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Êàëèáðîâî÷íàÿ ñèììåòðèÿ íàçûâàåòñÿ íåñâîáîäíî-ïîðîæä¼ííîé,
åñëè êàëèáðîâî÷íûå ïðåîáðàçîâàíèÿ îñòàâëÿþò ôóíêöèîíàë äåéñòâèÿ
èíâàðèàíòíûì ïðè óñëîâèè, ÷òî êàëèáðîâî÷íûå ïàðàìåòðû ïîä÷èíåíû
ñèñòåìå äèôôåðåíöèàëüíûõ óðàâíåíèé â ÷àñòíûõ ïðîèçâîäíûõ. Íàèáîëåå
èçâåñòíûì ïðèìåðîì äàííîãî òèïà ñèììåòðèè ÿâëÿåòñÿ äèôôåîìîðôèçì,
ñîõðàíÿþùèé îáú¼ì, ïðåäñòàâëÿþùèé ñîáîé ïðåîáðàçîâàíèÿ êàëèáðîâî÷íîé
ñèììåòðèè óíèìîäóëÿðíîé ãðàâèòàöèè (ÓÃ). Âñå èçâåñòíûå ðàñøèðåíèÿ ÓÃ,
âêëþ÷àÿ âûñøåñïèíîâûå àíàëîãè, òàêæå îáëàäþò íåñâîáîäíî-ïîðîæä¼ííîé
êàëèáðîâî÷íîé ñèììåòðèåé. Ñ ó÷¼òîì îòëè÷èé íåñâîáîäíî-ïîðîæä¼ííîé
êàëèáðîâî÷íîé ñèììåòðèè îò ñèììåòðèè ñ íåîãðàíè÷åííûìè êàëèáðîâî÷íûìè
ïàðàìåòðàìè, ñîîòâåòñòâóþùèå èì àëãåáðû êàëèáðîâî÷íûõ ïðåîáðàçîâàíèé
ñóùåñòâåííî ðàçëè÷àþòñÿ. Ýòè ðàçëè÷èÿ èìåþò ïîñëåäñòâèÿ äëÿ âñåõ
êëþ÷åâûõ ñîñòàâëÿþùèõ îáùåé êàëèáðîâî÷íîé òåîðèè, íà÷èíàÿ ñî âòîðîé
òåîðåìû Í¼òåð, ãàìèëüòîíîâà ôîðìàëèçìà ñî ñâÿçÿìè, ÁÐÑÒ-êîìïëåêñà è
êâàíòîâàíèÿ. Â íàñòîÿùåì îáçîðå ðàññìàòðèâàþòñÿ ìîäèôèêàöèè îáùåé
êàëèáðîâî÷íîé òåîðèèè íà ñëó÷àé íåñâîáîäíî-ïîðîæä¼ííîé êàëèáðîâî÷íîé
ñèììåòðèè, ðàçðàáîòàííûå â ïîñëåäíèå ãîäû.

The gauge symmetry is said unfree if the gauge transformation leaves the action
functional unchanged provided for the gauge parameters are constrained by the sys-
tem of partial di�erential equations. The best known example of this phenomenon
is the volume preserving di�eomorphism being the gauge symmetry of unimodu-
lar gravity (UG). Various extensions are known of the UG, including the higher
spin analogs � all with unfree gauge symmetry. Given the distinctions of the un-
free gauge symmetry from the symmetry with unrestricted gauge parameters, the
algebra of gauge transformations is essentially di�erent. These distinctions have
consequences for all the key constituents of general gauge theory, starting from
the second Noether theorem, Hamiltonian constrained formalism, BRST complex,
and quantization. In this review article, we summarise the modi�cations of general
gauge theory worked out in recent years to cover the case of unfree gauge symmetry.

