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Mer maem 6a30Boe BBeleHWE B YHUMOIY/ISPHYIO TPABUTAINIO KAK Ha
KJIACCHYECKOM, TaK 1 Ha KBAHTOBOM YPOBHE, 00CYXKIasl POJIb, KOTOPYIO OHA MOXKET
CHITPATh B WHTEPITPETAINH MPOOJIEMbI KOCMOJIOTHYIeCKOi mocTosiuuoit. lenn sroi
paboThl HAXOOUTCS Ha 6a30BOM YPOBHE, HO IIPEACTABIEHBI METOIbI, UCIOAB3YEMbIE
Ha MCCJIe0BATEILCKOM ypoBHE. [leh cTaTthu cocTONT B TOM, 9TOOBI JATH YUTATE/TIO
BO3MOXKHOCTB 1TOHATH uHTepec K UG, ¢esaB TOCTYITHONR COBPEMEHHY O JIMTEPATYDY
II0 9TOM TeMe.

We give a basic introduction to Unimodular Gravity both at the classical and
quantum level, discussing the paper it might play in the interpretation of the
Cosmological Constant problem. The aim of this work is at the basic level but
techniques used at the research level are presented. The goal of the paper is to
enable the reader to grasp the interest of UG while making the recent literature on
the topic accessible.

PACS: 44.25.+f; 44.90.+¢

Introduction

Unimodular gravity (UG) was first considered by Einstein in 1919 [1]
as an attempt to make a connection between gravity and Mie’s theory of
electromagnetic wave scattering published a few years prior. This original
proposal was a far cry from the current status of UG. However, seven years
later, in his book [2], Pauli discussed the topic in a much more modern fla-
vor. This culminated when the attractive properties of UG in the context of
a field theory were noticed in [3], which was soon followed by the works [4-6].

Our presentation of UG will be based on the construction of a theory
whose particle content is that of a massless spin-two particle. In that sense,
we follow the spirit of [3], where we review the widespread yet erroneous idea
that GR is the only ghost-free theory of a massless spin-two particle. Only
after this do we consider the fully non-linear theory and give a systematic
approach to the quantization through the path integral formalism.

Let us precede this construction with a motivation for UG in the context
of the Cosmological Constant Problem (CCP) see [7] for the original overview,
or [8] for an updated and extensive bibliographic guide of the topic. The
aspect of the CCP we want to address here is the fact that contrary to
Minkowski space-time where normal ordering can set vacuum energy to zero.
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On curved spacetimes, vacuum energy is naively expected to contribute to
the stress-energy tensor as

<T,u,u>0 g,ul/? (1)
which has the same form as the CC term on the equations of motion (EoM)
of GR, i.e.,

1 L
Rp,u - §Rg,u,l/ + Ag,u,u = Tp,u + <,I:ul >0 g/uz' (2)

Therefore in GR one has that the CC term and vacuum energy have the
same form.

However, any gross estimate for the order of magnitude of the contri-
bution of vacuum energy yields results over 30 orders of magnitude above
the observed value for the CC [8]. Thus there is a fine-tuning problem in
which the different contributions to the vacuum energy, including those com-
ing from phase transitions have to cancel to an accuracy way beyond thirty
decimal places. It is in this sense that the CC is non-natural.

We will show in this report that, in the context of UG, the CC appears
as an integration constant with no naturalness problem associated. Further-
more, the CC was shown to be stable under radiative corrections in UG |9].

In this work, we also introduce the necessary tools to apply the path
integral formalism to UG.

Let us stress here that we do not aim for a full status report of UG, for that
one can consult [10] and references therein. We aspire to a well-motivated
introduction to the theory, its interest, and some calculations that try to
solve the question of the equivalence of UG and GR in different scenarios.

Linear Field Theory.

