

Heavy exotic mesons at LHCb

recent results

Vitaly Vorobyev (BINP) on behalf of the LHC*b* Collaboration

The XXXIII Workshop on «Hard Problems of Hadron Physics» (online)

November 9, 2021

In memory of Simon Eidelman (1948 – 2021)

What are exotic states?

- The QCD has difficulties describing the interactions of quarks in hadrons from the first principles
- Conventional states: $q_1 \overline{q}_2$ and $q_1 q_2 q_3$
 - Spectroscopy of conventional states is described reasonably well with potential models
- Hadrons with alternative content are referred to as *exotic states*
 - All knows exotic states decay via the strong interaction
 - Heavy tetraquarks (pentaquarks) are usually observed in a heavy quarkonium plus light meson (baryon) decay channels
- See review <u>Rev. Mod. Phys. 90 (2018) 15003</u>

Heavy flavor quarkonium

[Rev. Mod. Phys. 90 (2018) 15003]

Heavy flavor quarkonium(like)

6

The LHCb detector

[1] JINST 3 (2008) S08005
[2] Int. J. Mod. Phys. A 30 (2015) 153022

- > Designed for precision b and c physics
- > Excellent tracking and vertexing $\sigma(p)/p < 1\% @ \epsilon_{track} > 96\%$ $\sigma(IP) = (15 + 29/p_T) \mu m$

\succ Excellent PID

 $\epsilon_{\text{PID}}(K) \approx 95\% \text{ @ MisID}(\pi \to K) \approx 5\%$ $\epsilon_{\text{PID}}(\mu) \approx 97\% \text{ @ MisID}(\pi \to \mu) \approx 3\%$

LHCb trigger and data set

- Instant luminosity corresponding to 1.1 visible interactions per bunch crossing
- > Two stage trigger efficient for hadrons and muons
- \succ Turbo stream for Run 2
 - Trigger level reconstruction
 - Smaller event size and increased acceptance rate

LHC			LH-LHC	
Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2022-24)	Run 4 (2027-30)	Run 5+ (2031+)
3 fb^{-1}	6 fb^{-1}	23 fb^{-1}	$46 {\rm fb}^{-1}$	$> 300 \text{ fb}^{-1}$ (?)
		Upgrade I	Upgrade Ib	Upgrade II

[1] Comput. Phys. Commun. 208 35-42[2] Int. J. Mod. Phys. A 30 (2015) 153022

Vitaly Vorobyev, HPHP 2021

Outline

- 1. Tetraquarks with hidden charm
 - $\,\circ\,$ Updated amplitude analysis of $B^+ \to J/\psi \phi K^+$
 - \circ Prompt production of the $X(6900) \rightarrow J/\psi J/\psi$
 - \circ Updates on *X*(3872):
 - $\checkmark X(3872) \rightarrow J/\psi \pi^+\pi^-$ lineshape
 - $\checkmark X(3872)$ in $B^+ \rightarrow (J/\psi \pi^+ \pi^-) K^+$ decays
 - ✓ Multiplicity-dependent prompt production of X(3872) and $\psi(2S)$ (2021)
- 2. Pentaquarks with hidden charm
 - \circ Analysis of $\Lambda^0_b \to J/\psi p K^-$
 - \circ Amplitude analysis $B^0_s \to J/\psi p\bar{p}$
 - $\,\circ\,$ Amplitude analysis of $\Xi_b^-\to J/\psi\Lambda K^-$
- 3. Doubly charmed tetraquark $T_{cc}^+(3875) \rightarrow D^0 D^0 \pi^+$
 - \circ Discovery
 - Analysis

(cēss) (cēcē) (cēsu) (cēūu) (cēuud) (cēsud) (ccūd)

LHCb-PAPER-2019-014 LHCb-PAPER-2020-008 2. LHCb-PAPER-2020-009 3 LHCb-PAPER-2020-011 4. LHCb-PAPER-2020-023 5. LHCb-PAPER-2020-044 LHCb-PAPER-2020-039 LHCb-PAPER-2021-018 8. LHCb-PAPER-2021-031 9 LHCb-PAPER-2021-032 10.

