Phase diagram of QCD with helically imbalanced quarks

Victor E. Ambruș¹, Maxim N. Chernodub²

PRD 103 (2021) 094015 [arXiv:2005.03575]

¹Institut für Theoretische Physik, Goethe Universität, Frankfurt am Main, DE ²Institut Denis Poisson, Université de Tours, FR

TECHNISCHE UNIVERSITÄT DARMSTADT

Conclusion

HEPFT XXXIII | 8^{th} November 2021

1 / 18

(arXiv:1912.11034)

Helically imbalanced LSM_{q}

Motivation

Polarisation: Helicity and Chirality

Curvature of the chiral transition

3 Massive V/A/H fermions

QCD phase diagram

1

2

4

5

6

Motivation

Polarization of QCD matter

- **STAR** collaboration: Λ polarization in HIC¹
- Anomalous transport: Chiral + helical vortical effects²
- Chirality works at m = 0, helicity works for any m.

¹STAR Collaboration, Nature **548** (2017) 62–65. ²VEA, M. N. Chernodub, arXiv:1912.11034 [hep-th]. ³B. V. Jacak, B. Muller, Science **337** (2012) 310.

V.E.Ambruş, M.N.Chernodub

Motivation

Polarization of QCD matter

- ▶ STAR collaboration: Λ polarization in HIC¹
- Anomalous transport: Chiral + helical vortical effects²
- Chirality works at m = 0, helicity works for any m.

QCD phase transition

- At high temperatures, quarks & gluons become deconfined \Rightarrow QGP.³
- Effective models: quarks acquire dynamical medium-dependent mass.
- ln the linear σ model, $m_* = g \langle \sigma \rangle \neq 0$ in the confined state.

¹STAR Collaboration, Nature **548** (2017) 62–65. ²VEA, M. N. Chernodub, arXiv:1912.11034 [hep-th]. ³B. V. Jacak, B. Muller, Science **337** (2012) 310.

Motivation

Polarization of QCD matter

- ▶ STAR collaboration: Λ polarization in HIC¹
- Anomalous transport: Chiral + helical vortical effects²
- Chirality works at m = 0, helicity works for any m.

QCD phase transition

- At high temperatures, quarks & gluons become deconfined \Rightarrow QGP.³
- Effective models: quarks acquire dynamical medium-dependent mass.
- ln the linear σ model, $m_* = g \langle \sigma \rangle \neq 0$ in the confined state.

Persistent (thermodynamic) polarization

- $\blacktriangleright \ \partial_{\mu}J^{\mu} = 0 \Rightarrow \widehat{Q} \text{ which can be modelled thermodynamically via } \mu.$
- μ_A inconsistent with $m_* \neq 0$.
- ls μ_H compatible with QCD models?
- How does μ_H affect QCD phase transition?

¹STAR Collaboration, Nature **548** (2017) 62–65. ²VEA, M. N. Chernodub, arXiv:1912.11034 [hep-th]. ³B. V. Jacak, B. Muller, Science **337** (2012) 310.

For m = 0, γ^5 and $h = \frac{S \cdot P}{p}$ share the eigenmodes U_j and $V_j = i\gamma^2 U_j^*$:

$$\begin{pmatrix} 2h\\ \gamma^5 \end{pmatrix} U_j = 2\lambda_j U_j, \qquad \begin{pmatrix} 2h\\ -\gamma^5 \end{pmatrix} V_j = 2\lambda_j V_j, \qquad (1)$$

- $\begin{array}{ll} \bullet \ J_A^{\mu} = \bar{\psi} \gamma^{\mu} \gamma^5 \psi & \text{satisfies} & \partial_{\mu} J_A^{\mu} = 2im \bar{\psi} \gamma^5 \psi. \\ \bullet \ J_H^{\mu} = \bar{\psi} \gamma^{\mu} h \psi + \overline{h} \overline{\psi} \gamma^{\mu} \psi & \text{satisfies} & \partial_{\mu} J_H^{\mu} = 0 \text{ (for all } m\text{)}. \end{array}$
- Why is chirality good?
- Why is chirality bad?
- Why is helicity good?Why is helicity bad?