In this section, we review the theory of a linear field that only propa-

gates a massless spin-two field, that is, with two polarisation degrees of
freedom (DOF). As originally discussed in [3] and later in [11], we show that
the linear diffeomorphisms invariance, LDiff, is too restrictive in the sense
that the subgroup of volume-preserving linear diffeomorphisms LTDiff, can
successfully do the job.
The notion of a massless free particle in flat spacetimes is tied to the invari-
ance under the Poincaré group, (in particular to the proper orthochronous
Lorentz group E;“ ), of the unitary representation of the covering group of the
little group of the four-vector,

k=(E, 0, 0, E). (3)

To make the group finite-dimensional, gauge invariance introduces the equiv-
alence class,

Py (K) = P, (B) + 2k u80) (K), (4)

with the two constraints,

K¢ (k)=0 and k" (k)=0. (5)



As mentioned in [3] the first condition is too restrictive for interaction and
hence, it must be discarded. At this point, if we also dropped the second
condition we would get just,

huu(k) = h,uzx(k) + 2k(u€u)<k)7 (6)

which is known to correspond to linearized diffeomorphisms LDiff. But from
the above discussion, we can see that keeping the transverse condition does
the job. This would correspond in position space to,

Py () = Py () + 204,80 (2), (7)
0,6"(x) = 0. 8)

This characterizes linearized transverse diffeomorphisms, i.e., LTDiff.

Examining eqs. (7) and (8) we can see that, from a physical perspective,
LTDiff transformations have three DOF. These three DOF are enough to
pass from the five DOF of massive gravity to the two DOF of a theory that
only propagates a massless spin-two particle.

Taking into account these observations we now build a linearized la-
grangian that is second order in derivatives and such that it is ghost free
while only propagating a spin-two massless particle. We start by writing the
more general set of operators that satisty the above conditions.

L= Z C,00, (9)

=0
where, defining b = n*°h 45 = h,*
oW = 13 h OPheP O® = _la WA h P (10)
— 4 n'apB - 9 A P
1 1
0¥ = éa,mawA oW = —0"hdh (11)
Setting ¢} = 1 for normalization and requiring invariance under LTDiff
yields?
Cp=Cy=1. (12)

Additionally, imposing invariance under Weyl transformations results in,

2 2
Cg = ﬁ and 04 = nt . (13)

n2

Thus we have that LWTDiff? can be obtained by the combination of the
conditions in egs. (9), (12) and (13).

!For Fierz-Pauli we have the more restrictive C; = 1. We can see that LTDiff gives a
less stringent condition.
2The reason to consider LWTDiff will be discussed in the next section.



It is interesting to note that we could have obtained these constraints for
C; starting from the Fierz-Pauli Lagrangian (with C; = 1) by rewriting,

1
hMV — hl“/ — Eh?’/uy. (14)

Here, we stress that eq. (14) does not represent a field redefinition, as
it is not invertible.

In the next section, we will consider the fully non-linear theories where
LTDiff will be substituted by TDiff, which correspond to volume-preserving
diffeomorphisms that are connected to the identity.

Non-Linear Field Theory.

In the previous section, we considered the theory at the linear level. One
could always perform a bootstrap [12,13] to arrive at the complete non-linear
theory. Alternatively, we present here the easiest! way to get the complete,
non-linear theory.

We consider the Einstein-Hilbert action,

Sliu) = =53 [ 4" oV/=GR (9] (15

Where the metric g, is unimodular. The EoM can be obtained consider-
ing only transverse variations of the metric [14]. Here consider a practical
approach that will, later on, simplify the quantization. For this, we define,
from the unimodular metric,

" (16)

g,uu - g;w|g

Since we are only considering an action that is invariant under volume-
preserving diffeomorphisms, the allowed changes of coordinates will be such
that the determinant of the metric behaves as a scalar and not as a density.
Then, we can regard eq. (16) as a conformal transformation. The action (15),
after integration by parts, reads,

Slol = 55 [ @ alolt (o) + R =ATITIY

At this point, we note that eq. (16) is such that the field g, is Weyl-invariant.
Casting the action in terms of the metric g, results in an action whose gauge
group is given, see [15], by the semidirect product

WTDIff = Weyl x TDiff, (18)

1To our knowledge.