PACS: 11.15.�q; 11.10.Ef

1. Introduction

The common textbook de�nition of gauge symmetry [1] implies that action
functional is invariant under the gauge variations of the �elds

δϵϕ
i = Ri

α(ϕ)ϵ
α , δϵS(ϕ) ≡ ϵαRi

α(ϕ)∂iS(ϕ) ≡ 0 , ∀ ϵα , (1)
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where DeWitt's condensed notion is used. The gauge generators Ri
α(ϕ) are

assumed to be local di�erential operators which do not vanish on-shell. The
gauge parameters ϵα are supposed to be arbitrary functions of space-time.
This de�nition is a cornerstone of general gauge theory, though the examples
have been long known of the gauge symmetry that do not �t setup (1). The
deviation from (1) is that gauge variation is unfree in the sense that gauge
parameters have to be restricted by the system of partial di�erential equa-
tions (PDE) to leave the action unchanged. One more common assumption
of the general gauge theory [1] is that any on-shell vanishing local quantity
should reduce to the l.h.s. of �eld equations and their derivatives. This
assumption is also invalid in various known examples of unfree gauge sym-
metry [2], [3], [4], [5]. The on-shell trivial quantities exist such that do not
reduce to the �eld equations. This general feature of unfree gauge symmetry
has been �rst noticed in [6].

Let us �rst exemplify these general features of unfree gauge symmetry by
the case of unimodular gravity (UG) [7]� [14]. For basic introduction into the
UG, and further literature, we refer to [15]. Once the metrics are restricted
in UG by the unimodularity condition det g = − 1, gauge symmetry reduces
to the volume preserving di�eomorphisms:

δϵ det g = 0 , δϵgµν = ∇µϵν +∇νϵµ ⇒ ∇µϵ
µ = 0 . (2)

Einstein's equations become traceless, hence they are not transverse. This
makes Λ �integration constant�, not pre-de�ned parameter:

S =

∫
ddxR ,

δS

δgµν
≡ Rµν −

1

d
gµνR ≈ 0 ; (3)

∇ν δS

δgµν
≡ d− 2

d
∂µR ≈ 0 ⇒ R ≈ Λ = const . (4)

On-shell relation R− Λ ≈ 0 is not a di�erential consequence of equations of
motion (EoM's) (3), nor Λ is it a charge of any local conserved current.

Volume preserving di�eomorphisms form the subalgebra

δϵ1δϵ2 − δϵ2δϵ1 = δ[ϵ1,ϵ2] , ∇ · ϵ1,2 = 0 ⇒ ∇ · [ϵ1, ϵ2] = 0 . (5)

The subalgebra is singled out by imposing PDE onto the gauge parameters
ϵµ rather than by explicitly separating subset of generators.

Various generalizations are known of the UG, see [16]� [21]. The most
frequent starting point for modi�cations is that unimodularity condition is

replaced by a more general relation, N = N(
∗
g). In this case, Λ is still an

integration constant (in [20], [21] it is Newtonian constant), but there are
also new options to describe �k-essence� and other phenomena.

Higher spin (HS) linearised gravities provide more examples of unfree
gauge symmetry. They include irreducible HS traceless tensors [4],

Tr h̃ = 0 , δϵ̃ h̃µ1...µs = ∂(µ1 ϵ̃µ2...µs) , Tr ϵ̃ = 0 , ∂ · ϵ̃ = 0 , (6)

as well as �Maxwell-like� HS, tracefull tensors [5],

δϵhµ1...µs = ∂(µ1ϵµ2...µs) , ∂ · ϵ = 0 . (7)
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Both models don't involve auxiliary �elds, unlike Fronsdal's action.
HS gravity models with unfree gauge symmetry admit �global conserved

quantities�, being HS analogs of cosmological constant [22], [23], [24]. Num-
ber of these �HS cosmological constants� is growing with spin.

For s = 3, the analog of scalar curvature is a vector.

Rµ = ∂ν∂λh
µνλ , ∂µRν + ∂νRµ ≈ 0 . (8)

R̃µ = ∂ν∂λh̃
µνλ , ∂µR̃ν + ∂νR̃µ −

2

d
ηµν∂ · R̃ ≈ 0 ; (9)

Instead of ∂µR ≈ 0 for UG, for s = 3 we arrive at (conformal) Killing eqs.
The general solution to eqs (8), (9) reads

