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Ïðåäñòàâëåí êðàòêèé èñòîðè÷åñêèé îáçîð ðàçâèòèÿ òåîðèé èñêðèâëåííîãî
èìïóëüñíîãî ïðîñòðàíñòâà âìåñòå ñ êîíöåïòóàëüíûìè âîïðîñàìè, âîçíèêàþùèìè èç-
çà íåÿñíîñòåé, ïðèñóùèõ ôîðìóëèðîâêàì ýòèõ òåîðèé. Äàí êðàòêèé îáçîð íåäàâíåé
ïîïûòêè ñèñòåìàòè÷åñêîé àêñèîìàòèçàöèè, îñíîâàííîé íà ïðèíöèïå ìèíèìàëüíîãî
ðàñøèðåíèÿ.

A short historical review of the development of the theories on a curved momentum
space is presented, together with the conceptual issues arising from the inherent ambigu-
ities in formulation of these theories. A brief overview of a recent attempt at systematic
axiomatization, following the principle of minimal extension, is provided.

1. Introduction

Our inability until today to unify the concepts of quantum mechanics with those
of general relativity into a single consistent framework points towards a possible nec-
essary modi�cation of our understanding of the structure of space-time at the smallest
scales. Some prominent examples of such modi�cations come from string theory, loop
quantum gravity, doubly special relativity and noncommutative geometry.

The same e�ect could be reached by studying the corresponding modi�cations of
the structure of momentum space. This idea was contemplated already by Heisenberg,
while the �rst concrete model was published by Snyder in 1947 [1]. The motivation
behind Heisenberg et al was an attempt to resolve the conceptual issues of quantum
mechanics itself, which, despite its operational success, still plague it until today [2].
The motivation behind Snyder's work was to cure the in�nities in the then emerging
theory of quantum electrodynamics.

In this short note we review historical development of the ideas related to the
generalization of the geometry of the momentum space, from its beginnings motivated
by the in�nities in the �eld theory until today where the principal motivation for the
study of such deformations comes from quantum gravity considerations. We also
highlight some key conceptual problems and the inherent ambiguities which arise
when trying to de�ne a modi�ed theory that is far beyond our experimental reach.

2. Early history

With the development of quantum mechanics, the questions of the fundamental
structure of space-time and the momentum started to emerge. Born, Heisenberg,
Infeld and Wataghin were considering the lattice structure of space-time at the small-
est scales as early as 1930 [3]. Pauli was thinking about the general geometry of
the energy-momentum space. Snyder got aquinted with this idea while working with
Pauli. In 1947 he published a �rst paper on the subject, with the next one following
shortly after [4]. This was about the same time as the program of regularization and
renormalization was being developed. Initiated by Stueckelberg and Petermann [5],
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Gell-Mann and Low [6], and further developed through the works, among others, of,
Weinberg [7], t'Hooft and Veltman [8], and Wilson [9], it provides a systematic way of
dealing with in�nities leading to �nite values of the amplitudes, as functions of small
number of experimentally obtainable parameters, at all orders of the perturbation
theory. This made QED one of the most succesful physical theories ever.

Subsequently, Snyder's work did not attract much attention [10]. In the period
from early 1960-ies until the late 1980ies the theory on curved momentum space
was further developed in the works of several prominent Soviet authors, including,
among others, Gol'fand [11], Mir-Kasimov [12], Kadyshevsky [13] and Tamm [14].
Several very interesting proposals for the de�nition of such theories have been given.
We point out to a very beautiful series of papers by Kadyshevsky et al [15] on one
possible formulation of �eld theories in this context.

3. Modern days

Late 1980ies and early 1990ies witnessed the development of several new ap-
proaches in mathematical physics as well as pure mathematics. Noncommutative
geometry is shown to arise in the string theory [16]. The study of the inverse
scattering problem led to deformations of matrix groups and their corresponding
Lie algebras [17, 18], and the same deformed structures appeared in the theory of
quantum groups with the development of di�erential calculus on noncommutative
spaces [19,20]. Allthough they involve a much wider class of noncommutativity then
the one proposed by Snyder, Snyder's work was duly recognized as a pioneering step
in this direction, which led to a surge in the interest for it.

The predominant motivation today for the study of noncommutative geometry is
the search for the theory of quantum gravity. One can speak of the three main classes
(with a plethora of sub-classes) of noncommutativity models: the noncommutativ-
ity related to Snyder's model and its generalizations [21�23], the noncommutativity
arising from di�eomorphisms of the �at space [24], and the so-called canonical non-
commutativity [25]. Although in what follows we concider the Snyder model, many
of the conceptual issues we present hold equally also for the other types of noncom-
mutativity.

This also led to the development of concepts and ideas beyond the noncommu-
tativity itself. Two prominent examples are the doubly special relativity and the
relative locality. For a review on these approaches we refer to [26,27].