The equations of motion for this action read [16],

1 1
R;w — ERQW + @W = TW — ETg!W’ (19)
o _2=n@n-1) (VugVug 1(Vg)®
% An2 e n gz w
n—2(V,V,g 1V?3
- — . 2
+ 2n < g n g " (20)

If we choose the gauge g = 1, in four dimensions egs. (19) and (20) become
the traceless EoM of GR, [1,17],

1 1
R,LLI/ - ZRQ;W = T,ul/ - ZTg,uu' (21)

Now in eq. (21), there seems to be no CC. However, if we assume the covariant
conservation of the stress-energy tensor' and use the Bianchi identities, we
have,

v, =0—
1 1 1
w - N Vil - _ Z/T
\% (RW 4R9m/> 4V R 4V
VH(T+R)=0—-T+R=—-C. (22)

Plugging in the constraint eq. (22) into the gauge fixed EoM,
1
R, — éRgW +Cq,, =T,,. (23)

In eq. (23) we can appreciate the different context in which a Cosmological
Constant term appears in the EoM as in contrast to GR. Here it is an inte-
gration constant term, agnostic to the vacuum expectation value of fields.
Furthermore, it was proven in [9], that it remains stable under radiative
corrections.

We have just shown that eq. (21) can be reduced to those of GR*. In
particular the line element,

ds? = a(t)*2dt? — al/Q(t)(Sij dz' da’ (24)

satisfies the Cosmological principle?, it is unimodular and it corresponds to
an expanding solution where

at) = A3 (t — o))" (25)

In this case, the expansion is geometry-driven.

!This is in GR given by the invariance of the action under Diff. Nonetheless as discussed
in [10], it is hard to find out a physically consistent theory that does not satisfy the
covariant conservation of T, .

2Bearing in mind the different nature of the CC term.

3Being homogeneous and spatially isotropic at large scales.



Quantizing UG

Since we have just discussed that both UG and GR have the same EoM
and propagate the same number of degrees of freedom, then it must be the
case that any tree-level computation must be equivalent for both theories, as
explored recently in [?].

Nevertheless, this equivalence at the tree level need not, in principle,
extrapolate to loop-level computations. From the path integral approach to
the quantization of UG, the path integral measure must incorporate the fact
that the gauge group is not Diff but WTDiff, as discussed for example in [18].

Therefore, while on-shell states match for both UG and GR, since these
two theories do not share gauge groups, while the GR gravitons running
on loops are off-shell and as such need not be traceless, UG gravitons are
traceless inside loops. That is, since in each case loops run over different
states, lacking a reason to expect the cancellations of these differences at
all orders in perturbation theory, we could expect differences to arise when
comparing quantum effects for both UG and GR.

Since the only possible difference! must be at the quantum level. We now
present a particular formalism? that allows performing perturbative calcula-
tions in the path integral formalism.

We will consider the background field expansion, see [19] for a ped-
agogic introduction and further references. In this approach, we split the
metric field into the sum of a classical and a quantum part,

g;u/ = ?,uzz + h,uzz‘ (26)

Additionally, we assume the measure of the path integral is shift-invariant,
ie.,

/ [Dg,.] expliSlgl +T-g] = / (Dh,,] expli S|+ T-gl,  (27)

where T'- g represents the sources that are added to the partition function to
obtain field expectation values by functional differentiation,

T -g= / d4x\/—gT“”gW. (28)

The beauty of this method is that it allows fixing the gauge of the quan-
tum part while preserving the gauge invariance of the background. Then all
computations are invariant under gauge transformations of the background.
The same happens for the counterterms.

As it happens for other gauge theories, gauge freedom introduces an in-
determinacy in the path integral. To resolve this one often uses the DeWitt-
Feynman-Fadeev-Poppov method. This results in adding to the original ac-
tion, a part coming from the gauge fixing and certain ghost content that

! Aside from the different role the Cosmological Constant plays on each theory.