Rµ = Λµ + Λµνx
ν , R̃µ = Λµ + Λµνx

ν + Λxµ + Λ′
ν(2x

νxµ − δνµxλx
λ) , (10)

where Λµν = −Λνµ,Λ
′
µ,Λµ,Λ are arbitrary �integration constants�, being the

higher spin analogs of the cosmological constant for the UG.
For s > 3, the higher Ricci's Rµ1...µs−2 of the rank s − 2, or traceless

R̃µ1...µs−2 obey (conformal) Killing tensor eqs, as the di�erential consequences
of EoM's. The rank s− 2 (conformal) Killing tensor is decomposed into the
product of s − 2 (conformal) Killing vectors. Therefore, the number of the
�cosmological constants� is 10× (s−2) for the �Maxwell-like� HS theory, and
15× (s− 2) for the UG-like HS gravity in d = 4.

Notice that all the theories with unfree gauge symmetry admit alternative
description by reducible gauge symmetry with unconstrained gauge parame-
ters [25]. Let us consider some examples of such alternative parametrization.

For massless spin 2 in d = 4,

∂µϵ
µ = 0 <≈> ϵµ = ∂νϵ

µν , ϵµν = − ϵνµ . (11)

Equivalence is modulo (Hodge dualised) De Rham cohomology. This form of
the volume preserving di�eomorphism is a reducible gauge symmetry. Gauge
transformations of gauge parameters read

δωϵ
µν = εµνλρ∂λωρ , δηω

µ = ∂µη . (12)

For the �Maxwell-like� s = 3 in d = 4,

∂νϵ
µν = 0 , ϵµν = ϵνµ <≈> ϵµν = ∂λ∂ρϵ

µνλρ , (13)

where ϵµνλρ = ϵνµλρ, ϵµνλρ = ϵµνρλ. Gauge symmetry is reducible,

δωϵ
µνλρ = ∂σω

µνλρσ , δηω
µνλρσ = ∂τη

µνλρστ , (14)

with gauge parameters of the following symmetry type:

→ → .

For the connection between unfree and reducible gauge symmetry in Hamil-
tonian formalism, see [26].

As one can see from the examples, the dynamics with unfree gauge sym-
metry do not �t in the usual formalism of gauge systems. Below, we brie�y
explain the modi�cations of the general gauge theory which cover the case
of unfree gauge symmetry.
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2. General setup for unfree gauge symmetry, unfree gauge algebra

Consider Lagrangian �eld equations

∂iS(ϕ) ≈ 0 . (15)

Proceeding from the observations noticed in the examples, we assume the
action S(ϕ) to obey modi�ed Noether identities [6], [27]:

Γi
α∂iS + Γa

ατa ≡ 0 , (16)

where Γ's are matrices of di�erential operators, τ are local quantities. Oper-
ator Γa

α has a �nite kernel,

Γa
αua = 0 ⇒ u ∈ K , dimK = k ∈ N . (17)

Relations (16), (17) are replace the common de�nition of gauge symmetry
(1) to account for the unfree gauge variation.

Let us explain now, the natural relation of �the global conserved quan-
taties� and unfree gauge symmetry. Once the kernel is �nite, elements of K
are parameterised by k independent constants ΛI ,

∀u ∈ K ⇒ u = uIΛI , I = 1 . . . k . (18)

The quantities τa are assumed o�-shell independent, while on-shell they re-
duce to elements of K, because of (16):

Ta(ϕ,Λ) ≡ τa(ϕ)− ua(Λ) ≈ 0, ua(Λ) ∈ K . (19)

These relations can be resolved w.r.t. the constants:

JI(ϕ) ≈ ΛI , (20)

that means JI are the global conserved quantities. The constants Λ are under-
stood as modular parameters of the �elds. Speci�c values of Λ's are de�ned
by the �eld asymptotics, or �nite number of derivatives at �xed space-time
point rather than by Cauchy data.

The local Λ-dependent quantities Ta(ϕ,Λ) vanish on-shell, while they do
not reduce to the linear combinations of EoM's:

Ta(ϕ,Λ) = τa(ϕ)− ua(Λ) ≈ 0 , Ta ̸= Θi
a∂iS . (21)

These quantities are termed completion functions.
The modi�ed Noether identity (16) means S(ϕ) is invariant under gauge

transformations
δϵϕ

i = Γi
αϵ

α , (22)

provided for the gauge parameters ϵα are restricted by equations

Γa
αϵ

α = 0 . (23)

With this regard, Γa
α are termed gauge parameter constraint operators.

