPAHLIONIUN 00bEM, IIpeICTABILIONII coboil peobpaszoBanus KaJuOPOBOUHOM
CUMMeTpuu yHUMOyasipHoii rpasutanuu (YI'). Bee uzBectrbie pacmupenus Y
BKJIFOUAST BBICIIECTTMHOBBIE aHAJIOTH, TaKyKe ODJJII0T HeCBOOOIHO-TIOPOIK IEHHOM
KaygnopoBounoit cummerpueit. C yuéroM omanunit  HECBOOOIHO-TIOPOXKIEHHOM
KaInOPOBOYHON CUMMETPHUN OT CUMMETPHUHN C HEOTPAHUIEHHBIMYU KAJTUOPOBOUHBIMI
mapaMeTpaMu, COOTBETCTBYIONIUE UM aareOphl KaaubpOBOUHBIX Mpeodpa30BaHMil
CYIIECTBEHHO PA3INIAIOTCA.  IDTH PA3JIUIUS WMEOT TOCAEACTBUSA JJIsT BCEX
KJTFOUEBBIX COCTABJSIONUX 00Iell KaaubpoBOUHON Teopuu, HAUWHAS CO BTOPO
Teopembl Hérep, ramuibronoBa dopmansmsma co ceassmu, BPCT-kommiexkca u
KBAHTOBaHUsA. B HacTodmeM 0030pe paccMaTpUBAIOTCSI MOIWMDUKAIINT 0OOIIeit
KaJIuOPOBOYHON TEOPUHUHN Ha, CAydail HECBOOOIHO-TTOPOXKAEHHON KAJIMOPOBOUHOM
CUMMeTpUH, pa3paboTaHHBIE B TOCAEIHUE TO/IHI.

The gauge symmetry is said unfree if the gauge transformation leaves the action
functional unchanged provided for the gauge parameters are constrained by the sys-
tem of partial differential equations. ’I%ie %est known example of this phenomenon
is the volume preserving diffeomorphism being the gauge symmetry of unimodu-
lar gravity (UG). Various extensions are known of the UG, including the higher

spin analogs — all with unfree gauge symmetry. Given the distinctions of the un-
free gauge symmetry from the symmetry with unrestricted gauge parameters, the
algebra of gauge transformations is essentially different. These distinctions have
consequences for all the key constituents of general gauge theory, starting from
the second Noether theorem, Hamiltonian constrained formalism, BRST complex,
and quantization. In this review article, we summarise the modifications of general
gauge theory worked out in recent years to cover the case of unfree gauge symmetry.

PACS: 11.15.—q; 11.10.Ef

1. Introduction

The common textbook definition of gauge symmetry [1] implies that action
functional is invariant under the gauge variations of the fields

5G¢Z — R;(¢)Ea ) 5ES(¢) = GQR;(¢)&S(¢) =0, Ve, (1)
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where DeWitt’s condensed notion is used. The gauge generators R’ (o) are
assumed to be local differential operators which do not vanish on-shell. The
gauge parameters ¢ are supposed to be arbitrary functions of space-time.
This definition is a cornerstone of general gauge theory, though the examples
have been long known of the gauge symmetry that do not fit setup (1). The
deviation from (1) is that gauge variation is unfree in the sense that gauge
parameters have to be restricted by the system of partial differential equa-
tions (PDE) to leave the action unchanged. One more common assumption
of the general gauge theory [1] is that any on-shell vanishing local quantity
should reduce to the Lh.s. of field equations and their derivatives. This
assumption is also invalid in various known examples of unfree gauge sym-
metry [2], [3], [4], [5]. The on-shell trivial quantities exist such that do not
reduce to the field equations. This general feature of unfree gauge symmetry
has been first noticed in [6].

Let us first exemplify these general features of unfree gauge symmetry by
the case of unimodular gravity (UG) [7]- [14]. For basic introduction into the
UG, and further literature, we refer to [15]. Once the metrics are restricted
in UG by the unimodularity condition det g = — 1, gauge symmetry reduces
to the volume preserving diffeomorphisms:

dedet g =0, 0cg = Ve, + Ve, = Ve =0. (2)

Einstein’s equations become traceless, hence they are not transverse. This
makes A “integration constant”, not pre-defined parameter:

05 1
S:/dd$R7 WERNV_EQW/R%O; (3)
08 d—2
v = ~ ~ A = . 4
\Y Sg ¥ oR~0 = R const (4)

On-shell relation R — A ~ 0 is not a differential consequence of equations of
motion (EoM’s) (3), nor A is it a charge of any local conserved current.
Volume preserving diffeomorphisms form the subalgebra

(561562 — 552551 = 5[61,52] s V- €12 = 0 = V- [61, 62] =0. (5)

The subalgebra is singled out by imposing PDE onto the gauge parameters
e rather than by explicitly separating subset of generators.