Chiral vortical / magnetic / separation / etc. effects $m \neq 0$; Axial anomaly $(\partial_{\mu}J^{\mu}_{A} = -\frac{e^{2}}{8\pi^{2}}F_{\mu\nu}\widetilde{F}^{\mu\nu})$

Works at $m \neq 0$; Helical vortical effects interactions; anomaly?; ambiguous when $m \neq 0$

	Q_V	Q_A	Q_H	$ig oldsymbol{J}_V$	J_A	$oldsymbol{J}_H$
C	_	+	—	_	+	—
P	+		—	_	+	+
T	+	+	+	_	_	—

• Using $\widehat{\Psi} = \sum_{j} (U_j \hat{b}_j + V_j \hat{d}_j^{\dagger})$, the V/A/H charge operators are

$$: \widehat{Q}_{V} := \sum_{j} (\widehat{b}_{j}^{\dagger} \widehat{b}_{j} - \widehat{d}_{j}^{\dagger} \widehat{d}_{j}),$$

$$: \widehat{Q}_{A} := \sum_{j} 2\lambda_{j} (\widehat{b}_{j}^{\dagger} \widehat{b}_{j} + \widehat{d}_{j}^{\dagger} \widehat{d}_{j}),$$

$$: \widehat{Q}_{H} := \sum_{j} 2\lambda_{j} (\widehat{b}_{j}^{\dagger} \widehat{b}_{j} - \widehat{d}_{j}^{\dagger} \widehat{d}_{j}).$$
(2)

- \blacktriangleright J_V^{μ} , J_A^{μ} and J_H^{μ} form a triad: same T, different C and P.
- ► J^{μ}_{A} and J^{μ}_{H} have opposite C parities \Rightarrow they are fundamentally different.
- Can $\mu_{A/H}$ be used to thermodynamically describe polarization imbalance?

Thermodynamics of free fermions with $\mu_{V/A/H}$

▶ The Lagrangian for free, massive fermions at finite $\mu_{V/A/H}$ is⁴

$$\mathcal{L}_{\text{free}} = \overline{\psi} (i\partial \!\!\!/ + \mu_V \gamma^0 + \mu_A \gamma^0 \gamma^5 + 2\mu_H \gamma^0 h - m)\psi.$$
(3)

giving rise to

$$(i\gamma^{\mu}\partial_{\mu} + \mu_V\gamma^0 + \mu_A\gamma^0\gamma^5 + 2\mu_H\gamma^0h - m)\psi = 0.$$
 (4)

• Performing the Fourier transform $\psi \to \chi_p e^{-ip_\mu x^\mu}$, Eq. (4) reduces to

$$\mathcal{M}(p)\chi_p = 0, \qquad \mathcal{M} = \not p + \mu_V \gamma_0 + \mu_A \gamma_0 \gamma_5 + 2\mu_H \gamma_0 h - m.$$
 (5)

• det $\mathcal{M} = \prod_{s,\varkappa} [p_0 - p_{0,\varkappa}^{(s)}] = 0$ reveals energy branches:

$$p_{0,\varkappa}^{(s)}(\mathbf{p}) = -\mu_V - \varkappa \mu_H + s\sqrt{m^2 + (|\mathbf{p}| - \varkappa \mu_A)^2}.$$
 (6)

▶ $s = \pm 1$ corresponds to particles / anti-particles.

 $\blacktriangleright \varkappa = \pm 1$ corresponds to right- / left- handed fermions.

⁴M. Laine, A. Vuorinen, *Basics of Thermal Field Theory* (Springer, 2016).

V.E.Ambruş, M.N.Chernodub

Helically imbalanced LSM $_{a}$

Free energy

• Using the path-integral formalism in Euclidean time $\tau = it$, the partition function \mathcal{Z} can be expressed as

$$\mathcal{Z} \sim \prod_{\{P\}} \det \mathcal{M}.$$

► The free energy Ω = -T ln Z = Ω_{ZP} + Ω_T consists of the zero-point (vacuum) and thermal parts:

$$\Omega_{\rm ZP} = -\frac{1}{2} \sum_{\varkappa = \pm 1} \sum_{s=\pm 1} \int \frac{d^3 p}{(2\pi)^3} s \, p_{0,\varkappa}^{(s)},$$
$$\Omega_T = -\sum_{\varkappa = \pm 1} \sum_{s=\pm 1} \int \frac{d^3 p}{(2\pi)^3} T \ln \left[1 + e^{-s \, p_{0,\varkappa}^{(s)}/T} \right].$$

• The charge densities can be obtained via $n_{\ell} = \langle J_{\ell}^0 \rangle = -\frac{\partial \Omega}{\partial \mu_{\ell}}$.

(μ_V,μ_H) duality

For $\mu_A = 0$ but $\mu_V, \mu_H \neq 0$, the "energy branches" are

$$p_{0,\varkappa}^{(s)}(\boldsymbol{p}) = -\mu_V - \varkappa \mu_H + s\omega_{\mathbf{p}}, \qquad \omega_{\mathbf{p}} = \sqrt{m^2 + \boldsymbol{p}^2}.$$

•
$$\Omega_{ZP}^{VH} = -2 \int \frac{d^3p}{(2\pi)^3} \omega_{\mathbf{p}}$$
 is independent of μ_{ℓ} and T .