2This choice is by no means unique, and there is an ongoing discussion on whether
different approaches to the quantization might yield different results [10]. Despite its
interest, we will not further discuss this equivalence here.



represents the jacobian of the gauge fixing condition.
S — 5+ Sar. + San, (29)

finding a gauge fixing condition for the quantum WTDiff that preserves the
background’s WTDiff invariance is an open problem [20].

For this reason, we consider the alternative BRST approach. It was found
that the Gauge fixed action eq. (29) is invariant under the so-called BRST
transformation [21,22|. This implies that the physical content of the gauge
theory is given by the cohomology class of the BRST nilpotent operator s.
In this case, we can split it as,

§ =Sy + Sp, where (30)
5G,, =0 (31)
Ehm/ = th,u,u + swh;w = EC“ (g;w + hm/) + 20(?}11/ + h,uu) (32)

where the action is given in terms of the original lagrangian density by,
SBRST - / d4ZL’ E + 5\11. (33)

Now, because the generator of the volume-preserving diffeomorphisms is
transverse, so must be the associated ghost field ¢*,

D, =0, (34)

where the transversality condition is given by the Weyl covariant derivative.
The easiest way to implement this is using a projector |9, 20| II# acting
on an unrestricted ¢”. This introduces a U(1) invariance,

& — D'F. (35)

A general treatment of such an algebra requires the introduction of the BV
quantization techniques' [23,24]. But in this case, the procedure can be
carried out by enlarging the ghost content of the theory. We now give the
guidelines to do so. A more crude discussion can be found in [9,20].
We include the necessary set of anti-ghost and auxiliary fields that close
the algebra.
h (0,0)’ 0&171)7 b/gl7 1)7 f/E0,0)’ ¢(0,2)

nv
71_(1,—1)7 71_/(1,1)7 E(O’_2)7 C/(O,O)

0(171)7 b(l’_l)’ f(070)7 (36)

where in the label (n,m), n denotes the Grasmann number (modulo 2) and m
is the ghost number. The first line corresponds to the physical graviton and

'In the workshop S. Lyakhovich presented his work on Unfree Gauge Symmetries which
covers the topic in full detail.



the ghost fields that one would naively need for Diff. In adition ¢ corresponds
to the U(1) transformation. The second line has the ghost content to fix that
U(1) and the last line corresponds to the Weyl invariance.

This is enough to make s nil-potent to the one-loop level, ensuring BRST
invariance of the total action. For completeness, the counterterm reads,

Suer + Sowsr = / d"z b (chf}’l) — 2R, V'V —OR P —
—2V,R, Vel — RupRpVC(Vl,l)> _ 0202 4 (0D )

_ L (B 1, d00uRd00) 4 op g0 _ joog 00 | & pooy, |
p1 2

a _ y 1
+5h0 FOO +2nab 0D where  F, = V¥h,, — ~V,uh. (37)

Once the ghost content issue is solved, one can apply the Schwinger-DeWitt
proper time expansion' to calculate the divergences of UG. Using the pro-
cedure above described, it was found in [9] that the CC does not receive
radiative corrections in UG.

Summary and conclusions.

In this work, we have provided an introduction to UG. First, we have
discussed the interest the theory has from the point of view of the natural-
ness of the Cosmological Constant. We have paid special attention to its
motivation from the particle content side of a linearized field theory. After
this, a general discussion on the fully non-linear EoM and their solutions is
presented. Here we show the equivalence of UG and GR at the classical level.

Lastly, we have given an overview of a procedure that allows performing
QFT from the path integral. In doing so, we give references to works that
construct or apply the described techniques to perform calculations in the
context of UG. A remarkable result in this context is the fact that the CC is
stable under radiative corrections in UG.

Some remarkable topics that have not found a place in this work are the
question of the equivalence of both theories, the construction of a hamilto-
nian, the conformal factor in the path integral and the GHP prescription for
it and a discussion on the Noether charges.
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