For gauge symmetry with unrestricted parameters, any on-shell trivial
quantity reduces to linear combination of EoM's, while the gauge parameters
are unrestricted. Commutation relations between gauge transformations, and
the higher structure relations of gauge algebra, are deduced from Noether
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identities (1) [1]. In the case of unfree gauge symmetry (16), (17), any on-
shell trivial quantity reduces to linear combination of EoM's and completion

functions Ta(ϕ,Λ). The gauge parameters ϵα are restricted by the equations

(23).
Structure relations of unfree gauge symmetry algebra follow from modi�ed

Noether identities (16), (17), and they involve, besides gauge generators and
EoM's, also completion functions τa and gauge parameter operators Γa

α.
Proceeding from modi�ed Noether identities, with appropriate regularity

assumptions for the generators and completion functions [6], [27], we arrive at
the structure relations involving gauge generators and completion functions:

Γi
α∂iτa = Ri

αa∂iS +Rb
αaτb +WabΓ

b
α ; (24)

Γi
α∂iΓ

j
β − Γi

β∂iΓ
j
α = Uγ

αβΓ
j
γ + Eaj

αβτa + Eij
αβ∂iS +Rj

αaΓ
a
β −Rj

βaΓ
a
α ; (25)

Γi
α∂iΓ

a
β − Γi

β∂iΓ
a
α = Uγ

αβΓ
a
γ +Ra

αbΓ
b
β −Ra

βbΓ
b
α + Eab

αβτb + Eai
αβ∂iS , (26)

where the structure coe�cient Wab is on-shell symmetric, and the structure
functions E are antisymmetric, Eij

αβ = −Eji
αβ, E

ab
αβ = −Eba

αβ.
Relation (24) means the completion functions are on-shell invariant under

unfree gauge variation; (25) demonstrates possible o�-shell disclosure of the
composition of gauge transformations, including deviation of the parameters
from the equations restricting them; and relation (26) demonstrates that
equations imposed on gauge parameters are gauge invariant under unfree
gauge variation.

3. Faddev-Popov (FP) action for unfree gauge symmetry, BV-BRST
formalism

Given the distinctions of the unfree gauge symmetry algebra from the
case with unrestricted gauge parameters, the quantisation has to be corre-
spondingly modi�ed. Let us consider the modi�cation at the level of FP
recipe [6].

Impose independent gauges χI(ϕ), the FP matrix is rectangular,

δεχ
I

δεα
= Γi

α(ϕ)∂iχ
I(ϕ) . (27)

The number of gauges plus the number of equations restricting gauge param-
eters equals to the number of gauge parameters. The unfree gauge variation
has to be transverse to the gauge condition surface.

FP ghosts are introduced being restricted by the equations

Γa
α(ϕ)C

α = 0 , gh(Cα) = 1 , ϵ(Cα) = 1 , (28)

where Γa
α(ϕ) are operators of gauge parameter constraints.

Anti-ghosts are introduced for gauges and equations imposed on ghosts:

gh(C̄I) = gh(C̄a) = −1 , ϵ(C̄I) = ϵ(C̄a) = 1 , gh(πI) = ϵ(πI) = 0 . (29)

The FP path integral is adjusted to the case of unfree gauge symmetry:
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Z =

∫
[dΦ] exp

{ i

ℏ
SFP (ϕ)

}
, Φ = {ϕ, πi, C

α, C̄I , C̄a} , (30)

where the FP action reads

SFP = S(ϕ) + πIχ
I(ϕ) + C̄IΓ

i
α(ϕ)∂iχ

I(ϕ)Cα + C̄aΓ
a
α(ϕ)C

α . (31)

Path integral (30) remains unchanged under variation of gauge χ in the action
(31), see in [6]. Notice that even for the UG, the FP receipt has been know
only for special gauge conditions [11] such that lead to a non-local action,
while (31) works well for any local gauge.