The thermal part,

$$\Omega_T^{VH}(\mu_V,\mu_H) = -T \sum_{s,\varkappa} \int \frac{d^3p}{(2\pi)^3} \ln\left[1 + \exp\left(-\frac{\omega_{\mathbf{p}} - s(\mu_V + \varkappa\mu_H)}{T}\right)\right],$$

exhibits the symmetry $\Omega_T^{VH}(\mu_V, \mu_H) = \Omega_T^{VH}(\mu_H, \mu_V)$. Also, Ω_T^{VH} is invariant under $\mu_V \to -\mu_V$, and/or $\mu_H \to -\mu_H$.

 μ_H μ_H μ_H μ_H μ_H μ_H

The charge densities can be computed exactly in the small mass limit:

$$n_V = \frac{\mu_V T^2}{3} + \frac{\mu_V (\mu_V^2 + 3\mu_H^2)}{3\pi^2} - \frac{\mu_V m^2}{2\pi^2}, \quad n_H = \frac{\mu_H T^2}{3} + \frac{\mu_H (\mu_H^2 + 3\mu_V^2)}{3\pi^2} - \frac{\mu_H m^2}{2\pi^2}.$$

For $\mu_V = \mu_H = 0$ but $\mu_A \neq 0$, the "energy branches" are

$$p_{0,\varkappa}^{(s)}(\mathbf{p}) = s\sqrt{(|\mathbf{p}| - \varkappa\mu_A)^2 + m^2}.$$

► In this case, $\Omega_{ZP}^A = \Omega_{ZP}^{VH} + \Omega_{dens}^A$ contains also a density-dependent part:

$$\Omega_{\rm dens}^A = -\sum_{\varkappa=\pm 1} \int \frac{d^3 p}{(2\pi)^3} \left[\sqrt{(|\mathbf{p}| - \varkappa \mu_A)^2 + m^2} - \sqrt{\mathbf{p}^2 + m^2} \right]$$

• While everything works at m = 0, the T = 0 limit of n_A at finite m diverges:

$$n_A(\mu_A) \rfloor_{T=0, m \ll |\mu_A|} = \frac{\mu_A^3}{3\pi^2} + \frac{m^2 \mu_A}{\pi^2} \ln \frac{\Lambda_{\rm UV}}{m} + \dots,$$
(7)

where $\Lambda_{\rm UV}$ is an UV cutoff.

• Hence, $\mu_A \neq 0$ cannot be used when $m \neq 0.5$

⁵M. Ruggieri, M. N. Chernodub, Z.-Y. Lu, Phys. Rev. D **102** (2020) 014031.

Helically imbalanced LSM_q

Linear σ model with quarks (LSM_q)

- LSM_q is a low-energy effective model of QCD, exhibiting the chiral phase transition.
- Considering the two-flavour model, $\psi = (u, d)^T$, the LSM_q Lagrangian density is

$$\mathcal{L} = \mathcal{L}_q + \mathcal{L}_\sigma,$$

$$\mathcal{L}_q = \overline{\psi} [i\partial \!\!\!/ - g(\sigma + i\gamma^5 \boldsymbol{\tau} \cdot \boldsymbol{\pi})]\psi,$$

$$\mathcal{L}_\sigma = \frac{1}{2} (\partial_\mu \sigma \partial^\mu \sigma + \partial_\mu \pi^0 \partial^\mu \pi^0) + \partial_\mu \pi^+ \partial^\mu \pi^- - V(\sigma, \boldsymbol{\pi}),$$

where $\pi^{\pm} = \frac{1}{\sqrt{2}}(\pi^1 \pm i\pi^2)$ and $\pi^0 = \pi^3$ correspond to the isotriplet of the pseudoscalar pions, $\pi = (\pi_1, \pi_2, \pi_3)$, while σ is the pseudoscalar field.

The potential,

$$V(\sigma, \boldsymbol{\pi}) = \frac{\lambda}{4} (\sigma^2 + \boldsymbol{\pi}^2 - v^2)^2 - h\sigma,$$

reaches a minimum when $\langle \boldsymbol{\pi} \rangle = 0$ and $\langle \sigma \rangle^3 - v^2 \langle \sigma \rangle - \frac{h}{\lambda} = 0$.

 \blacktriangleright In the mean field approximation, the quantum fluctuations of σ and π are neglected, such that

$$\mathcal{L}_{\rm MF} = \overline{\psi} [i\partial \!\!\!/ - M(\sigma)] \psi - V(\sigma),$$

where $V(\sigma) \equiv V(\sigma, 0)$ and $M(\sigma) = g\sigma$ is the dynamical quark mass.

