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Çàãàäêè òåìíîé ýíåðãèè è òåìíîé ìàòåðèè ïîðîäèëè ìíîãî íîâûõ
âàðèàíòîâ òåîðèè ãðàâèòàöèè. Âñå îíè áåçóñëîâíî äîëæíû óäîâëåòâîðÿòü
ïðèíöèïó ñîîòâåòñòâèÿ ïî îòíîøåíèþ ê îáùåé òåîðèè îòíîñèòåëüíîñòè (ÎÒÎ),
êîòîðàÿ íå ïðîòèâîðå÷èò âñåì äî ñèõ ïîð èçâåñòíûì òåñòàì. Áèãðàâèòàöèÿ
ÿâëÿåòñÿ îäíîé èç ìîäèôèêàöèé ÎÒÎ, ñîõðàíÿþùåé ëîðåíö-èíâàðèàòíîñòü.

The puzzles of dark energy and dark matter provided a lot of new variants
of the theory of gravity. All of them must ful�ll the correspondence principle in
relation to the General Relativity (GR) as the GR ful�lls all known experimental
and observational tests. The bigravity is one of the GR modi�cations that preserves
Lorentz-invariance.

PACS: 44.25.+f; 44.90.+c

Introduction

The idea to work with two spacetime metrics is old enough. N. Rosen [1,2]
was the �rst who introduced the Minkowskian metric to de�ne the gravita-
tional energy-momentum tensor. This �at metric also was used by Fierz and
Pauli [3] to develop a theory of massive tensor �eld. Later some authors
attempted to elaborate nonlinear massive gravity [4] and some others tried
to invent a new gravitational theory based on two metrics [5]. The great
progress was achieved after discovering a new potential for massive grav-
ity by de Rham, Gabadadze and Tolley (dRGT) [6] and application of this
potential to bigravity by Hassan and R. Rosen [7].

This article provides a brief introduction to main ideas of the bigravity
theory. We discuss the Lagrangian, the massive and massless perturbations
and the simplest cosmological scenario in this theory.

Let us comment on the notations. fµν and gµν are two spacetime metrics,

Mf andMg are the corresponding Planck masses, Lf
M and Lg

M are Lagrangian
densities for the two species of matter minimally coupled to the corresponding
metrics.
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The Lagrangian

If we start with an action being a sum of two copies of the GR Lagrangian

S0 =

∫
d4x

(
M2

f

2

√
−ffµνR(f)

µν + L(f)
M (ψA, fµν)

)
(1)

+

∫
d4y

(
M2

g

2

√
−ggµνR(g)

µν + L(g)
M (ϕA, gµν)

)
, (2)

the new theory will have two di�eomorphism invariances

xµ → x′
µ
(xα), yµ → y′

µ
(yα). (3)

But after introducing a potential of interaction

S = S0 −m2M2
g

∫
d4z

√
−gU(gµν , fµν), (4)

we stay with only one (diagonal) di�eomorhism invariance. Let us suppose
the potential U is composed of invariants of matrix Y = ||gµαfαν ||. It is
possible to take the symmetric polynomials expressed through eigenvalues or
through traces of powers of Y

e0 = 1,

e1 = λ1 + λ2 + λ3 + λ4 ≡ TrY,

e2 = λ1λ2 + λ2λ3 + λ3λ4 + λ1λ3 + λ1λ4 + λ2λ4 ≡
1

2

(
(TrY)2 − TrY2

)
,

e3 = λ1λ2λ3 + λ2λ3λ4 + λ1λ3λ4 + λ1λ2λ4 ≡
1

6

(
(TrY)3 − 3TrYTrY2 + 2TrY3

)
,

e4 = λ1λ2λ3λ4 ≡ detY.

For example, the RTG [4] (Relativistic Theory of Gravitation) by A.A. Lo-
gunov and his collaborators is a theory of massive gravity with the potential

√
−gU =

(√
−g
(
1

2
TrY − 1

)
−
√

−f
)
, (5)

where the second metric fµν is treated as a non-dynamical Minkowskian
background.