The starting point of the BV-BRST formalism extension to the unfree
gauge symmetry is the idea that ghosts are constrained

Γa
αC

α = 0 . (32)

This equation is considered on equal footing with the original EoM's. The
equation is non-Lagrangian, so it has to be assigned with the anti�eld ξa. For
introduction of anti�elds in non-Lagrangian BV-BRST formalism, see [28].

Once eq. (32) is ghost number one, the anti-�eld is ghost number zero!
All the �elds, including original ones, ghosts, and anti�elds ξ are equipped
with anti-canonical conjugate. The grading is arranged in the Table 1.

Table 1.

ϕi ξa Cα ϕ∗
i ξ∗a C∗

α

ε 0 0 1 1 1 0
gh 0 0 1 − 1 − 1 − 2
deg 0 1 0 1 1 2

Given the anti-canonical pairs, the anti-bracket reads

(A,B) =
∂RA

∂φI

∂LB

∂φ∗
I

− ∂RA

∂φ∗
I

∂LB

∂φI
, (33)

where φI = (ϕi, ξa, Cα), φ∗
I = (ϕ∗

i , ξ
∗
a, C

∗
α), and

gh((A,B)) = gh(A) + gh(B) + 1 , ε((A,B)) = ε(A) + ε(B) + 1 . (34)

The BV action is de�ned by the master equation

(S, S) = 0 . (35)

The solution is sought for as the expansion w.r.t. resolution degree

S =
∑
k=0

Sk , gh(Sk) = ε(Sk) = 0 , degSk = k . (36)

The boundary condition is de�ned by the �rst two orders

S0 = S(ϕ), S1 = τaξ
a + (ϕ∗

iΓ
i
α + ξ∗aΓ

a
α)C

α , (37)

where S is the original action, while S1 includes the basic constituents of
unfree gauge symmetry: completion functions τa, gauge generators Γ

i
α, and

operators of gauge parameter constraints Γa
α. The second order reads
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S2 =
1

2
(C∗

γU
γ
αβ + ϕ∗

jϕ
∗
iE

ij
αβ + 2ξ∗aϕ

∗
iE

ia
αβ + ξ∗b ξ

∗
aE

ab
αβ)C

αCβ

− ξb(ϕ∗
iR

i
bα + ξ∗aR

a
bα)C

α − 1

2
ξbξaWab .

(38)

Master equation (35) identi�es all the coe�cients in S2 with structure func-
tions in structure relations (24)�(26) of unfree gauge symmetry algebra.

BRST di�erential s is anti-Hamiltonian vector �eld for the master action:

sA = (A, S) , s2 = 0 , gh(s) = 1 , ε(s) = 1 . (39)

It can be decomposed w.r.t. resolution degree

s = δ + γ +
(1)
s + . . . , deg δ = − 1 , deg γ = 0 , deg

(1)
s = 1 . (40)

Because of master equation, the �rst orders are connected by the relations

s2 = 0 ⇒ δ2 = 0 , δγ + γδ = 0 , γ2 + (δ
(1)
s +

(1)
s δ) = 0 , (41)

where Kozul-Tate di�erential δ is de�ned as

δA = − ∂RA

∂ϕ∗
i

∂iS − ∂RA

∂C∗
α

(ϕ∗
iΓ

i
α + ξ∗aΓ

a
α) +

∂RA

∂ξa
Γa
αC

α . (42)

By virtue of Noether identity for unfree gauge symmetry, δ squares to zero,

δ2A = − ∂RA

∂C∗
a

(Γi
α∂iS + Γa

ατa) ≡ 0 . (43)

One can verify that δ is acyclic in strictly positive resolution degrees, that
insures existence of solution for s in the deg > 0, Q.E.D. For more details,
see [27].

Given the extension of the BV formalism to the case of unfree symmetry,
one can seek for consistent deformations of the models of this class and
systematically quantize them.