Various generalizations are known of the UG, see [16]- [21]. The most
frequent starting point for modifications is that unimodularity condition is
replaced by a more general relation, N = N(é) In this case, A is still an
integration constant (in [20], [21] it is Newtonian constant), but there are
also new options to describe “k-essence” and other phenomena.

Higher spin (HS) linearised gravities provide more examples of unfree
gauge symmetry. They include irreducible HS traceless tensors [4],

Trh=0, & hpp=0mem.py, Tré=0, d-¢=0, (6)
as well as “Maxwell-like” HS, tracefull tensors [5],

5€hltl---us = a(NIEMQ‘..Ms) s d-e=0. (7)



Both models don’t involve auxiliary fields, unlike Fronsdal’s action.

HS gravity models with unfree gauge symmetry admit “global conserved
quantities”, being HS analogs of cosmological constant [22], [23], |24]. Num-
ber of these “HS cosmological constants” is growing with spin.

For s = 3, the analog of scalar curvature is a vector.

RF = 0,0\h"*, 9,R, +0,R, ~0. (8)

~ ~ ~ ~ 2 ~
R' = aua)\hlw)\ ) a,uRu + auRu - Enuua ‘R~ O; (9)

Instead of 9,R =~ 0 for UG, for s = 3 we arrive at (conformal) Killing eqs.

The general solution to eqs (8), (9) reads

R,=MA,+A,z", }A%/M = A+ A + Az + AL (227, — §hxpa?), (10)
where Ay, = — Ay, A, Ay, A are arbitrary “integration constants”, being the
higher spin analogs of the cosmological constant for the UG.

For s > 3, the higher Ricci’s R, ,,_, of the rank s — 2, or traceless
EMM“S_Q obey (conformal) Killing tensor eqgs, as the differential consequences
of EoM’s. The rank s — 2 (conformal) Killing tensor is decomposed into the
product of s — 2 (conformal) Killing vectors. Therefore, the number of the
“cosmological constants” is 10 x (s — 2) for the “Maxwell-like” HS theory, and
15 x (s — 2) for the UG-like HS gravity in d = 4.

Notice that all the theories with unfree gauge symmetry admit alternative
description by reducible gauge symmetry with unconstrained gauge parame-
ters [25]. Let us consider some examples of such alternative parametrization.

For massless spin 2 in d = 4,

e =0 <=> €' =0, =—-¢€". (11)
Equivalence is modulo (Hodge dualised) De Rham cohomology. This form of
the volume preserving diffeomorphism is a reducible gauge symmetry. Gauge
transformations of gauge parameters read

0, = 5’“’*”8,\(#,,, dpwh = 0'n. (12)
For the “Maxwell-like” s = 3 in d = 4,
e =0, =" <m> =00, (13)
where e = /HAP A — eiPA - Gauge symmetry is reducible,
5w€/w)\p — aaw,uu/\pa 7 5nw/w)\pa — 67_77;w>\pa7' ’ (14)

with gauge parameters of the following symmetry type:

For the connection between unfree and reducible gauge symmetry in Hamil-
tonian formalism, see [26].

As one can see from the examples, the dynamics with unfree gauge sym-
metry do not fit in the usual formalism of gauge systems. Below, we briefly
explain the modifications of the general gauge theory which cover the case
of unfree gauge symmetry.



2. General setup for unfree gauge symmetry, unfree gauge algebra

Consider Lagrangian field equations
0;S(¢) = 0. (15)

Proceeding from the observations noticed in the examples, we assume the
action S(¢) to obey modified Noether identities 6], [27]:

o8 +TI%r, =0, (16)

where ["’s are matrices of differential operators, 7 are local quantities. Oper-
ator I'? has a finite kernel,

[Cu, =0 = wekK, dimK=FkeN. (17)

Relations (16), (17) are replace the common definition of gauge symmetry
(1) to account for the unfree gauge variation.

Let us explain now, the natural relation of “the global conserved quan-
taties” and unfree gauge symmetry. Once the kernel is finite, elements of K
are parameterised by k independent constants Ay,

Vue K = wu=u'A;, IT=1.. k. (18)

The quantities 7, are assumed off-shell independent, while on-shell they re-
duce to elements of K, because of (16):

Ta(d, A) = 74(d) — ua(A) =0, uu(A) € K. (19)
These relations can be resolved w.r.t. the constants:
Ji(¢) ~ A, (20)

that means J; are the global conserved quantities. The constants A are under-
stood as modular parameters of the fields. Specific values of A’s are defined
by the field asymptotics, or finite number of derivatives at fixed space-time
point rather than by Cauchy data.