Tetraquarks

LHCb-PAPER-2020-044

[Phys. Rev. Lett. 127 (2021) 082001] supersedes PRL 118 (2017) 022003

$Z_{cs}(4000)^+, Z_{cs}(4220)^+, X(4630), X(4685)$

LHCb-PAPER-2020-044

[Phys. Rev. Lett. 127 (2021) 082001] supersedes PRL 118 (2017) 022003

$Z_{cs}(4000)^+, Z_{cs}(4220)^+, X(4630), X(4685)$

- The 1st observation of strange exotic states with hidden charm!
- Systematic uncertainty is dominated by model uncertainty
- X(4140) is near the $J/\psi\phi$ threshold

- The width of $Z_{cs}(4000)^-$ is much larger than the width of $Z_{cs}(3985)^-$ reported by BESIII
- The Argand diagram confirms resonant nature of the $Z_{cs}(4000)^-$ signal

	To be	J^P	Contribution	Significance $[\times\sigma]$	$M_0 [{ m MeV}]$	$\Gamma_0 [{\rm MeV}]$	$\mathrm{FF}\left[\% ight]$
	commed	2^{-}	X(4150)	4.8(8.7)	$4146 \pm 18 \pm 33$	$135 \pm 28 {}^{+ 59}_{- 30}$	$2.0 \pm 0.5 {}^{+ 0.8}_{- 1.0}$
New		1_01	X(4630)	5.5(5.7)	$4626 \pm 16 {}^{+\ 18}_{-\ 110}$	$174 \pm 27 {}^{+134}_{-73}$	$2.6 \pm 0.5 {}^{+ 2.9}_{- 1.5}$
			X(4500)	20(20)	$4474\pm3\pm3$	$77\pm6{}^{+10}_{-8}$	$5.6 \pm 0.7 {}^{+ 2.4}_{- 0.6}$
		0+	$\rightarrow X(4700)$	17 (18)	$4694 \pm 4 {}^{+ 16}_{- 3}$	$87\pm8{}^{+16}_{-6}$	$8.9 \pm 1.2 {}^{+ 4.9}_{- 1.4}$
Conf	irmed		$NR_{J/\psi\phi}$	4.8(5.7)			$28 \pm 8 {}^{+ 19}_{- 11}$
L			X(4140)	13 (16)	$4118 \pm 11 {}^{+ 19}_{- 36}$	$162 \pm 21 {}^{+ 24}_{- 49}$	$17 \pm 3 {}^{+ 19}_{- 6}$
Now		1^{+}	X(4274)	18(18)	$4294 \pm 4 {}^{+ 3}_{- 6}$	$53\pm5\pm5$	$2.8\pm0.5{+0.8\over -0.4}$
			X(4685)	15 (15)	$4684 \pm 7 {}^{+ 13}_{- 16}$	$126 \pm 15 {}^{+ 37}_{- 41}$	$7.2 \pm 1.0 {}^{+ 4.0}_{- 2.0}$
		1+	$Z_{cs}(4000)$	15 (16)	$4003 \pm 6 { + \ 4 \atop - \ 14}$	$131\pm15\pm26$	$9.4\pm2.1\pm3.4$
		(or $1^{-} Z_{cs}(4220)$	5.9(8.4)	$4216 \pm 24 {}^{+43}_{-30}$	$233 \pm 52 {}^{+ 97}_{- 73}$	$10 \pm 4 {}^{+ 10}_{- 7}$

A structure in the J/ψ -pair spectrum

/ (28 MeV/c²

Weighted candidates

100

- 9 fb⁻¹ @ 7, 8 and 13 TeV
- Selections and signal window: •
 - $p_T(\mu) > 0.65 \ GeV, \ p(\mu) > 6 \ GeV$
 - Four muons are from the same PV
 - $p_T(J/\psi J/\psi) > 5.2 \ GeV$
 - $3.065 < m(\mu\mu) < 3.135 \, GeV$
- Total di- I/ψ signal yield is 33.6×10^3 •
- The di- I/ψ spectrum: •
 - Non-resonant single-parton scattering (NRSPS)
 - Double-parton scattering (DPS)
 - Threshold charmonium rescattering:
 - $\chi_{c0}\chi_{c0}$ at 6829.4 *MeV*
 - $\chi_{c0}\chi_{c1}$ at 6925.4 MeV
 - $T_{c\bar{c}c\bar{c}} \rightarrow J/\psi J/\psi$
 - A feed-down like $T_{c\bar{c}c\bar{c}} \rightarrow [\chi_c \rightarrow J/\psi\gamma]J/\psi$?