► The model parameters are taken as⁶

 $g = 3.3, \qquad \lambda = 19.7, \qquad v = 87.7 \text{ MeV}, \qquad h = (121 \text{ MeV})^3,$

such that

•
$$\langle \sigma \rangle = f_{\pi} = 93 \text{ MeV} \equiv \text{pion decay constant};$$

• $M(\langle \sigma \rangle) = 307 \text{ MeV} \simeq \frac{1}{3}m_{\text{nucleon}};$
• $m_{\pi} = \sqrt{\lambda(\langle \sigma \rangle^2 - v^2)} = 138 \text{ MeV matches the pion mass.}$
• $m_{\sigma} = \sqrt{2\lambda f_{\pi}^2 + m_{\pi}^2} = 600 \text{ MeV}$ is the mass of the σ meson.

⁶O. Scavenius, A. Mocsy, I. N. Mishustin, D. H. Rischke, PRC 64 (2001) 045202.

10 / 18

We now add
$$\mu_V = \mu_q = \mu_B/3$$
 ($N_c = 3$), μ_H and T , such that
 $\Omega_T(\sigma; \mu_V, \mu_H) = V(\sigma) + \Omega_{q;T}(\sigma; \mu_V, \mu_H)$, (8)
where $\Omega_{q;T}(\sigma; \mu_V, \mu_H) = \Omega_{\text{vac}}(\sigma) + \Omega_T(\sigma; \mu_V, \mu_H)$ and
 $V(\sigma) = \frac{\lambda}{4} (\sigma^2 - v^2)^2 - h\sigma$,
 $\Omega_T(\sigma; \mu_V, \mu_H) = -N_f N_c T \sum_{s,\varkappa} \int \frac{d^3 p}{(2\pi)^3}$
 $\times \ln \left\{ 1 + \exp \left[-\frac{1}{T} (\omega_p(\sigma) - s(\mu_V + \varkappa \mu_H)) \right] \right\}$,

where $\omega_{\mathbf{p}}(\sigma) = \sqrt{\mathbf{p}^2 + g^2 \sigma^2}$ depends on σ .

• $\Omega_{\rm vac}$ is ignored in order to avoid UV cutoff-dependence.

For given T, μ_V and μ_H , σ is obtained by minimising $\Omega(\sigma; \mu_V, \mu_H)$.

Dense matter at T = 0

At µ_H = 0, 1st order PT occurs at µ_V = µ_c = 305 MeV.
 Increasing µ_H leads to crossover and then again to 1st order PT.

V.E.Ambruş, M.N.Chernodub

12 / 18

Dense matter at T = 0

PT1 along FC and GD.
 Crossover along CD.
 µ_H ↔ µ_V duality.

$$\mu_V^F = \mu_H^G = \mu_c.$$

$$\mu_H^F = \mu_V^G = 0.$$

eV

$$\mu_V^C = \mu_H^D = 0.81 \mu_c.$$
$$\mu_H^C = \mu_V^D = 0.40 \mu_c.$$

Finite-temperature phase diagram

Finite-temperature phase diagram

Curvature of the chiral transition

▶ The PT temperature at small μ_B and finite μ_H can be approximated by

$$\frac{T_c(\mu_B, \mu_H)}{T_{c,0}} = \frac{T_c(\mu_H)}{T_{c,0}} - \kappa(\mu_H) \left(\frac{\mu_B}{T_{c,0}}\right)^2 + \dots,$$
 (9)

where $\kappa(\mu_H)$ is the curvature.

μ_H dependence of κ^{\dagger}

(10)

• $\kappa(0) \simeq 0.016$ is the curvature at $\mu_H = 0$. • Best fit for $\alpha = 0.70$, $\gamma = 0.58$.

Conclusion

- J_{H}^{μ} is classically conserved for free fields, even when $m \neq 0$.
- \blacktriangleright μ_H can account for helicity imbalance.
- μ_A incompatible with LSM_q , while (μ_H, μ_V) form a dual pair.

Non-trivial changes to the chiral phase diagram can be seen when $\mu_H \neq 0$:

- New critical points at T = 0: C and D.
- At T > 0, the critical point E becomes a critical line: E L L' C.
- New critical line (dual to ELL'C): A K K' D.
- New region of 1st order phase transition $\equiv H$ matter (dual to B matter).
- Curvature κ of transition temperature at vanishing μ_B depends on μ_H .

Conclusion

- J_H^{μ} is classically conserved for free fields, even when $m \neq 0$.
- \blacktriangleright μ_H can account for helicity imbalance.
- \blacktriangleright μ_A incompatible with LSM_q , while (μ_H, μ_V) form a dual pair.

Non-trivial changes to the chiral phase diagram can be seen when $\mu_H \neq 0$:

- New critical points at T = 0: C and D.
- At T > 0, the critical point E becomes a critical line: E L L' C.
- New critical line (dual to ELL'C): A K K' D.
- New region of 1st order phase transition $\equiv H$ matter (dual to B matter).
- Curvature κ of transition temperature at vanishing μ_B depends on μ_H .

THANK YOU FOR YOUR ATTENTION!