4. Conceptual di�culties

The mathematical properties of the background on which a new physical theory
is to be developed, although well established, are not enough to de�ne the dynamics
in a unique non-ambigous way. This comes from the fact that any dynamics nec-
essarily incorporates a set of fundamental physical principles in addition to the set
of physical parameters, both of which are rooted in the experimental observation.
In any extension of a present theory outside the experimental scope, the necessary
question emerges about which of the physical principles, symmetries and laws re-
main valid, and which get broken or deformed. For instance, the Lorentz symmetry,
which is a cornerstone of our contemporary understanding of space-time and matter,
may very well turn out to be a low energy-approximation of something more funda-
mental. Even if one assumes validity of all of symmetries and physical principles in
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the new extended theory, this is still not enough to single out one in the in�nity of
mathematically allowed possibilities.

Say, for example, we have a system that is standardly described by a Hamiltonian
H0. One then naturally asks what is this system described by in a new modi�ed
theory. Assuming that the new theory even allows for a Hamiltonian description, one
introduces a constraint

lim
P→∞

H[P ] = H0, (1)

where P denotes the momentum scale on which the e�ects of new physics become
appriciable, usually considered to be many orders of magnitude above the typical
scales of our best experiments.

Any function H[P ] that satis�es the above constarint is a viable candidate for
the description of new physics. Even if one chooses to maintain the symmetries of
the original theory, it is still not restrictive enough. For instance, let us consider a
concrete case of classical mechanics. The Hamiltonian of a free particle is given by

H0 =
p2

2m
, (2)

ful�lling the demand of rotational invariance. For very high energies, maintaining the
rotational invariance, this may generalize to

H[P ] =
p2

2m

(
1 + f(p2/P2)

)
, (3)

where f is an arbitrary, suitably well-behaved function which vanishes for P → ∞. It
can not be deduced a priori from some �rst principles, but rather must be postulated.
One may try to argue that nonrelativistic classical mechanics is not the best candidate
theory for the high energy generalization, since the Hamiltonian (2) is the kinetic
energy which follows in the nonrelativistic limit of the more fundamental Lorentz-
invariant mass-shell condition,

p2 − E2

c2
= m2c2. (4)

But the dispersion relation can then be modi�ed as well, in a Lorentz covariant way,
so as to produce precisely the form (3) for the nonrelativistic kinetic energy. One
example of such de�nition was given in [26], where it was postulated that the mass
is the geodesic distance from the origin,

m2 = d2(0, p), (5)

while the kinetic energy is given in terms of the geodesic distance between the point
p ant the point p′, which is the point which has the same geodesic distance to the
origin as the point p, d(0, p) = d(0, p′) but whose momentum vanishes

K =
d2(p, p′)

2m
(6)

It is then readily seen that one can construct a class of theories that produce precisely
(3) for the kinetic energy in the nonrelativistic limit.

It is obvious from the above considerations that a number of things have to be
postulated in a new theory. It is a certain mathematical ideal that the number of
assumptions and postulates for the new theory should be minimal, although this need
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not have anything to do with physical reality. This ideal was introduced in [28] and
dubbed the minimal extension principle. We proceed to describe its elements below.

5. Axioms and the consequences

We follow the line of reasoning put up in [26], where momentum space is assigned
a fundamental role, while the space-time is in a sense an emerging concept, whose
structure is completly determined by the structure of space-time.

A full set of postulates that the energy-momentum background of a new the-
ory is required to satisfy is given in [29], together with the detailed analyses of its
consequences. Here we review shortly the main points.

1. The momentum manifold is required to realise the full Poincare symmetry.
This reduces the possible geometries of the momentum manifold to be that of the
constant curvature space, with either positive, negative, or vanishing curvature. The
case of the vanishing curvature represents the standard �at case. It can be viewed
as the low energy limit of a fundamental case of nonvanishing curvature, where the
radius of curvature is given by P

2. There is a distinguished point on this manifold called the vacuum, and the
physical momenta are measured with respect to it. This idea was �rst introduced by
Tamm. For the values of the momenta whose distance to the origin is much smaller
then P , the assumed curvature of space is not observable.

3. No explicit mention of any coordinatization of the manifold is given in the set of
postulates. This implies the covariance of the law of physics on the momentum space,
in a similar way in which the covariance of space-time is implicit in GR. Otherwise,
one would need to include a speci�cation of a particular set of coordinates of the
momentum manifold.

How these principles are to be incorporated into a construction of a generalized
theory, has been considered speci�cally for the cases of classical �eld theory [28],
nonrelativistic quantum mechanics [30] and quantum scalar �eld theory [29]. For
the sake of the illustration, we review below the case of nonrelativistic quantum
mechanics.