The local A-dependent quantities T,(¢, A) vanish on-shell, while they do
not reduce to the linear combinations of EoM’s:

Ta(0,N) = To(¢) — ua(A) =0, T, #6.9;S. (21)

These quantities are termed completion functions.
The modified Noether identity (16) means S(¢) is invariant under gauge
transformations

et =Te, (22)
provided for the gauge parameters ¢ are restricted by equations
[ =0. (23)

With this regard, I'? are termed gauge parameter constraint operators.

For gauge symmetry with unrestricted parameters, any on-shell trivial
quantity reduces to linear combination of EoM’s, while the gauge parameters
are unrestricted. Commutation relations between gauge transformations, and
the higher structure relations of gauge algebra, are deduced from Noether



identities (1) [1]. In the case of unfree gauge symmetry (16), (17), any on-
shell trivial quantity reduces to linear combination of EoM’s and completion
functions T,(¢,A). The gauge parameters € are restricted by the equations
(23).

Structure relations of unfree gauge symmetry algebra follow from modified
Noether identities (16), (17), and they involve, besides gauge generators and
EoM’s, also completion functions 7, and gauge parameter operators I'?.

Proceeding from modified Noether identities, with appropriate regularity
assumptions for the generators and completion functions [6], [27], we arrive at
the structure relations involving gauge generators and completion functions:

80,7, = R:,0:8 + Rbymy + Wi (24)

[L0TY, = ThoLY, = UL + EYr, + E2,0,8 + R, T% — R, IS (25)

[0 — TRl = Ul,Te + Ryl — R0 + EShm + ES30;S,  (26)
where the structure coefficient W, is on-shell symmetric, and the structure
functions E are antisymmetric, By = — E7, B3 = — EY.

Relation (24) means the completion functions are on-shell invariant under
unfree gauge variation; (25) demonstrates possible off-shell disclosure of the
composition of gauge transformations, including deviation of the parameters
from the equations restricting them; and relation (26) demonstrates that

equations imposed on gauge parameters are gauge invariant under unfree
gauge variation.

3. Faddev-Popov (FP) action for unfree gauge symmetry, BV-BRST
formalism

Given the distinctions of the unfree gauge symmetry algebra from the
case with unrestricted gauge parameters, the quantisation has to be corre-
spondingly modified. Let us consider the modification at the level of FP
recipe [6].

Impose independent gauges x’(¢), the FP matrix is rectangular,

I

X (6o (9). (27)

The number of gauges plus the number of equations restricting gauge param-

eters equals to the number of gauge parameters. The unfree gauge variation
has to be transverse to the gauge condition surface.

FP ghosts are introduced being restricted by the equations

[o(@)C =0, gh(C?) =1, €C%) =1, (28)

where 1'% (¢) are operators of gauge parameter constraints.
Anti-ghosts are introduced for gauges and equations imposed on ghosts:

gh(Cr) = gh(C,) = —1, €(Cf) = €(C,) =1, gh(n) =e(m;) =0.  (29)
The FP path integral is adjusted to the case of unfree gauge symmetry:



i _
Z = /[dq)] exp{ﬁSFP(gb)}? ¢ = {¢77Ti70a»0170a}7 (30)
where the FP action reads
Sep = S(¢) + X' (9) + CrTL(0)0ix" (9)C* + Culg(¢)C . (31)
Path integral (30) remains unchanged under variation of gauge x in the action
(31), see in [6]. Notice that even for the UG, the FP receipt has been know
only for special gauge conditions [11] such that lead to a non-local action,
while (31) works well for any local gauge.

The starting point of the BV-BRST formalism extension to the unfree
gauge symmetry is the idea that ghosts are constrained

rec®=0. (32)

This equation is considered on equal footing with the original EoM’s. The
equation is non-Lagrangian, so it has to be assigned with the antifield £*. For
introduction of antifields in non-Lagrangian BV-BRST formalism, see [28|.

Once eq. (32) is ghost number one, the anti-field is ghost number zero!
All the fields, including original ones, ghosts, and antifields ¢ are equipped
with anti-canonical conjugate. The grading is arranged in the Table 1.