In general the bigravity theory constructed according to Eq.(4) in 4-
dimensional spacetime has 8 degrees of freedom, i.e. one more than required
for one massless and one massive �elds of spin-2. Also it has been shown [8]
that there is a negative kinetic energy for one degree of freedom, so it be-
haves as a ghost. Therefore for a long period of time it was believed that the
bigravity (and also nonlinear massive gravity) was impossible to construct,
nevertheless, some attempts were made [5].
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The dRGT potential

As a result of interesting preliminary work on the higher dimensional
models, Galileons and decoupling limits de Rham, Gabadadze and Tolley
have found a new formula for the potential. It can be expressed as an ar-
bitrary linear combination of the symmetric polynomials for a square root
matrix X =

√
Y

UdRGT =
i=4∑
i=0

βiei(X).

It was proved in di�erent ways in publications [9�16] and some others that
this potential allows to obtain a theory of bigravity (of massive gravity also)
with a correct number of degrees of freedom and free of ghosts.

Evidently, the bigravity occurs a more complicated theory than the GR.
Besides, it introduces some arbitrary new constants. And problems with the
causality appear as it has two di�erent lightcones in spacetime de�ned by
two metric tensors. Nevertheless, the bigravity allows to consider nonlinear
interaction of massive and massless gravity, and pretends to solve the dark
energy problem.

When we speak about massless and massive gravitational �elds we are
to remember that this classi�cation is possible only for metric perturbations
on the speci�c backgrounds. Let us consider the background of proportional
metrics

f̄µν(x
α) = c2(xα)ḡµν(x

α), (6)

as a solution of the vacuum (free of matter) bigravity equations

Gµν(ḡ) + V g
µν = 0, Gµν(f̄) + V f

µν = 0. (7)

As usual, there are Bianchi identities for the Einstein tensors

∇µ
gG

g
µν ≡ 0, ∇µ

fG
f
µν ≡ 0, (8)

and therefore we get on-shell equations

∇µ
gV

g
µν ≡ 0, ∇µ

fV
f
µν ≡ 0. (9)

It follows from the above that c must be a constant.
Expressions for matrices Y and X become very simple in this case

fµν = c2gµν , → Y = ||g−1f || = c2I, X =
√
Y = cI. (10)

And as a result

V g
µν = gµνΛg, Λg = m2B0(c), (11)

V f
µν = fµνΛf , Λf =

m2

α2

B1(c)

c3
, (12)
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where we use the following notations

α =
Mf

Mg

, Bi(c) = βi + 3βi+1c+ 3βi+2c
2 + βi+3c

3. (13)

In order to discuss the graviton mass we are to consider small pertur-
bations on maximally symmetric space-times. Then for the background of
proportional metrics we have

Gµν(ḡ) + ḡµνΛg = 0, Gµν(f̄) + f̄µνΛf = 0, (14)

and as the Einstein tensor does not change when metric is multiplied by
constant we must have

Λg = c2Λf . (15)

This provides the following equation for c:

α2β3c
4 + (3α2β2 − β4)c

3 + 3(α2β1 − β3)c
2 + (α2β0 − 3β2)c− β1 = 0. (16)

Let us consider the simplest case when both tensors gµν and fµν are close
to the common �at background

Λf = 0 = Λg, c = 1, ḡµν = ηµν = f̄µν . (17)

Linear perturbations hµν and ℓµν are as follows

gµν = ḡµν +
1

Mg

hµν , fµν = ḡµν +
1

Mf

ℓµν , (18)

and for simplest case (β0 = 3, β1 = −1, β2 = 0 = β3, β4 = 1) we get the
following Fierz-Pauli term in the Lagrangian

−
m2M2

e�
4

[
vµνv

µν −
(
vµµ
)2]

, (19)

where

vµν =Me�

(
hµν
Mg

− ℓµν
Mf

)
, Me� =

√
M2

g +M2
f . (20)

Let us now consider a more general case [17] when c ̸= 1 and two species of
matter with proportional energy-momentum tensors are allowed T̄ f

µν = α2T̄ g
µν .