A structure in the J/ψ -pair spectrum

- The X(6900) is described by a BW: $m(X(6900)) = 6905 \pm 11 \pm 7 \text{ MeV}$ $\Gamma(X(6900)) = 80 \pm 19 \pm 33 \text{ MeV}$
- Signal yield: 252 ± 63 events
- Systematic uncertainty is dominated by the threshold structure shape and NRSPS + DPS modelling

\checkmark The signal significance exceeds 5σ in both models

The first (and the only one so far)
 state with doubly hidden heavy flavor

1.3

News on X(3872)(aka $\chi_{c1}(3872)$)

The $X(3872) \rightarrow J/\psi \pi^+\pi^-$ lineshape

- 3 fb⁻¹ @ 7, and 8 TeV
 - Inclusive J/ψ produced by *b* hadrons are selected
 - Analysis in three bins of $p_{\pi^+\pi^-}$
- Systematics is dominated by momentum scale (mass) and background shape (width)

1. BW lineshape

2.

 $m_{
m BW} = 3871.695 \pm 0.067 \pm 0.068 \pm 0.010 \; {
m MeV}$

 $\Gamma_{BW} = 1.39 \pm 0.24 \pm 0.24 \text{ MeV}$ $1^{\text{st}} \text{ analysis resolving the } X \text{ width}$ Flatte lineshape $mode = 3871.69^{+0.00}_{-0.04} + 0.05_{-0.13} \text{ MeV}$ $FWHM = 0.22^{+0.07}_{-0.06} + 0.13_{-0.13} \text{ MeV}$

The $X(3872) \rightarrow J/\psi \pi^+\pi^-$ lineshape

• 3 fb⁻¹ @ 7, and 8 TeV

- Inclusive J/ψ produced by b hadrons are selected
- Analysis in three bins of $p_{\pi^+\pi^-}$
- Systematics is dominated by momentum scale (mass) and background shape (width)
- Poles of the amplitude in the complex energy plane are identified with hadronic states
 - The pole location is a unique modelindependent property of each state
- Lineshape analysis in the $D^0\overline{D}^{*0}$ channel is needed for more conclusive results!

• Analytical continuation of the Flatte amplitude yields pole position (for the selected Flatte mass parameter)

$$E'_{II} = (25 - 140i) \text{ keV}$$

- Location at sheet II (bound state) is preferred by data
- Location at sheet IV (virtual state) is allowed with 2σ

LHCb-PAPER-2020-009 [JHEP 08 (2020) 123]

5.35

$X(3872) \text{ in } B^+ \to J/\psi \pi^+ \pi^- K^+$

• 0.548×10^{6} *B* candidates with 9 fb⁻¹ @ 7, 8 and 13 TeV

3870

3868

LHCb $B^+ \rightarrow \chi_{c1}(3872)K^+$

LHCb b $\rightarrow \chi_{c1}(3872)$ X

CDF $p\overline{p} \rightarrow \chi_{c1}(3872)X$

Belle $B \rightarrow \chi_{c1}(3872) K$

LHCb pp $\rightarrow \chi_{c1}(3872)$ X

BES III $e^+e^- \rightarrow \chi_{c1}(3872)\gamma$

BaBar $B^+ \rightarrow \chi_{c1}(3872)K^+$

BaBar $B^0 \rightarrow \chi_{c1}(3872) K^0$

D0 $p\overline{p} \rightarrow \chi_{c1}(3872)X$

BaBar B $\rightarrow (\chi_{c1}(3872) \rightarrow J/\psi \omega) K$

 $m_{{
m D}^0} + m_{{
m D}^{*0}}$

PDG 2018

3872

3874

- The X(3872) mass is still indistinguishable from the $D^0\overline{D}^{*0}$ threshold $\delta E = 0.07 \pm 0.12$ MeV
- The uncertainty is limited by the D^0 mass, too

Vitaly Vorobyev, HPHP 2021

Production of X(3872)