6. Quantum mechanics

The constant curvature space is conveneitly realised as a hypersurface in 4+1
dimensional Minkowskian space,(η0

c

)2

− (η1)2 − (η2)2 − (η3)2 − (η4)2 = −P2 (7)

where η are the embedding space coordinates, and the physical energy-momentum
coordinates are any function of the embedding coordinates. Since we are interested
in non-relativistic case, the surface is the 3-momentum surface,

(η1)2 + (η2)2 + (η3)2 + (η4)2 = P2 (8)

and the physical momenta p are related to the embedding coordinates via

ηi = h(p2/P2)pi, η4 =
√
P2 − h2p2, (9)

with h an arbitrary function.
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As a starting point we take Schr�odinger's equation

(K̂(p̂i) + V̂ (x̂i))ψn = Enψn, (10)

where K̂ is the kinetic energy operator expressed in terms of the momenta, and
V̂ is the potential energy operator in terms of the position operators. The latter are
identi�ed with the generators of in�nitesimal translations on the sphere (8), namely

x̂i = P−1Ĵi3 = −iℏP−1

√
1− P−2p2h2

h

[
∂

∂pi
+

2P−2h′

h− 2P−2p2h′
δikp

kpj
∂

∂pj

]
, (11)

which leads to a deformed Heisenberg algebra

[x̂i, p̂
j] = iℏ

√
1− P−2p2h2

h

(
δji +

2P−2h′

h− 2P−2p2h′
δikp

kpj
)
, [x̂i, x̂j] = P−2Ĵij, [p̂i, p̂j] = 0.

(12)
It is readily seen that in the limit P → ∞, the position operator reduces to the
standard form x̂i = ∂/∂pi and the standard Heisenberg algebra is recovered,

[x̂i, p̂
j] = iℏδji , [x̂i, x̂j] = [p̂i, p̂j] = 0. (13)

Next question is the de�nition of the kinetic and potential operators. For the
kinetic operator, consistent with our above introduced requirements, and discussed
in more detail in [30], we take the geometric invariant

K̂ =
d2(0, p)

2m
=

1

2m
P2 arccos2

√
1− P−2p2h2. (14)

What concerns the potential energy operator, two speci�c choices of the potential
were considered in [30], that illustrate nicely the general method. For the case of the
harmonic oscillator potential, the choice of the potential operator

V̂HO = −mω
2ℏ2

2
∆ = − mω2ℏ2

2
√
detg

∂

∂pi

(√
detggij

∂

∂pj

)
(15)

was argued, where gij is the metric tensor of the surface (8). This choice is again
consistent with our general requirment of the covariance, that is, being expressed in
terms of geometrical invariants. Any potential that can be expressed in terms of the
power law expansion of the x̂2 terms is treated accordingly.

We point out that the quantum harmonic oscillator potential on Snyder space has
been a topic of many studies, see the recent one in [31]. There a di�erent choice of the
kinetic and potential energy operators was proposed, leading to di�erent eigenfunc-
tions and eigenvalues then the ones that follow from our choice. This is a manifesta-
tion of the inherent ambiguities discussed in section 4. Even with the agreement on
the geometry of the momentum background, the dynamical quantities that constitute
a physical theory are still arbitrary. A particular bene�t of our approach lies in that
these are uniquly de�ned by the demand of covariance, which is the consequence of
the introduced set of general postulates, and our demand of the minimal extension.

Another case considered in [30] was the potential that is not expandable in terms
of the powers of x̂2, namely the Coulomb potential. In this case, we start with the
canonical potential operator
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V̂Coulψ(p) =
1

ℏ

∫
ψ(p′)d3p′

|p− p′|2
, (16)

and preform the required "geometrization" of its form, namely

d3p→ dΩp =
√
detgd3p (17)

|p− p′| → d(p, p′) = P arccos
(
P−2hphp′p

ip′i −
√
1− P−2h2pp

2

√
1− P−2h2p′p

′2
)
,

(18)

where hp = h(p2/P2) and hp′ = h(p′2/P2).
This, in combination with (14), leads to a full Schr�odinger equation for the

Coulomb potential that is completely covariant.

7. Outlook

Nonrelativistic quantum mechanics can be regarded as a toy model for the appli-
cation of principles of the momentum space covariance argued in section 5. A more
serious analyses was given for the case of a scalar QFT in [29], where it was demon-
strated that the amplitudes at any order of the perturbation are �nite, due to the
�nitness of the (Euclidean) momentum space. This result has already been obtained
by Mir-Kasimov [32] in a di�erent approach. This again con�rms the validity of the
original Snyder's hypothesis that the radius of curvature of the momentum space can
serve as a cut-o� in the �eld theory.

As a next logical step the spinor �eld theory is to be considered. The challenge
is to demonstrate that the geometrical formulation on a momentum space of con-
stant curvature leads again to �nite Feynman amplitudes. Additionally, the question
emerges of the realization of gauge symmetry on such spaces, as well as the inter-
play between gauge and di�eomorphism symmetries. This is the topic of an ongoing
research.
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