4. Unfree gauge symmetry in Hamiltonian formalism

Hamiltonian action for the theory with primary constraints Tα reads

SH =

∫
dt
(
piq̇

i −HT

)
, HT = H + λαTα , (44)

where the role of �elds is played by canonical variables qi, pi, and Lagrange
multipliers λα. Assume that there are no second-class constraints. Conser-
vation of Tα leads to secondary constraints τa,

Ṫα ≡ {Tα , HT} = W β
αTβ(q, p) + Γa

ατa(q, p) ≈ 0 , (45)

where W,Γ are local di�erential operators, Γ has �nite kernel. Secondary
constraints τ are considered as completion functions, and gauge symmetry
should be unfree. Once the kernel of Γ is �nite, completion functions can be
rede�ned by adding modular parameters Λ to make τ vanishing on-shell,

Γa
ατa = 0 ⇔ τa = Λa , Λa ∈ KerΓa

α : τa 7→ τa − Λa . (46)
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Assume no tertiary constraints appear,

τ̇a ≡ {τa , HT} = Wα
a Tα(q, p) +W b

aτb(q, p) ≈ 0 . (47)

For more general case, see [22].
Termination of the Dirac-Bergmann algorithm means the modi�ed gauge

identities as the EoM's turn out dependent with their di�erential conse-
quences and completion functions :

{Tα , q
i}δSH

δqi
+ {Tα , pi}

δSH

δpi
+
(
δβα

d

dt
−W β

α

)δSH

δλβ
+ Γa

ατa ≡ 0 ;

{τa , qi}
δSH

δqi
+ {τa , pi}

δSH

δpi
−Wα

a

δSH

δλα
+
(
− δba

d

dt
+W b

a

)
τb ≡ 0 .

(48)

Corresponding unfree gauge symmetry transformations read

δεO(q, p) = {O , Tα}εα + {O , τa}εa ,
δελ

α = ε̇α +Wα
β ε

β +Wα
a ε

a .
(49)

Constraints on gauge parameters take the form(
δab

d

dt
+W a

b

)
εb + Γa

αε
α = 0 . (50)

Direct computation con�rms that action (44) is invariant under transforma-
tions (49), (50),

δεSH ≡
∫

dt
[(
(δab

d

dt
+W a

b )ε
b + Γa

αε
α
)
τa −

1

2

d

dt

(
Tαε

α + τaε
a
)]

= 0 . (51)

For the linearised unimodular gravity (LUG), Hamiltonian action (44)
reads

SH [h,Π, λ] =

∫
d4x

(
Πijḣij −H − λiTi

)
, Ti = − 2∂jΠij ,

H = ΠijΠij −
1

2
Π2 +

1

4

(
2∂ihij∂kh

kj − ∂ih∂
ih− ∂ihjk∂

ihjk
)
,

(52)

where i, j, k = 1, 2, 3, h = ηijhij, Π = ηijΠ
ij, λi = h0i.

Conservation of primary constraints Ti leads to the secondary ones,

Ṫi = {Ti, H} = − ∂iτ0 = 0 , τ0 ≡ ∂i∂jhij − ∂i∂
ih− Λ = 0 . (53)

The secondary constraints are conserved by virtue of the primary ones:

τ̇0 = {τ0, H} = − ∂iTi . (54)

Unfree gauge symmetry transformations read

δεhij = ∂iεj + ∂jεi , δεΠ
ij = − ∂i∂jε0 + ηij∂k∂

kε0 , δελ
i = ε̇i + ∂iε0 . (55)

Gauge variation of the action reads

δεSH ≡
∫

d4x
(
(ε̇0 + ∂iε

i)τ0 − ∂0(Tiε
i + τ0ε

0)
)
. (56)

So, gauge parameters have to obey equation

ε̇0 + ∂iε
i = 0 . (57)

For more detailed description, see [29]. For analogue in the non-linear UG,
see [30].
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5. Hamiltonian BFV-BRST formalism

To avoid technical complexities, we restrict consideration by simpli�ed
involution relations

{Tα, H} = V a
α τa , {τa, H} = V α

a Tα ,

{Tα, Tβ} = {Tα, τa} = {τa, τb} = 0 ,
(58)

with structure coe�cients V a
α , V

α
a being constants.