- The $J/\psi \pi^+\pi^-$ final state with 2 fb⁻¹ @ 8 TeV
- Selections:
 - Pions: p > 3 GeV, $p_T > 0.50$ GeV
 - Muons: p > 10 GeV, $p_T > 0.65$ GeV
 - J/ψ : $p_T > 3 \text{ GeV}$
 - Common vertex, total $p_T > 5 \text{ GeV}$
- Production of X(3872) and $\psi(2S)$:
 - Prompt: direct or in strong decays of excited charmonia
 - In decays of b hadrons
 - Distinguished by fit of pseudo-decay-time t_z
- Fit in bins of $N_{\text{tracks}}^{\text{VELO}}$

LHCb-PAPER-2020-023 [PRL 126 (2021) 092001]

Production of X(3872)

- Fractions of promptly produced X(3872) and $\psi(2S)$ as a function of charged particle multiplicity are measured
 - High-multiplicity *pp* collisions provide a testing ground for examining final-state effects in hadron production
 - Potential constraints on the *X*(3872) structure and binding energy
- The ratio of prompt cross sections (times branching fractions) is consistent with a compact tetraquark model (see <u>EPJ C 81 (2021) 669</u> for details)
 - A purely molecular state has a large radius (~ 10 fm) and would quickly dissociate as multiplicity increases
 - The coalescence production mechanism suggests opposite trend
- E. Braaten et al. [PRD 103 (2021) L071901] describe the data in terms of a loosely bound molecular state

Pentaquarks

LHCb-PAPER-2019-014 [PRL 122 (2019) 222001] supersedes PRL 115 (2015) 071001

<u>LHCb-PAPER-2019-014</u> [PRL 122 (2019) 222001] supersedes PRL 115 (2015) 071001

$P_c(4312)^+, P_c(4440)^+, P_c(4457)^+$

 All narrow peaks are significant. The minimal quark content is *cc̄uud*

- The wide structure near 4380 MeV cannot be addressed in a 1D analysis [see PRL 124 (2020) 072001]
- $P_c(4312)^+$ and $P_c(4457)^+$ are natural candidates for mesonbaryon bound or virtual states
- $P_c(4457)^+$ could be a produced by a triangle diagram with $D_{s1}(2860)^-$ exchange, but this model does not describe well the signal shape

I	$h = D_s^{**-} \left(\Lambda^* \right)$		<i>K</i> ⁻
m_1	M_0, Γ_0 m	$D^{(*)0}(p)$	
	$\frac{m_3}{\Lambda_c^{(*)+}(\chi_{cI})}$	4	— p
		~	$-J/\psi$

• The main systematic uncertainty comes from unaccounted interference effects

State	M [MeV $]$	$\Gamma [$ MeV $]$	(95% CL)
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+}_{-} ~ {}^{3.7}_{4.5}$	(< 27)
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} {}^{5.7}_{1.9}$	(< 20)

<u>LHCb-PAPER-2021-018</u> [arXiv:2108.04720, submitted to PRL] updates <u>PRL 122 (2019) 191804</u>

- 9 fb⁻¹ @ 7, 8 and 13 TeV
- 4D amplitude analysis of 800 untagged $B^0_s \to J/\psi p\bar{p}$ decays
 - No conventional resonances expected in this channel
 - Sensitive to the $J/\psi p$ resonances in the [4034, 4429] MeV range
 - Sensitive to the glueball candidate $f_{J}(2220) \rightarrow p\bar{p}$

<u>LHCb-PAPER-2021-018</u> [arXiv:2108.04720, submitted to PRL] updates <u>PRL 122 (2019) 191804</u>

P_c^+ states in B_S^0 decays?

- 1. **The baseline model**: two independent NR $J^P = 1^-$ couplings for $B_s^0 \to J/\psi X$ and $X \to p\bar{p}$: $\chi^2/\text{ndf} = 64/38$
- 2. The model with two identical resonances in the $J/\psi p$ and $J/\psi \bar{p}$ systems:
 - No evidence for the $P_c(4312)^+$
 - $J^P = 1/2^+$ states with $m(P_c) = 4337^{+7}_{-4} \pm 2 \text{ MeV}$ $\Gamma(P_c) = 29^{+26}_{-12} \pm 14 \text{ MeV}$

give $\chi^2/\text{ndf} = 36.7/36.8$ and 3.7σ significance

- Main systematics is due to alternative J^P hypotheses
- 3. No evidence of resonances in the $p\bar{p}$ system
- 4. No $p\bar{p}$ threshold enhancement is observed