The metric perturbations on this background can be de�ned as follows

gµν = ḡµν +
1

Mg

hµν , fµν = c2ḡµν +
c

Mf

ℓµν . (21)

It can be shown that the massive Mµν and massless Gµν �uctuations are the
following

Gµν =
1

1 + c2α2
(hµν + cαℓµν) , (22)

Mµν =
1

1 + c2α2
(ℓµν − cαhµν) , (23)
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and the Fierz-Pauli mass is

m2

FP = m4

(
1

c2M2
f

+
1

M2
g

)
(β1c+ 2β2c

2 + β3c
3). (24)

The e�ective Planck mass now is given by the following formula

Mp =Mg

√
1 + c2α2 ≡

√
M2

g + c2M2
f . (25)

The linearized equations for massless and massive �uctuations of metrics on
this background with account for the matter �uctuations are as follows

Ēρσ
µνGρσ + ΛgGµν =

1

Mp

(
δT (g)

µν + c2δT (f)
µν

)
, (26)

Ēρσ
µνMρσ + ΛgMµν =

c

Mpα

(
δT (f)

µν − α2δT (g)
µν

)
−

−
m2

FP
2

(Mµν − ḡµν ḡ
ρσMρσ), (27)

where

Ēρσ
µν = −1

2

(
δρµδ

σ
ν ∇̄2 + ḡρσ∇̄µ∇̄ν − δρµ∇̄σ∇̄ν − δρν∇̄σ∇̄µ−

− ḡρσḡµν∇̄2 + ḡµν∇̄ρ∇̄σ − ḡµνR̄
ρσ + δρµδ

σ
ν R̄
)
. (28)

Cosmology

Einstein was the �rst who tried to apply the GR equations to the whole
Universe. But he was not brave to let it be dynamical. It was Alexander
Friedmann [18] who predicted the expantion of the Universe in 1922.

In standard notations the homogeneous and isotropic Universe is de-
scribed by metric

ds2 = −dt2 +R2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

)
(29)

where only one of the opportunities k = −1, 0,+1 must be chozen. The
matter, i.e. a source of gravitation, is also supposed to be homogeneous
isotropic and at rest. Usually, the ideal �uid with energy-momentum tensor

Tµν = diag(ρ(t), p(t), p(t), p(t)) (30)

is chozen.
The main Friedmann equation is a constraint from the Hamiltonian point

of view, because it is 1st order in time derivatives

3

(
Ṙ

R

)2

+
3k

R2
=

ρ

M2
g

+ Λ ≡ 1

M2
g

(
ρ+M2

gΛ
)
, (31)
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therefore the data taken in arbitrary instant of time H(t0), ρ(t0), R(t0) must
ful�l it. In the l.h.s of the Friedmann equation we see the Hubble constant
H = Ṙ

R
and the curvature parameter k. For brevity here we consider only

the �at space case k = 0.
The second Friedmann equation contains 2nd order time derivatives R̈

Ḣ = − 1

M2
g

(ρ+ p). (32)

The energy-momentum conservation law

ρ̇ = −3H(ρ+ p). (33)

follows from Eqs. (31,32).
In bigravity, see for example [19�21], Friedmann's ansatz is similar to the

GR case. As the starting point one usually chooses the two diagonal metrics
with the same curvature parameter k

ds2g = −dt2 +R2
g(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

)
, (34)

ds2f = −N(t)2dt2 +R2
f (t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

)
, (35)

below we consider only �at spatial geometry k = 0. The spatial scale factors
Rg and Rf and the time scales in general are di�erent, the ratio y = Rf/Rg

is a suitable dynamical variable.
The 1st order Friedmann equations

3H2
g =

ρg
M2

g

+ Λg(y), (36)

3H2
f =

ρf
M2

f

+ Λf (y), (37)

provide us with a dynamical dark energy, i.e. we get two functions of y
instead of cosmological constants

Λg(y) = m2
(
β0 + 3β1y + 3β2y

2 + β3y
3
)
, (38)

Λf (y) = m2
M2

g

M2
f

(
β1
y3

+ 3
β2
y2

+ 3
β3
y

+ β4

)
. (39)