Table 1.
§ & [ 6 [ & [ Ca
€ 0 0 1 1 1 0
gh 0 0 1 —1 —1 -2
deg 0 1 0 1 1 2

Given the anti-canonical pairs, the anti-bracket reads
ofAO*B  OFAO'B
O Op; 0o} Op"
where ¢ = (¢,£%,C0%), ¢} = (4;,&;.C5), and

gh((A,B)) =gh(A)+gh(B)+1, e((A,B)=c(A)+e(B)+1. (34)
The BV action is defined by the master equation

(A7B) =

(5,5)=0. (35)
The solution is sought for as the expansion w.r.t. resolution degree
S=> Sk, gh(S)=e(Sk) =0, degSi=F. (36)
k=0

The boundary condition is defined by the first two orders
So=5(0), Si =1L+ (&1, +&T5)C7, (37)

where S is the original action, while S; includes the basic constituents of
unfree gauge symmetry: completion functions 7,, gauge generators Ff)(, and
operators of gauge parameter constraints ['. The second order reads



1 * * % 78] * 1k 7ia ol el mle o
S = 5(CLULs + 6,01 By + 26261 ity + €. Ea) CoC"

* i * Da [} 1 a
- gb(¢1 ba T faRba)C - §§b€ Wap -
Master equation (35) identifies all the coefficients in Sy with structure func-

tions in structure relations (24)—(26) of unfree gauge symmetry algebra.
BRST differential s is anti-Hamiltonian vector field for the master action:

(38)

sA=(A,S), =0, gh(s)=1, ¢e(s)=1. (39)
It can be decomposed w.r.t. resolution degree

s:6+7+%)+...,deg5:—1,degvzo,deg(}s)zl. (40)

Because of master equation, the first orders are connected by the relations

P =0 = 02=0, 0y 476=0, 2+ 6%+ 56 =0, @1
where Kozul-Tate differential ¢ is defined as
ofA ofA , ofA
0A=——-0,5 — —— (¢TI T+ —TeCe. 42
8¢r aca;(QSz o¢+5a a>+ aga @ ( )
By virtue of Noether identity for unfree gauge symmetry, J squares to zero,
orA
PA=——T'0,S+T%7,)=0. 43
5ce D08 + Tim) (43)

One can verify that J is acyclic in strictly positive resolution degrees, that
insures existence of solution for s in the deg > 0, Q.E.D. For more details,
see [27].

Given the extension of the BV formalism to the case of unfree symmetry,
one can seek for consistent deformations of the models of this class and
systematically quantize them.

4. Unfree gauge symmetry in Hamiltonian formalism

Hamiltonian action for the theory with primary constraints 7T, reads
Sy = / dt(p:¢’' — Hr) , Hr = H + \*T,,, (44)

where the role of fields is played by canonical variables ¢, p;, and Lagrange
multipliers A*. Assume that there are no second-class constraints. Conser-
vation of T, leads to secondary constraints 7,,

Ty = {T,, Hp} = WPTs(q, p) + T7.(q,p) = 0, (45)

where W, T" are local differential operators, I' has finite kernel. Secondary
constraints 7 are considered as completion functions, and gauge symmetry
should be unfree. Once the kernel of I' is finite, completion functions can be
redefined by adding modular parameters A to make 7 vanishing on-shell,

FZTaZO<:>Ta:AauAaEKeng:TaHTa_Aa' (46)



Assume no tertiary constraints appear,
Ta = {7, Hr} = WTu(g,p) + Wim(q,p) = 0. (47)

For more general case, see [22].

Termination of the Dirac-Bergmann algorithm means the modified gauge
identities as the EoM’s turn out dependent with their differential conse-
quences and completion functions:

{To gy o+ {Ta iy 5 4+ (00 = W) 55 + Tama =0
55 sl e Mdﬂ (48)
‘ a . _H _ « H b7 b —
{ra @} 5+ ok = = WG + (=8 AW =0,

Corresponding unfree gauge symmetry transformations read

6:0(q,p) = {0, T,}e* + {0, 7, }e?,

(49)
0N = &% + Wgel + Woet.
Constraints on gauge parameters take the form
d
(5;;% + Wi)e’ + Tee* = 0. (50)

Direct computation confirms that action (44) is invariant under transforma-
tions (49), (50),

a d a\ b a .« 1d a a
5.5y = /dt[(( b+ W )’ + Tee™) 7, — EE(Tae +7,e%)] =0. (51)

For the linearised unimodular gravity (LUG), Hamiltonian action (44)
reads

Sy, 11, \] = /d‘lx(niﬂ'hij — H—XNT), T,=—20,;,

H =TTl — %HQ + i(wihijakhkj — 0;hd'h — O;h ' WYY o
where 4,7,k = 1,2,3, h = nhy;, I1 = n,; 119, X' = %
Conservation of primary constraints 7; leads to the secondary ones,
T,={T,,H} = —010=0, 70=0dhy;—0,0h—A=0. (53)
The secondary constraints are conserved by virtue of the primary ones:
7o ={m,H} = — 0'T;. (54)