Complete BRST charge reads

Q = TαC
α + τaC

a + παP
α (59)

Given the gauge conditions,

λ̇α − χα = 0 , (60)

the gauge fermion is introduced,

Ψ = C̄αχ
α + λαPα , (61)

and gauge-�xed Hamiltonian is de�ned by the usual rule,

HΨ = H + {Q,Ψ} = H − PαV
α
a Ca − P aV

a
αC

α + Tαλ
α + παχ

α

+PαP
α + Cα{χα, Tβ}Cβ + Cα{χα, τa}Ca .

(62)

The grading is arranged in the Table 2. For more detailed description, see
[22], [26], [31].

Table 2.

Cα Pα Ca P a λα πα Pα Cα

ε 1 1 1 1 0 0 1 1
gh 1 − 1 1 − 1 0 0 1 − 1

For the UG, the complete BRST charge reads [30]

Q =

∫
d3x

(
TiC

i + τC − P iC
j∂jC

i − P∂i(C
iC)

+P i(−
∗
g)− 1 ∗gijC∂jC + πiP

i
)
, Ti = − 2

∗
gij

(
∂kΠ

kj +
∗
Γj
klΠ

kl
)
,

τ = H − Λ = − 1
∗
g
GijklΠ

ijΠkl +
∗
R− Λ , Λ = const .

(63)

Introducing the gauge fermion

Ψ =

∫
d3x

(
Ciχ

i + PiN
i
)
, χi = (− ∗

g)− 1∂j
∗
gji +N j∂jN

i , (64)

we arrive to the complete gauge-�xed BRST-invariant Hamiltonian

HΨ = H + {Q,Ψ} =

∫
d3x

{
H + TiN

i + πiχ
i − P∂iC

i

−P i(−
∗
g)− 1 ∗gij∂jC + P∂i(CN i) + P i(∂jC

iN j − Cj∂jN
i)

−Ci(−
∗
g)− 1

(
2∂j

∗
gij

∗
∇kC

k + ∂j(
∗
∇jCi +

∗
∇iCj)

)
+Ci(−

∗
g)− 1

(
∂j

∗
gij(− ∗

g)− 1ΠC − 2∂j((−
∗
g)− 1ΠijC)

+ ∂j(
∗
gij(− ∗

g)− 1ΠC)
)
+ Ci(∂jN

iP j +N j∂jP
i) + P iP

i
}
.

(65)
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As one can see, the Hamiltonian does not involve Λ, nor does it contain
four-ghost vertices, unlike the GR analog. The BRST charge (63) involves
cosmological constant explicitly. It is included in Q in a manner similar to
inclusion of the intercept in the bosonic string theory. As the theory is non-
renormalisable, discussion of the consequences of this speci�cs is somewhat
speculative. If the way was known to make serious quantum calculations,
this could mean that the spectrum of admissible physical states is sensitive
to Λ, and Λ can be even quantized, getting spectrum. On the other hand,
no quantum transitions are possible between the states with di�erent Λ, as
it is involved in Q as a modular parameter. If one conseider an alternative
reducible parameterisation of gauge symmetry as it is done in [30], this would
lead to inequivalent BFV-BRST formalism, where Λ is not explicitly involved
in BRST charge. From this perspective, cosmological constant is the BRST
cocycle, and quantum transitions can be possible between the states with
di�erent Λ.

Conclusion

Besides action and gauge generators, the unfree gauge symmetry alge-
bra has two more principal constituents: operators of gauge parameter con-
straints and completion functions. Noether identities are modi�ed involving
these constituents (16), (17). This results in modi�cation of structure re-
lations of gauge algebra. Modi�ed Noether identities result in the �global
conserved quantities� in any model with unfree gauge symmetry. The modi-
�cation is found for the FP ansatz that accounts for the constraints imposed
on the gauge parameters. This has consequences in the models, including
UG. The BV-BRST �eld-anti�eld formalism is worked out that accounts for
the unfree gauge symmetry. The unfree gauge symmetry transformations are
described in terms of general constrained Hamiltonian formalism. The vol-
ume preserving di�eomorphisms are constructed in Hamiltonian form of UG.
Hamiltonian BFV-BRST formalism is worked out for the systems with unfree
gauge symmetry. Being applied to the UG, it results in previously unknown
ghost vertices in the complete gauge �xed BRST invariant Hamiltonian.
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