There is a secondary constraint following from dynamics

Hg = yHf . (40)

To simplify the situation let us put ρf = 0 = pf , then

3H2
g =

ρg
M2

g

+ Λg(y), (41)

3H2
f = Λf (y). (42)
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We also can derive the evolutionary equation for the matter

ρ̇g = −3Hg(ρg + pg), (43)

and for variable y
ẏ = (N − y)Hg. (44)

By combining equations (38) � (42) it is possible to express ρg or Hg as
functions of y. The inverse problem has up to 4 real solutions because in
order to �nd y we are to solve the algebraic equation:

M2
g

M2
f

(
β1
y

+ 3β2 + 3β3y + β4y
2

)
− β0 − 3β1y − 3β2y

2 − β3y
3 =

ρg
m2M2

g

. (45)

If we believe in the Big Bang scenario starting from the almost in�nite
matter density ρg and asymptotically going to the amost zero ρg, then we
classify the solutions of Eq. (45) y = y(ρg(t)) as follows:

� The �nite branch y → 0 when ρg → ∞. The ratio of scale factors y
then is monotonically increasing and tends to a constant value when
ρg tends to zero.

� The in�nite branch y → ∞ when ρg → ∞. This ratio is monotonically
decreasing up to �nite value.

� Two other cases are treated as exotic branches.

From Eq. (44) we see that y = const in two cases:

1. when the two metrics are proportional: N = y,

2. or when cosmology is static: Hg = 0 = Hf ,

the last case is treated as unphysical.
The bigravity cosmological solution with proportional metrics

ds2f =

(
Rf

Rg

)2

ds2g, Hg = NHf = const, (46)

provides de Sitter solutions for both metrics. The matter should be dissolved
completely or should have vacuum equation of state according to Eq. (43).

If we start from current data H(t0), ρg(t0) where t0 is supposed to be
unknown we are able to calculate the whole evolution both in the past and
in future directions. Let us take the �nite branch solution of Eq. (45). Then
the age of Universe t0 can be found from equation y(0) = 0. The algorithm of
calculations is the following. We are solving the evolution equation for y(t),
i.e. Eq. (44) with the initial condition y(t0) found from Eq. (45) given initial
data for observable ρg(t0). N = N(y) can be found from the requirement
of conservation the secondary constraint Hg = yHf during evolution, and
Hg(y) is given by the Friedmann equation.
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Conclusion

There is a hope that the bigravity can explain accelerated expansion of
the Universe and the cosmological constant problem. Some people believe
that the dark matter may also �nd an explanation in this theory. In recent
works [22�25] it was shown that there is a domain in the space of parameters
where the bigravity is in full correspondence with all the observation data.

Of course, one may �nd a lot of interesting questions that are not answered
yet. For example, is there only one form of matter or maybe two of them?
In the �rst case, an open question is how the coupling of matter with the
two metrics is organized? What is the best metric for matter? Does the
matter minimally interacts with only one metric �eld or with a combination
of the two metrics called an e�ective metric? Is there any combination of
gµν and fµν which is minimally coupled to matter? We address a reader to
some articles [11, 15, 20] where this problem is discussed. One proposal was
an e�ective metric

Ge�µν = (EA
µ + ξFA

µ )(EνA + ξFνA), (47)

but it was proved that this theory would not be ghost-free. Another idea is
to get a new (spatial) metric Gij from the algebra of Hamiltonian constraints
where we have an equation

{R(x),R(y)} = Gij(Rj(x)δ,i(x− y)−Rj(y)δ,i(y − x)), (48)

but it is found [15] that both spatial metrics may appear in the above formula.
We come to the following conclusions.

� Bigravity is motivated theoretically and observationally

� Bigravity is not so nice as General Relativity and contains 6 arbitrary
parameters

� Bigravity provides solutions for self-accelerated Universe

� Bigravity maybe has relations to dark matter

� Bigravity survives all the cosmological and local tests (as also ΛCDM
model does)

� Bigravity has limits to GR and to dRGT massive gravity

� But questions prevail over answers
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