✓ Evidence (3.1 σ) for a new P_c state

28

26

[Science Bulletin 66 (2021) 1278]

LHCb

9 fb^{-1}

6

Evidence of $P_{cs}(4459)^0$

• 9 fb⁻¹ @ 7, 8 and 13 TeV

80

60

Candidates / (5 MeV)

- Amplitude analysis of 1750 $\Xi_h^- \to J/\psi \Lambda K^-$ decays
- Signal signature: $J/\psi \rightarrow \mu^+\mu^-$ and $\Lambda \rightarrow p\pi$ with displaced vertices
- $\Xi_h^- \to J/\psi[\Sigma^0 \to \Lambda \gamma] K^-$

LHCb-PAPER-2020-039

[Science Bulletin 66 (2021) 1278]

Evidence of $P_{cs}(4459)^0$

- 6D amplitude analysis with $m_{\Lambda K}$ and five angles
- 1^{st} evidence for a charmonium pentaquark with strangeness (3.1σ)
- $P_{cs}(4459)^0$ is 19 MeV below the $\Xi_c^0 \overline{D}^{*0}$ threshold and it may be a double system like $P_c(4440)^+$ and $P_c(4457)^+$

 Different J^P assignments are tested for systematic uncertainty assessment

Free parameters					
State	$M_0 ({\rm MeV})$	$\Gamma_0 (MeV)$	FF (%)		
$P_{cs}(4459)^0$	$4458.8 \pm 2.9 {}^{+4.7}_{-1.1}$	$17.3 \pm 6.5 {+ 8.0 \atop - 5.7}$	$2.7^{+1.9+0.7}_{-0.6-1.3}$		
$\Xi(1690)^{-}$	$1692.0 \pm 1.3^{+1.2}_{-0.4}$	$25.9 \pm 9.5 {}^{+14.0}_{-13.5}$	$22.1^{+6.2+6.7}_{-2.6-8.9}$		
$\Xi(1820)^{-}$	$1822.7 \pm 1.5 \substack{+1.0 \\ -0.6}$	$36.0 \pm 4.4 \substack{+ \ 7.8 \\ - \ 8.2}$	$32.9 {}^{+\overline{3}.\overline{2}+\overline{6}.\overline{9}}_{-6.2-4.1}$		
$\Xi(1950)^{-}$	1910.6 ± 18.4	105.7 ± 23.2	$11.5^{+5.8+49.9}_{-3.5-9.4}$		
$\Xi(2030)^{-}$	2022.8 ± 4.7	68.2 ± 8.5	$7.3^{+1.8+3.8}_{-1.8-4.1}$		
NR	_	_	$35.8 {}^{+4.6+10.3}_{-6.4-11.2}$		

The second secon

Doubly charmed T_{cc}^+

LHCb-PAPER-2021-031.html [arXiv:2109.01038]

Doubly charmed tetraquark T_{cc}^+

- $9 \text{ fb}^{-1} @ 7, 8 \text{ and } 13 \text{ TeV}$
- Inclusive analysis of the $D^0D^0\pi^+$ final state
- A narrow T_{cc}^+ state in the $D^0 D^0 \pi^+$ mass spectrum is observed near the $D^{*+}D^0$ threshold
- Fit to the data with signal modelled as a $J^P = 1^+$ RBW yields
 - $$\begin{split} \delta m_{BW}(T_{cc}^+) &= -273 \pm 63 \pm 5^{+11}_{-14} \, \mathrm{keV} \\ \Gamma_{BW}(T_{cc}^+) &= 410 \pm 165 \pm 43^{+18}_{-38} \, \mathrm{keV} \\ \delta m &\equiv m(T_{cc}^+) (m(D^{*+}) m(D^0)) \end{split}$$
- δm_{BW} is negative with 4.3 σ . Signal yield is 117 \pm 16 events
- This is the narrowest exotic state observed to date

Doubly charmed tetraquark T_{cc}^+

• Unitary model assuming strong coupling of T_{cc}^+ to the DD^* channel:

 $\delta m_{\rm U}(T_{cc}^+) = -359 \pm 40 \text{ keV}$ FWHM_U(T_{cc}^+) = 47.8 ± 1.9 keV

• The two heavy quarks Q_1Q_2 form a point-like color-antitriplet, an object analogous to an antiquark. An $Q_1Q_2\bar{q}_1\bar{q}_2$ state has like an antibaryon degrees of freedom (see Karliner, Rosner **PRL 119 (2017) 202001**)

Conclusions

- 1. Number of exotic states above the open flavor threshold exceeds the number of conventional states
- 2. Many states are in vicinity of mesonmeson and meson-baryon thresholds
- 3. LHC*b* is a flagship experiment for discovery and measuring properties of the exotic states
- 4. A lot of efforts ahead from both theory and experiment
 - \circ A RBW lineshape is unphysical for many heavy exotic states

State	Nearby threshold	Minimal content
X(3872)	$D^0\overline{D}^{*0}$	с <i></i> сиū
$T_{c\bar{c}c\bar{c}}$ (6900)	No*	cēcē
$Z_{cs}(4000)^+$	No	cēus
$Z_{cs}(4220)^+$	No	ccus
X(4630), X(4685)	No	cēss
$P_{c}(4312)^{+}$	$\Sigma_c^+ \overline{D}{}^0$	с <i></i> uud
$P_{c}(4440)^{+}$	No	с <i></i> uud
$P_{c}(4457)^{+}$	$\Sigma_c^+ \overline{D}^{*0}$	с <i></i> uud
$P_{cs}(4459)^0$	$\Xi_c^0 \overline{D}^{*0}$	cc̄sud
T_{cc}^{+}	$D^{0}D^{*+}$	$ccar{u}ar{d}$

* See <u>A. Nefediev's talk</u>

Backup

- Combined analysis of D^0D^0 , D^+D^0 and $D^0\pi^+$ spectra

• Unitary model assuming strong coupling of T_{cc}^+ to the DD^* channel:

$$\delta m_{\text{pole}}(T_{cc}^+) = -360 \pm 40^{+4}_{-0} \text{ keV}$$

 $\Gamma_{\text{pole}}(T_{cc}^+) = 48 \pm 2^{+0}_{-14} \text{ keV}$

- The signals are consistent with originating from off-shell $T_{cc}^+ \rightarrow D^*D$ decays followed by the $D^* \rightarrow D\pi$ and $D^* \rightarrow D\gamma$ decays
- Signal yields: 263 ± 23 and 171 ± 26 for D^0D^0 and D^0D^+ , respectively

States	[arXiv:2109.01056v2 [hep-ex] 3 Sep 2021]	Quark content
$X_0(2900), X_1(2900)$) $[21, 22]$	$\overline{c}du\overline{s}$
$\chi_{c1}(3872)$ [6]		$c\overline{c}q\overline{q}$
$Z_{c}(3900)$ [23], $Z_{c}(4)$ $Z_{c}(4200)$ [28], $Z_{c}(4)$	020) [24,25], $Z_c(4050)$ [26], $X(4100)$ [27], 430) [29–32], $R_{c0}(4240)$ [31]	$c\overline{c}u\overline{d}$
$Z_{cs}(3985)$ [33], $Z_{cs}($	$(4000), Z_{cs}(4220) [34]$	$c\overline{c}u\overline{s}$
$\begin{array}{l} \chi_{c1}(4140) [3538], \\ X(4630), X(4685) \end{array}$	$\chi_{c1}(4274), \ \chi_{c0}(4500), \ \chi_{c0}(4700)$ [38], [34], X(4740) [39]	\overline{CCSS}
X(6900) [14]		\overline{cccc}
$Z_{b}(10610), Z_{b}(10650)$	50) [40]	$b\overline{b}u\overline{d}$
$\begin{array}{c} P_{c}(4312) & [41], P_{c}\\ P_{c}(4357) & [43] \end{array}$	(4380) [42], $P_{c}(4440)$, $P_{c}(4457)$ [41],	ccuud
$P_{cs}(4459)$ [44]		$c\overline{c}uds$

_

_

LHCb trigger data-flow

35

150 kHz

e/v

LHCB UPGRADE I