Unfree gauge symmetry transformations read
Schij = Oigj + 0je;, 6.117 = — 997 + n90,0%0, 0.\ = &'+ 0%e®.  (55)
Gauge variation of the action reads
0.5y = /dA‘x((éO + aﬁi)To - 80(Ti€i + 7'050)) . (56)
So, gauge parameters have to obey equation
949" =0. (57)

For more detailed description, see [29]. For analogue in the non-linear UG,
see [30].



5. Hamiltonian BFV-BRST formalism

To avoid technical complexities, we restrict consideration by simplified

involution relations
{TOH H} = ViTa, {Tav H} =V,'To,
{T.,, T3} = {To,7a} = {10, m} =0,
with structure coefficients V¢, V. being constants.
Complete BRST charge reads
Q=T,C%+ 17,C% + 7w, P
Given the gauge conditions,
A —x* =0,
the gauge fermion is introduced,
U =C, "+ \*P, ,
and gauge-fixed Hamiltonian is defined by the usual rule,
Hy =H+{Q,V} = H— P, VAC* — P,VECY + T\ X + o X®
+ PP + Co{x®, T }CP + Co{x®, 7. }C°.

(58)

(59)
(60)

(61)

(62)

The grading is arranged in the Table 2. For more detailed description, see

[22], |26], |31].

Table 2.

c* | P, ce Py | A | o | P* | C4
1 1 1

gh 1 —1 1 —1 0 0 1 —1

For the UG, the complete BRST charge reads [30]
Q= /dga:(TiCi +7C — P,C79;,C" — Py;(C'C)
+Py(—g) 'g"COC +m P, T, =—2g, (011" + T}, 1T*)

1 - *
T=H—-A= —;QUMH”HM +R—A, A=const.
g
Introducing the gauge fermion

T = / Fr(Coi + BNY) . X = (= §) 0,7 + NIO,N'
we arrive to the complete gauge-fixed BRST-invariant Hamiltonian
Hy =H+{Q,V} = /d%{H + TN' + mx' — Po,C*
— Pi(— 5)’%”(%0 + PO;(CN") + Pi(0;C'N? — C79;N")
—Ci(— §)‘1(28j§“%k0’“ + 8]-(63'(]1' + %i(}j))
+Ci(=9)" (9,97 (= 9)” 'IC — 28;((— 9)” 'Y C)
+0;(g"(— g)"'IC)) + Ci(O;N'P? + N9, P") + PP’} .

(63)
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As one can see, the Hamiltonian does not involve A, nor does it contain
four-ghost vertices, unlike the GR analog. The BRST charge (63) involves
cosmological constant explicitly. It is included in @) in a manner similar to
inclusion of the intercept in the bosonic string theory. As the theory is non-
renormalisable, discussion of the consequences of this specifics is somewhat
speculative. If the way was known to make serious quantum calculations,
this could mean that the spectrum of admissible physical states is sensitive
to A, and A can be even quantized, getting spectrum. On the other hand,
no quantum transitions are possible between the states with different A, as
it is involved in @) as a modular parameter. If one conseider an alternative
reducible parameterisation of gauge symmetry as it is done in [30], this would
lead to inequivalent BEV-BRST formalism, where A is not explicitly involved
in BRST charge. From this perspective, cosmological constant is the BRST
cocycle, and quantum transitions can be possible between the states with
different A.

Conclusion

Besides action and gauge generators, the unfree gauge symmetry alge-
bra has two more principal constituents: operators of gauge parameter con-
straints and completion functions. Noether identities are modified involving
these constituents (16), (17). This results in modification of structure re-
lations of gauge algebra. Modified Noether identities result in the “global
conserved quantities” in any model with unfree gauge symmetry. The modi-
fication is found for the FP ansatz that accounts for the constraints imposed
on the gauge parameters. This has consequences in the models, including
UG. The BV-BRST field-antifield formalism is worked out that accounts for
the unfree gauge symmetry. The unfree gauge symmetry transformations are
described in terms of general constrained Hamiltonian formalism. The vol-
ume preserving diffeomorphisms are constructed in Hamiltonian form of UG.
Hamiltonian BEFV-BRST formalism is worked out for the systems with unfree
gauge symmetry. Being applied to the UG, it results in previously unknown
ghost vertices in the complete gauge fixed BRST invariant Hamiltonian.
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